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Abstract—The problem of computing high-accuracy simula-
tion models for systems described by tabulated frequency data
is of paramount importance in the modeling arena. Standard
algorithms for this task involve generating rational function
approximations to the data. However, for complicated data sets,
high-order approximations are required. Unfortunately, numer-
ical conditioning problems arise when attempting to fit high-order
rational approximations to the data, effectively limiting the ac-
curacy of the models that can be generated. While robust fitting
schemes based on orthogonal polynomial exist, they usually pose
strict constraints on the data points, which are either hard or
even impossible to guarantee. Furthermore, the approximation
must still be translated such that it can directly be used inside
a simulator. In this paper, we present an algorithm for robustly
generating such a model using only the data given. The model is
supported on a problem-tailored orthogonal polynomial basis. We
also present a method for directly generating a state-space model
associated with a rational function described in terms of such
polynomials, effectively making the model amenable for simula-
tion. An extension to the MIMO case is described and it is shown
that the method is easily included with existing passivity enforcing
procedures. Finally, we demonstrate the proposed technique by
constructing approximations to several real-world data sets.

Index Terms—Frequency-data interpolation, orthogonal poly-
nomials basis, problem-specific polynomials, simulation mode.

1. INTRODUCTION

N the design and analysis of communication, high-speed

digital, and microwave electronic systems, it is increasingly
important to model previously neglected frequency-dependent
effects that can have an important impact on the performance
and functionality of a design [1]-[3]. For example, in modern
communications systems employing advanced digital modula-
tion schemes, such figures of merit as adjacent channel power
rejection may depend critically on the frequency-dependent re-
sponse of the passive circuit components. As a result circuit-
level simulation models of the passive components, in partic-
ular filters, must give very accurate representations of the ac-
tual measurements. However, in the design of microwave and
RF communications circuitry, it is often difficult or impractical
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to directly obtain analytic or numerical models of many pas-
sive components, such as surface acoustic-wave filters, spiral
inductors, and chip packages, that can be directly incorporated
in circuit-level simulators. Instead, the passive devices are char-
acterized by measuring the scattering (S) parameters of phys-
ical devices over the frequency range of interest. As another
example, in high speed digital systems, impedance (Z), or ad-
mittance (Y) parameters describing transmission-line effects [4]
are extracted from full-wave electromagnetic field solvers for
use in designing clock and power distribution networks. It is
sometimes possible to obtain models directly from field solvers
[5], but in many cases, engineers are forced to resort to a tedious
trial-and-error process of generating, by hand, a lumped circuit
model that is sufficiently accurate, yet also compact.

Both examples demonstrate the need for an automatic, accu-
rate, and robust algorithm that can generate simulation models
for systems described by sets of tabulated data points. Although
it is desirable that such models be as small as possible to sim-
plify their manipulation during the design and analysis phases,
more often than not, accuracy considerations make the use of
large models unavoidable if one is to achieve a good frequency
fit in the model. Unfortunately, high-order models are hard to
obtain, as numerical problems arise during their computation.
Standard techniques for fitting a model to tabulated frequency
data are usually based on determining the coefficients of a ra-
tional function approximation. This is typically done with a least
squares procedure using the standard monomial basis, i.e., the
polynomials 1, s, s2, -, etc. For high orders, however, such
techniques lead to ill-conditioned problems and are in general
not easy or even impossible to apply. Frequency scaling can al-
leviate this problem to some extent, but for high-order approx-
imation it is known not to be sufficient remedy [6]. Alterna-
tive procedures, using rational function approximations (for a
very successful technique in this regard, see [7]), suffer from the
same overall difficulty, and fail to provide a practical alternative
for high-order, high-accuracy approximations. Robust schemes,
based on orthogonal polynomial representations are seen as a
possible solution to this problem as they can enable robust ways
to compute high-order approximants. Much research has been
devoted to system identification, namely in the control and sys-
tems arena, and several methods using orthogonal polynomials
have been proposed. A procedure for performing frequency do-
main identification using generalized orthonormal basis func-
tions was presented in [8]. However this technique assumes that
a time-domain generating system is available, from which fre-
quency data is obtained via transformation. Another class of
techniques along the same lines makes use of Chebyshev poly-
nomials, to mitigate the numerical problem [6], [9]. However,
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their robustness properties are usually associated with strict con-
straints on the positioning of the data points, which are either
hard or even impossible to guarantee. New data points can, in
principle, be generated via interpolation to satisfy such require-
ments, but this process is complicated and can lead to additional
errors. Another potential solution to obviate the numerical is-
sues when approximating data over large frequency ranges, is
to partition the frequency axis into smaller ranges and compute
approximants in each partition. Several procedures have been
proposed for this task [10], [11]. Basically, these algorithms pro-
pose constructing an accurate global approximant by piecing
together the local partition-generated models, perhaps further
enforcing other properties. However, as models computed in
each partition also contribute to the frequency response outside
that partition, this interaction must be accounted for when con-
structing the global approximant. This generally requires a more
complicated algorithm to control the patching of the various
models. Furthermore these algorithms are not entirely useful
when handling complicated data in a short frequency range, as
the partitioning does not yield a considerable advantage.

In this paper, we present a method for generating an orthog-
onal polynomial basis tailored to a specific data set. Once the
basis is generated it can then be used with most fitting algo-
rithms to robustly generate a highly accurate, high-order model.
While the robustness of the procedure is essential to the mod-
eling phase, two additional concerns have to be taken into ac-
count regarding the generated model. First, the model must be
amenable to simulation in a standard environment which typi-
cally requires a translation to a state-space form or equivalent.
While the usage of problem-tailored polynomial basis enables
the generation of very accurate high-order models, it is essential
that such models be represented in a standard form for simula-
tion purposes. Using standard realization procedures is unac-
ceptable since the numerical difficulties mentioned would reap-
pear in this process. Still, we will show that it is possible to
generate efficient state-space representations of the model in a
robust manner, thus retaining the desired accuracy. A second
concern is the related to model physical properties. In order to
guarantee good simulation behavior for the generated model,
not only must it match the available data but it must also possess
stability and passivity properties similar to those of the phys-
ical system that it represents. Otherwise, nonphysical anomalies
may be introduced into the time-domain simulation leading to
erroneous results. Fortunately, this problem has recently been
the target of considerable research and methods are now avail-
able to generate stable and passive approximations to frequency
data [12]-[14]. However, all such methods require as a starting
point, a highly accurate initial approximation. In this context,
the proposed method can be seen as an efficient enabler or an
essential first step for such methods.

We start in Section II with a brief description of the problem
of computing rational approximations to tabulated data and we
identify the source of numerical ill-conditioning when using
higher order models. Then, in Section III, we present an algo-
rithm that, given a set of frequency points, generates an orthog-
onal polynomial basis on that set of points. We also discuss how
to directly generate an efficient state-space representation using
the orthogonal polynomial basis description directly, and also
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how to dramatically improve the choice of a good starting point
for the fitting parameters. In Section IV, we discuss the exten-
sion of the proposed method to the case of multiple-port sys-
tems. In Section V, we present some results where the use of the
problem specific orthogonal polynomial basis allows the robust
generation of very high-order models. Finally, in Section VI, we
draw some conclusions.

II. RATIONAL APPROXIMATION

Given a set of data points describing the behavior of a system
in the frequency domain, i.e., a sampled transfer function,
H(s) = {H(s;)},7 = 1,..., N, the rational approximation

problem amounts to computing a state-space model

x =Ax + Bu
y =Cx+ Du 1)

or its equivalent rational function form

_ 74n_ bksk Y(S)
R(a,b,s) = C(sI - A 1BJFD:Z’,;—O =
(@b, g) = CleT ~ A) S ewst  U(s)
2
where ag = 1,a = [1,a1,...,a,]7, b = [bo,...,bn]|T, and
such that
E(a7 b7 S) = R(a7 b7 S) - H(s) 3)

evaluated on the discrete frequency points, is minimized in some
appropriate norm.

This nonlinear minimization can for instance be accom-
plished with a Levenberg—Marquardt procedure, which requires
evaluation of the Jacobian of the objective function (see [15] for
details). To understand how the use of the monomial basis leads
to numerical ill-conditioning consider the evaluation of (2) at
the data points or the Jacobian of the objective function, which
is often used to minimize (3). Either case involves the product
of the parameter vectors a and b with the Vandermonde matrix
U;., or Uy., respectively. The Vandermonde matrix Uy.,, is
defined as

1 sy 82 ..o s
1 2 m

Ugom = 2% 2 1=[1,81,8%1,...,8™1]
1 sy s?\, oo SN

“)
where S = diag([s1, s2, .- ., sn]7T), is a diagonal matrix whose
entries are the various frequency points, and 1 is an N row
column vector with all entries set to 1. The Vandermonde ma-
trix is known to lose numerical rank very fast [16]. Fig. 1 illus-
trates this problem. Here, we plot the condition number of the
Vandermonde matrix as a function of the number of data points
in two situations. This loss of rank means that, for relatively
low values of m, there will be b # 0 such that Uy.,,b = 0.
The same holds for n, Uj.,, and a. This means that even though
we increase the model order we will get no better fit; it also
means that the function and Jacobian evaluation will be riddled
with numerical error as the basis functions will not be accurately
represented.
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Fig. 1. Condition number of optimally scaled matrix Uy.,,, as a function of m.
Results for linearly (solid line) and logarithmically (dashed line) spaced points
are shown.

As previously mentioned, it is possible to fit the data points
to an alternative representation that avoids the numerical diffi-
culties discussed. A possible candidate would be to replace the
monomial polynomial basis used in (2) with Chebyshev poly-
nomials. This would lead to a representation such as

R(é,B,S) _ Ek:O kak(s) _ Y(S) (5)

- Ym0 Ti(s)  U(s)

where T} (s) is the kth-order Chebyshev polynomial of the first
kind, satisfying a three-term relation such as

Trv1(s) = 28Ty(s) — Tr—1(s)

and g = 1,4 =[1,a1,...,a,]7. b = [bo, ..., by]" are coef-
ficients of the approximations, which can be computed from a
minimization procedure such as the one described. Chebyshev
polynomials possess the important property that they satisfy a
discrete orthogonality condition at the polynomials zeros and
lead to better conditioned properties, when the data set also con-
forms to these zero locations. It is important to realize that the
basis obtained from evaluating Chebyshev, or other orthogonal
polynomials, at arbitrary points is not well conditioned. Thus,
in order to take advantage of such properties, restrictions on
the data points used in the fitting procedure must be imposed,
which is either impossible to do or may lead to additional error
generation.

III. USING ALTERNATIVE POLYNOMIAL BASIS

A. Robust Basis Generation

To deal with the numerical rank deficiency problem of
the Vandermonde matrix without constraining the placement
of the datapoints, we start by noticing that the columns of
the matrix span a Krylov subspace with generating matrix S
and starting vector 1, Kx11(S,1), as is clear from (4). It is
well known that such a basis leads to ill-conditioned repre-
sentations of the subspace. Therefore, we propose instead to
generate an orthonormal polynomial basis that spans the same
space as the columns of the ideal Vandermonde matrix. An
orthonormal basis for colspan{Uj. } can readily be generated
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using an Arnoldi process—the Arnoldi process produces the
factorization

SV, =V H; + Vitihit1,k (6)
where Vi, has orthonormal columns (i.e., VkHVk =1, VkH
stands for conjugate transpose of V, and I, is the identity ma-
trix of size k), Hy is a & x k upper Hessenberg matrix (see
[17], [18] for more details) and V., = [V, Vg41] is the or-
thonormal basis we seek.

Notice that since S is anti-Hermitian so is H;,. But Hy, is also
upper Hessenberg by definition. Therefore, it has to be a tridiag-
onal matrix. In this case the Arnoldi process becomes a Lanczos
process and the cost of generating an order % orthogonal basis
is O(Nk).

In other words, this is a process for constructing a polynomial
basis defined by the three-term recursion

j+1 Jj+1
Sijl(S) = Zhivjpifl(s) = Z hi’jpifl(s) (7)
=1 i=j5—1

where P;(s) is a polynomial of order j. The polynomial basis
thus defined satisfies the discrete orthogonality relation

N
ZPj(sk)Pi(Sk) = (51']' (8)
k=1

where §;; is the Kronecker delta (6,; = 1 if and only if 1 = 5, 0
otherwise). If necessary, the above relation can be replaced by a
weighted discrete orthogonality condition. The orthogonality is
then enforced using basis polynomials that, after weighting, are
orthogonal on the frequency points. This can be accomplished
by starting the recursion with a weight vector W1/2 and then
dividing the elements in each column of V7, by W'/2. Such a
procedure would still guarantee orthogonality, essential for nu-
merical reasons, and would also allow some flexibility in terms
of enforcing greater accuracy in certain frequency ranges. The
usual technique to accomplish this would be to introduce some
frequency weighting directly into (3), which is undesirable in
this case as it would destroy the orthogonality. Using the above
procedure we are effectively weighting the minimization but the
matrices involved will be orthogonal by construction.

In order to guarantee that the model has a real time-domain
response, its frequency response must obey the complex con-
jugate symmetry condition. This requires that the polynomial
basis we are generating also satisfy this condition and that a
and b be real vectors. This can be achieved by guaranteeing that
the basis polynomials are orthogonal on both sides of the fre-
quency axis. This corresponds to generating Ky, 1(S, 1) where
now S = diag([s;3]), s is a complex conjugate of s, and 1
would be a 2N column vector with all entries set to 1. In prac-
tice, a similar result can be obtained by using a modified Arnoldi
process where only the real projections are used, thus generating
a real coefficient polynomial basis which is orthogonal when
both sides of the axis are considered. In the following, in order
not to make the notation confusing, we assume that one of these
options is implicit.
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Replacing the Vandermonde matrices by the new basis ma-
trices means that function and Jacobian evaluations will depend
on V1.,aand V., b which greatly increases the numerical sta-
bility of the function evaluation and approximation procedure.

The increased numerical stability of these processes allows
the creation of very high-order models, a task that is impos-
sible in double precision using the monomial basis and the
Vandermonde matrices. By changing from the monomial base
to the new polynomial basis, (2) becomes

~ o Em:(] lN)kPk<S) _ Y(S)
R(@b.s) = =2 5 ) = Uls)

where the P;(s) are given by (7).

Equation (9) represents the, potentially high-order, accurate
model of our system. However, as mentioned previously, the
goal is not to generate the model but to use it in the context of
some global system analysis or verification. As such, it is nec-
essary to find an alternative representation that is amenable to
simulation in the time domain. A solution to this problem would
be to convert the model in (9) to some standard form from which
a standard state-space representation can be derived. Such a rep-
resentation can be included in a simulator, either directly or by
synthesizing an equivalent circuit. However, such an approach
either requires converting back to the monomial basis, which we
obviously want to avoid, or convert to a pole—zero representa-
tion, an expensive procedure requiring the solution of an eigen-
value problem. Neither of the options is very appealing. To cir-
cumvent this problem it is therefore essential that in the process
of generating a state-space representation, our representation is
kept as a function of the alternative basis. In the following sec-
tion, we reconcile these two requirements.

€))

B. Generating State-Space Models

In order to obtain a state-space representation that can be used
to simulate the system in the time domain, we developed a gen-
eralized controller canonical form for polynomials defined by
recursion relations. To simplify, consider m < n; writing (9) as

m n —1
Y(s) = (ZE@@)) (Z &kPk(s)) U(s) (10)
k=0 k=0

and defining &(s) = (37— axPr(s))™'U(s) and Fj(s) =

P;(s)&(s) leads to

(12)
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where f(¢) is the inverse transform of Fj(s).
Finally, multiplying (7) by &€(s) and applying the inverse
Laplace transform, we get

dfia(t) _ R
% Zizjz_lhi,jfi—l(t) (13)

which in our particular case, recalling that H is anti-Hermitian,
leads to

dfj—1(t

JT() = hjt1ifi(8) + hj—1,5fi-2(t),
i.e. a three-term recurrence similar the one used to define
Chebyshev polynomials [19]. From (12), we know that there is
a linear relationship between the various f(¢). This allows us
to stop the growing recursion by expressing f,(¢), for instance,
as a linear function of the other fx(¢), & < n and the input,

u(t),
1 1
falt) === anfu(t) + —u(t). (14)
n k=0 n

We can then use the f;(t) as state-space variables to construct
the state-space model. The state-space equations lead to

( Lf(t) = hoifi(t)
(;_ltfl(t) = hO,lfO(t) + h2,1f2(t)
D fas(t) = husm-afa—s(t) + huc1n—afur(t)
%fn—l(t) = hn—2,n—1fn—2(t)
\ +hn,n71fn(t)

where f = [fo, f1 -+ fu_1]T. Equation (15) can now be used to
express f,,(t) in (14) in terms of the state-space unknowns. Re-
calling the standard state-space description from (1), and using
the frst equation in (12) as the output equation, this can be
written compactly in matrix terms as

A=H! —a; hyy1nenlio: - an_i]
B =a, hni1nen
C:[go...i)mo...o]

D=0 (16)
which can then be used as the system model for time-domain
simulations.

C. Accelerating Nonlinear Optimization

The previous derivation avoids the loss of rank associated
with the standard monomial representation and enables the gen-
eration of very high-order, highly accurate models. It essentially
deals with the issue of the inner loop of the minimization of
(3). Still, such a minimization is very sensitive to the choice of
an adequate starting point for the iteration. We dealt with this
problem by using an heuristic method which we found to con-
verge quickly to a good starting point but which demonstrated
poor local convergence properties.

15)
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An alternative to the minimization of (3), which leads to a
nonlinear minimization, is to cast the problem as a linear mini-
mization. For instance, in the simplified case of approximating
a scalar transform function, to linearize the nonlinear rational
function fitting problem we multiply both sides of (3) by the de-
nominator of the rational approximation, i.e.

i brps® — Hi aps®
k=0

k=0

min ||E(a, b, )|, = min 17)

Minimization of (17) is now equivalent to a standard linear least-
squares problem whose solution is well known.

The same problem can now be written, using our new orthog-
onal basis, as

(18)

min E(a, b, s) = min

in: IN)kPk(S) —H Xn: ELkPk(S)

k=0 k=0

This problem can be put in matrix form and the results de-
scribed in the previous section can be directly applied to it.
Doing this leads to

Re{Vom}:Re{-HV12}115]  [Re{HV,,}
Im{Vo:m}fIm{—HVLn}} M - [Im{HVlm}] (1
where [b a7 = [bg -+ by 1 -+ Gn]T.

The solution of (19) can then be used as a starting point for
the original nonlinear minimization, or incorporated in any sort
of fast hybrid scheme (see [15] for a suggestion and details).

A very simplified version of the proposed interpolation algo-
rithm is shown as Algorithm 1.

Algorithm 1: Interpolation Using Problem-Tailored
Orthogonal Basis Algorithm

1) Generate an orthogonal polynomial basis for the data
set using (6).
2) Determine the interpolant error in an appropriate norm

min ‘R(é,f),s) — H(S)H
a,b
at the sample points s;,7 = 1,..., N.

a) Generate an initial approximation for the nonlinear
minimization: solve (18) (not necessarily to
convergence).

b) Improve the initial approximation using a
nonlinear optimization algorithm such as
Levenberg—Marquardt (to convergence).

3) Generate a state-space presentation of the model
system using (16).

IV. MULTIPORT MODELS

Because it is necessary to model loading effects, most sys-
tems encountered in RF design are multi-input multi-output
(MIMO). We now consider generalizing the above algorithms
to MIMO data for a g-input, p-output system, Y (s) € CP*4,

2709

Generally speaking, we have encountered a tradeoff between
compactness of the MIMO representation and robustness of the
approximation process.

Perhaps the easiest way to generate a MIMO model is to
approximate each of the pq entries of the data Y (s) matrices
as single, separate and independent single-input single-output
(SISO) systems. To accomplish this, one would pick up all the
data points corresponding to a single (7, j) matrix entry and
would generate a model for that string of data. Overall, this
leads to pg models, each of which approximates a different fre-
quency-dependent entry of the matrix transfer function. All of
the algorithms of the previous section can be easily applied
without modification. Once all models are generated, they could
be collected to form a single state-space model. To see how such
a model can be realized from the separate SISO systems con-
sider the 2 x 2 case. Suppose state-space model ABCD matrices
have been generated for each of the matrix transfer function en-
tries, with [A11, B11, C11, D11] the model for the Y11 (s), and
similarly for Y2(s), etc.

The matrix transfer function can be realized by [A, B, C, D]

if
A1
Aoy
A =
A
L A
By, 0 1
B 0
B= 021 Bl (20
L O Bos |
CT — ¢, o cCf, o
| 0 CI, o0 Cf
(D17 Di2 ]
D= . 21
Dy Do 1)

Unfortunately, such a realization contains a potentially large
number of states and may include considerable redundancy. If
each transfer function requires n states to approximate, the total
number of states is npg which grows quadratically with the
number of input/output pairs. Furthermore, many of the indi-
vidual transfer functions may share the same dynamics, leading
to a very redundant representation. The resulting model may
therefore be far from an efficient realization, and a follow-on
model reduction step may be necessary to obtain a model com-
pact enough to use in time-domain simulation. However, for
high-order models (e.g., m = 100) with many ports (more
than two or three inputs and outputs) the model reduction can
represent the dominant part of the computational cost, and in
fact may be impractical, particularly if a computationally de-
manding optimal technique is used [20]. In addition, for models
with unusual scaling, it can be difficult to find a model reduc-
tion approach with both adequate accuracy and compression.
Therefore, it is not wise to simply discard these issues during
model construction assuming that later on some reduction algo-
rithm will be able to compress the generated model. Instead it is
worthwhile to seek rational approximation algorithms that can
generate models of reasonable dimensions, even if later com-
pression is still attempted.
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At the opposite extreme of the multiple SISO approach just
described, are MIMO models written with matrix rational func-
tion notation [21]. We will first express the relationship between
the coefficients of a matrix rational function

Y(s) € C? with U(s) € C4, Ay € R?%? and By, € RP*?,
and the corresponding state-space model. Defining £(s) =
(Y h_o AkPi(s))"1U(s) € CP and F;(s) = P;(s)&(s) € CP
we get

Y(s) =Y BiF(s)
k=0

> ArFi(s) =U(s). (23)
k=0

As in the SISO case, we can use these equations to close the
polynomial recursion and generate a state-space model. In this
case, this leads to

A=H] ®L — hyp1,n(e, ®L;) [A Ag, ..., A A, ]
B :hn+1,n(en ®Ij)A;1
C =[By,...,B,0,...,0]
D=0 (24)

where ® is the Kronecker product [22]. We point out that (16)
and (24) are analogous and very similar.
The linearized system also generalizes to the MIMO case

Fixing Ay = I, we get
H(s)Po(s) = Y BiPi(s) —H(s) > ArPi(s)  (26)
k=0 k=1

to solve for A, and By, in the least squares sense. Again, this can
be represented as an overdetermined system of linear equations
to be split in real and imaginary parts and solved in the least
squares sense.

This representation is effective for generating relatively small
models of data whose matrix entries have similar scaling, or
when relatively good estimates for the matrix denominator can
be obtained easily. Problems occur, however, on MIMO data
where the matrix entries have very different scaling. For ex-
ample, consider the two-port S-parameters of a low-loss, high-
rejection bandpass filter. In the passband, the transmission |15
is large, and the reflected power s1; small. In the stop band, the
converse is true. The ratio |s12/511| can thus span many decades
which may lead to conditioning problems if the matrix entries
have very different scaling.

A compromise between the full MIMO model representation,
which is compact but difficult to converge to high precision, and
the shared-denominator form of (21), which is easy to converge
but not compact, is a representation of a matrix transfer function
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“by columns.” In this representation each column of a matrix
transfer function

Hii(s) Hia(s) Hik(s)
H(s) = | D) 27)
Hyi(s) Higa(s) Hyr(s)
is represented as a separate state-space model, e.g.
Hiyi(s) Dy,
Ha (s) Do,
1= . = Ci(sI— A1) 7'By + (28)
Hkl(s) Dkl

The columns can be assembled into a single state-space model
H(s)=C(sI-A)B+D (29)

if A, B, C (there being no latitude in construction of D) are
constructed as

17
c=|©
L Cr
rA; 0 .-
0 Ay --- 0
A= .
L O A,
rB; 0 0
0 B 0
B= ) (30)
0 . 0
L O 0 By

This procedure is quite efficient and also shows that it is pos-
sible to compute a state-space representation of our frequency-
described MIMO system, working exclusively in the proposed
robust polynomial basis. The vector representation allows us to
use hybrid fitting algorithms which have been shown to have
very fast global convergence time and yet achieve a reasonably
compact final model (see [15] for presentation and discussion).
This is an important tradeoff in practical applications.

V. RESULTS

In this section, we demonstrate the practical value and ro-
bustness of the problem tailored orthogonal polynomial basis
generation algorithm. In order to do this we generated rational
approximations to data sets which are otherwise impossible to
approximate using the monomial basis representation. We start
by very informally discussing some computational aspects of
the algorithms and then show examples of its application to
complicated data sets.

A. Discussion of Complexity

Generating the approximations consists in two steps. In the
first step we must compute the approximations coefficients,
ar, by corresponding to (9) (or Ay, By in (22) for the MIMO
case). Then a state-space representation must be generated.
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Fig. 2. Convergence curves for a SAW filter example.

This second step is trivially performed, as we have shown pre-
viously how to directly generate the [A, B, C, D] state-space
representation from the orthogonal basis coefficients. The first
step is accomplished by solving a nonlinear equation, such
as that resulting from minimizing (3) in an appropriate norm.
The nonlinear minimization algorithms used in this section are
detailed in [15].

We will not dwell too much on the choice of nonlinear
minimization algorithms, as the main point of this paper is
the choice of the model representation and not the optimiza-
tion algorithms themselves. Nevertheless, for the purpose
of completness we point out that the procedure detailed is
indeed very efficient. The setup of the equations is quite
trivial and the only real computation corresponds to the non-
linear minimization described. In [15], a specific procedure
involving the Levenberg-Marquardt algorithm is described to
minimize ||E(a, b, s)|[> = ||R(a,b,s) — H(s)]||. Also, each
Levenberg—Marquardt iteration implies solving a linear system,
which has a computational cost which is cubic in the number
of unknowns (the number of coefficients required). Given the
size of the approximations one is generally dealing with, on the
order of up to a few hundred unknowns, this cost is acceptable if
the Levenberg—Marquadt algorithm can be made to converge in
a small number of iterations. The reason this fast convergence
is achievable is that, as briefly hinted in Section III-C, we use
the solution of a scaled linearized problem for generating a very
good initial guess (this algorithm is termed Iterative Scaling).
Therefore, the cost of modeling, for all of the test cases we have
investigated was on the order of seconds for typical examples,
to a small number of minutes at most, for the most complex
models, having hundreds of states. Fig. 2 shows a plot of the
square of the approximation error with respect to the number of
iterations for a simple surface acoustic-wave (SAW) filter (de-
tails of this example are given below in Section V-B). Shown on
the plot are the modified Levenberg—Marquardt (LM) method
(using the orthogonal basis scheme we described), our basic
iterative scaling linearized rational fitting (IS) method and also
an hybrid rational fitting algorithm (Hybrid) that starts the
nonlinear minimization after a few iterations of the linearized
procedure. As can be seen from the figure the hybrid method
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Fig. 3. Monomial-based and orthogonal-based approximations to the magni-
tude of an SAW filter s; parameter using (a) 20th- and (b) 60th-order models.

outperforms the standard LM in speed, showing a much faster
convergence, as well as the IS in robustness, thus allowing the
efficient and robust generation of accurate high-order models.

B. Experimental Data

Our first example is the so; parameter of a SAW filter.! Typ-
ically a SAW filter is a narrow band filter with very high side-
band rejection and a large delay. Accurately capturing the phase
associated with this delay already requires a very high-order
approximation. After normalizing the frequency range, which
spans from 60 to 80 MHz, the Vandermonde matrix loses rank
after order 10, which makes it impossible for a standard fitting
procedure to capture the delay.

Fig. 3(a) and (b) dramatically shows the limitations of the
standard monomial basis approximation schemes. Here, sam-
pled data and two rational approximations for the magnitude
and phase of the so; parameter of a SAW filter are shown.
Fig. 3(a) shows that for order 20, the monomial representation
is already considerably less accurate than the orthogonal basis

Data provided courtesy of John Voll, Sawtek Inc.
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representation. The model generated with the proposed algo-
rithm, on the other hand, is already quite accurate, being able to
clearly distinguish the pass band and the rejection side bands.
We note that even after scaling, the underlying least-squares
matrix is so badly conditioned that no further improvement can
be obtained (consider that entries in that matrix corresponde to
values of magnitude 1 as well as frequencies raised to the 20th
power). In fact, Fig. 3(b) shows that, increasingly, numerical
random error is introduced in the procedure, and a 60th-order
monomial-based approximation is actually less accurate than
its lower order counterpart. The orthogonal representation
however, shows no such difficulties and is able to approximate
the original data with high accuracy.

In Figs. 4 and 5, we again show sampled data and two ra-
tional approximations for, respectively, the magnitude (now in
the usual decibel representation) and phase of the so; param-
eter of a SAW filter. The rational approximations were obtained
using the modified Levenberg—Marquardt algorithm and the it-
erative scaling algorithm. Both of the approximations shown in
the figures are of order 60 and both were stable. As can be seen
from the figure, both approximations show high accuracy in rep-
resenting the original data both in the narrow band as well as in
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capturing the sharp transition in frequency that is typical of such
systems. The rejection side bands are also well approximated
even though the magnitude of both the data and the models in
that region is approaching numerical noise. It would be virtually
impossible to attain similar accuracy with the low-order model
restriction imposed by the use of the monomial basis.

For our next example, we simultaneously approximated the
four (4) S parameters of a spiral inductor, modeled as a two-port.
The model is composed of two single input, two output models.
In this case the frequency data spans several decades, there is
a high quality resonance and some high frequency detail. The
Vandermonde matrix for this problem loses rank after order 11
and increasing model order beyond that point leads to no ad-
ditional model accuracy. In order to fit the data with acceptable
accuracy, we needed to at least go up to order 20 models for each
sub-model. This would have been impossible using the mono-
mial basis.

Fig. 6 shows plots of the magnitude of the four Y parameters.
The curves shown are the original sampled data and the result
of a 30th-order approximation. From the figures it is clear that
the sharp zero is very accurately fitted, as well as the remaining
frequency range, including the high frequency details. Again
such fittings are next to impossible to obtain with low-order
models. The figures shows that our MIMO formulation derived
in Section IV can indeed be used to generate highly accurate
models of sampled data for MIMO systems. While it is possible
to approximate the system as four separate SISO systems, the
resulting model would have size 4 x 30, which is very ineffi-
cient.

Our third example actually comes from a different setting.
The data was obtained from a linear model of a component
of the International Space Station. The model was previously
described in [23] and is sometimes used as an benchmark for
model order reduction algorithms. Here we use samples ob-
tained from the model to demonstrate the generality of our pro-
posed technique and in particular to show that it can be used to
robustly generate high-order accurate models. The structure in
question is a 3 x 3 MIMO model with a complicated frequency
response and was approximated with a 65th-order model. Fig. 7
shows the original data and approximation to two representative
entries in the matrix transfer function. The two curves are virtu-
ally indistinguishable.

Our final example shows the application of these models in
a simulation environment. Here, we show the time-domain re-
sponse of a transmission line driven by a pulse waveform. Trans-
mission lines contain ideal delays that are difficult for rational
approximants to capture accurately. For this reason, efficient
transmission line simulation algorithms usually extract any ideal
delay before applying rational approximation techniques. We
have retained the delay in the frequency-domain s-parameter
data in order to illustrate the ability of our algorithms to ro-
bustly generate high-order models. For the simulation parame-
ters chosen, the rise time ¢, was about 2.5 times the time of flight
delay T, along the transmission line. A large mismatch was de-
liberately introduced between the transmission line, driver, and
load so that strong reflection effects could be observed. The
rational approximation required an order 70, 2-input, 2-output
model to match s-parameters up to a frequency of 12.5/T,; =
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5/t,. A relative error tolerance of 1% and absolute error tol-
erance of 10~* was used in the error weighting. Fig. 8 shows
the response of the original and approximate transmission line
model. Overall the agreement is excellent. A small amount of
Gibbs-effect related ripple is barely noticeable near the first
plateau in the waveform. This is due to the truncation of the
data used for the rational approximation at a finite frequency.
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Fig. 8. End response of transmission line driven with 5-V step input wave-
form. Solid lines show full transmission line model, dashed lines show rational
approximated model. Top: |S:2|. Bottom: transient response to step input with
50-€2 drivers and receivers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a robust method for generating an
orthogonal polynomial basis from tabular data in the frequency
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domain. We also showed that the formulation used to generate
the basis can be extended to directly produce a state-space
model based on a generalized controller canonical form that
can be used in time-domain simulation. We then demonstrated
the value of generating problem specific orthogonal polyno-
mials basis by calculating rational approximations of several
data sets. The data sets contain enough detail that any attempt
at approximating them using standard monomial basis would
fail. This shows that high-order, high-accuracy state-space
models can be obtained in a robust fashion. While the proposed
method does not guarantee the stability or passivity of the
approximation, it can readily be used as a highly accurate initial
approximation for well-known passivity enforcing procedures.
In this context, the proposed method can be seen as an efficient
enabler or an essential first step for such methods.
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