

NOVELLUS

Innovative Technology. Trusted Productivity.

The Interconnect Challenge

Bob Havemann
Novellus Systems, Inc.

16th Biennial University Government Industry
Microelectronics Symposium
June 26, 2006

Outline

Interconnect Scaling

- Fabrication options
- Benefits of Cu/Low k

Engineering "C"

- Reducing k effective
- Optimizing mechanical properties

Engineering "R"

- Thinner barriers
- Optimizing Cu resistivity

→ Summary

Interconnect Fabrication Options

Logic devices have fully transitioned from AI to Cu interconnect; transition from AI to Cu for Memory devices is in progress

Microprocessor Clock Frequency vs. Scaling Influence of Interconnect System on Performance

Logic Depth = 12 Gates

Interconnect Hierarchy 90 nm DSP Example

Global/Semi-Global Interconnect

Intermediate Interconnect

Local Interconnect

A Typical Chip Scaling Scenario Global Wires Do Not Scale In Length

A More Advanced Chip

- Scaled Macro Circuit
- Local wire in a macro
- Global wire between macros

Interconnect Delay vs. Technology Node For ITRS Design Rules/Material Parameters

Process Technology Node (nm)

Benefits of Cu and Low k Interconnects

Decreased RC Delay RC ~ $\varepsilon_o \varepsilon \rho L^2 (h^{-2} + w^{-2})$

Lower Power Consumption P ~ CV²f

Reduced Crosstalk Noise
N ~ C_{L-L}/C Total

Crosstalk ~ C_{L-L} / (C_{L-L} + C_{L-G})

Line-to-line Capacitance = C_{L-L} Line-to-ground Capacitance = C_{L-G}

Cu Interconnect Evolution vs. Technology Node

Engineering RC requires new materials and processes

New materials have both benefits & concerns

→ Performance

- RC delay
- Crosstalk (~C_{II}/C_T)
- Power dissipation (~CV²f)

→ Reliability

- Time Dependent Dielectric Breakdown (TDDB)
- Bias Thermal Stress (BTS)
- Via Stress Migration (VSM)
- Electromigration (EM)

Packaging

- Mechanical Integrity
- Heat Dissipation

Engineering "C"

Goal is reduction in "effective" dielectric constant (k) by minimizing:

- k of bulk dielectric material
- k of dielectric barrier
- Damage to low k during processing
- Moisture absorption in low k material
 - Requires hermetic barrier

Must also optimize mechanical properties

- Hardness, modulus, stress, cohesive strength, cracking limit
- Adhesion
- Pore size and connectivity

k Effective for Dense and Porous Low k Dielectrics

Must simplify porous low k integration to realize benefits

BEOL Integration Challenges Low k Dielectrics

- Low k dielectrics required for capacitance scaling, but:
 - Weaker electrical and mechanical properties are a concern
 - UV Thermal Processing (UVTP) improves film modulus
 - High porosity of Ultra Low k (ULK) films presents integration issues
 - Reduced pore interconnectivity enables standard process for lower cost

"Closed Pore"
Behavior—No
Penetration of
iALD barrier

Integration of ultra low k dielectrics demonstrated at k = 2.5

Making a Reliable SiC Diffusion Barrier Resistance to moisture and oxygen

Hermeticity of the dielectric barrier is key to Cu/low k reliability

Engineering "R"

- Goal is to lower interconnect resistance by:
 - Alleviating contact R increase through material changes
 - Replace high resistivity Ti/TiN with WN
 - Reducing barrier thickness to maximize Cu volume in trench
 - While maintaining reliability
 - Reducing via resistance by optimizing:
 - Etch and post-etch clean
 - Pre-sputter clean
 - Barrier deposition
- Must also optimize resistivity for smaller feature sizes
 - Optimization of Cu plating chemistry and anneal

Impact of Scaling on Contact Resistance

Contact resistance increasing with scaling:

Control of resistance with scaling → DirectFill™ WN/Low ρ W

Elimination of Ti/TiN liner improves R in scaled contacts

Scaling Cu Barrier/Seed

▶ Lower line resistance achieved by optimizing Cu volume:

Requires thinner barrier while maintaining barrier integrity

Thinner barrier alleviates line resistance increase with scaling, but process optimization required to maintain interconnect reliability

RF HCM™ Barrier Step Coverage

1. Barrier Deposition (Ta/TaN)

As deposited

2. RF Biased Ar⁺ Etch / Ta Deposition

After resputtering

Cu Fill of Scaled Interconnects

Challenges for Cu fill of smaller feature size:

- Smaller features require faster bottom-up fill without overplating
- Must compensate for nonuniform current distribution from thin Cu seed

New plating chemistry & tool enhancements enable Cu fill extendibility

Optmization of Cu Resistivity

- → Cu resistivity increases with smaller feature size:
 - Electron scattering from grain boundaries and sidewalls
 - Optimized chemistry/anneal gives large grain size & lower resistivity

Copper Anneal/Plating Chemistry Optimized for Large Grain Size

Lower effective Cu resistivity with optimized plating chemistry & anneal

Summary

- → Interconnect performance needs have led to the introduction of Cu and low k dielectrics
 - Cu interconnects mainstream for Logic devices
 - Transition to Cu interconnects underway for Memory devices
- → The successful integration of Cu/low k has required the resolution of numerous technical challenges
 - Cu/low k (k=2.9-3.0) in production at 90nm/65nm technology nodes
 - Cu/low k (k=2.5) in development for 45nm production in 2008
- Even greater challenges lie ahead
 - Lower k dielectrics (k < 2.5), ultra thin (< 3nm) metal barriers, fill of sub-50nm features, scaling effects, etc.
- Collaboration between industry, universities and government is key to <u>fostering innovative solutions</u> and <u>fueling the IC scaling engine</u>