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Resampling Plans for Sample Point Selection
in Multipoint Model-Order Reduction
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Abstract—Multipoint projection methods have gained much
notoriety in model-order reduction of linear, nonlinear, and
parameter-varying systems. A well-known difficulty with such
methods lies in the need for clever point selection to attain model
compactness and accuracy. In this paper, the authors present
a method for sample point selection in multipoint projection-
based model-order reduction. The proposed technique, which is
borrowed from the statistical modeling area, is based on re-
sampling schemes to estimate error and can be coupled with
recently proposed order reduction schemes to efficiently produce
accurate models. Two alternative implementations are pre-
sented: 1) a rigorous linear-matrix-inequality-based technique
and 2) a simpler, more efficient, heuristic search. The goal of
this paper is to answer two questions. First, can this alternative
metric be effective in selecting sample points in the sense of placing
points in regions of high error without recourse to evaluation of
the larger system? Second, if the metric is effective in this sense,
under what conditions are substantial improvements in the model
reduction efficiency achieved? Results are shown that indicate that
the metric is indeed effective in a variety of settings, therefore
opening the possibility for performing adaptive error control.

Index Terms—Boosting, model order reduction, multipoint pro-
jection, parameter-varying systems, resampling.

I. INTRODUCTION

MODEL reduction algorithms are now standard tech-
niques in the integrated circuits community for analysis,

approximation, and simulation of models arising from inter-
connect and electromagnetic structure analysis. Krylov sub-
space projection methods such as Padé-via-Lanczos (PVL) [1]
and Passive Reduced-Order Interconnect Modeling Algorithm
(PRIMA) [2] have been the most widely studied over the
past decade. Model-order reduction methods have also been
applied with some degree of success to modeling weakly non-
linear [3]–[5] and parameter-varying systems [6], [7]. A more
sophisticated approach to projection-based model-order reduc-
tion is to construct the projection space from a rational, or
multipoint, Krylov subspace [8]–[10]. For a given model order,
the multipoint approximants tend to be more accurate but are
usually more expensive to construct. Still, multipoint approxi-
mations are thought of as very effective because they are known
to produce better quality models for a given effort. Multipoint
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methods also provide a simple framework for nonlinear systems
or parameter-varying descriptions by allowing expansions to
be performed under different frequencies, operating points, or
parameter settings [7].

Although very appealing, multipoint projection methods
raise many practical questions to ponder in an actual imple-
mentation. In this paper, we will focus solely on one of these
questions, namely the issue of point selection: how many points
to choose and how to place them. These issues are particularly
troublesome in the context of Krylov projection methods due
to what is known as a major drawback of such methods.
There is no general agreement on how to control error in
these procedures. Error estimators do exist for some methods
[11]–[13], but they are seldom used in practice and require
additional computations, which can be expensive and awkward
to implement. Furthermore, most of the estimators we are aware
of are developed for single expansion point techniques rather
than multipoint approximations. However, error control with
multipoint projection is more complicated since the quality
and compactness of the models produced are dependent on a
good choice of points for computing the samples that form
the projection basis. Considerable effort has previously been
devoted to multipoint projection from a variety of perspectives
to improve accuracy in Krylov-based order reduction [8], [9],
[13], [14]. These included placing points along the frequency
axis in a uniform or random way or choosing a particular point
for projection given some a priori knowledge of the system.
The goal of such work was, however, not specifically directed
to point placement, and as such, point placement was hardly
analyzed at all. In fact, we are not aware of any systematic study
of point selection strategies beyond variants of uniform refine-
ment (e.g., interval bisection) nor of any work on structured
multiple-input–multiple-output models (see [15] for examples
of how point selection might be complicated in this case).

For nonlinear or parameter-varying systems [5], [7], [16], the
increased dimensionality of the problem makes it even harder
to appropriately choose the projection points. In fact, no clear
strategy is known for appropriately choosing the points in such
a setting: Uniform sampling and exhaustive search, the likely
candidates, are not viable options due to exponential growth of
computational cost with dimensionality. While in this paper we
will only discuss linear system approximation, a primary goal
of this paper is to lay the groundwork for point selection in these
more difficult contexts.

An alternate class of model reduction schemes is the trun-
cated balanced realization (TBR) family [17]. These are pur-
ported to produce “nearly optimal” models and have easy to
compute a posteriori error estimators. However, their high
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computational cost makes them unusable in practice for large-
scale systems. In recent years, some effort has been devoted
to efficiently solving the Lyapunov equations for approximate
Gramians [10], [18]. Interestingly enough, such methods also
rely on point selection algorithms and can also be cast as
multipoint projection schemes, even if the goal of the projection
is different there. As such, point selection is also of great
concern in such a setting. Recently, a new algorithm, i.e., Poor
Man’s TBR (PMTBR), was introduced [19], which provides
a direct connection between multipoint rational approximation
techniques and TBR. The PMTBR algorithm can be described
in terms of a probabilistic interpretation of the system Gramians
that leads to the construction of a projection matrix based on
samples of the system state. The number and the choice of
samples are directly related to the model order, as well as to
its accuracy.

This paper presents an algorithm for sample point selection
that is based on three key ideas. First, we adopt the statistical
PMTBR viewpoint that the projection vectors are constructed
by principal components analysis over a space of samples
of a random process. Thus, any set of samples with proper
distribution is a valid choice of projectors. Second, a possible
measure of the quality of a model (or family of models) is
the degree of divergence, or the variance, between the different
models in the family. Third, given a set of candidate sample vec-
tors, the variance can be computed by “resampling” [20]–[22]
on the candidate vectors. We point out that although our de-
scription is performed in the context of linear system order
reduction, these operations are quite general and not restricted
to linear modeling because our goal is to develop the founda-
tions for a general point selection strategy. In particular, we
are interested in parameter-varying problems where no viable
strategies beyond random search have to date appeared.

This paper is organized as follows: In Section II, we review
the standard techniques for order reduction, recall the recently
introduced PMTBR algorithm, and discuss point selection is-
sues, including resampling and variance-based point selection.
In Section III, we discuss the computational implementation
of the basic ideas. We first outline a rigorous procedure for
point selection based on the proposed metric, i.e., the variance
between models. Such a procedure demonstrates that the metric
proposed can indeed be used for point selection. Unfortunately,
the computational cost of the procedure makes it unfeasible
for large-scale systems. Therefore, we propose a more efficient
heuristic computation for the same task. Then, in Section IV,
we show computational experiments to illustrate when the
proposed approach is advantageous (and also when it is not)
and present some conclusions in Section V.

II. RESAMPLING-BASED ERROR ESTIMATION

A. Multipoint Projection Framework

For simplicity of exposition, consider for the moment the
restricted case linear system models in the standard state-space
form, i.e.,

dx

dt
= Ax + Bu, y = Cx + Du (1)

with input u and output y, which are described by the matrices
A ∈ R

n×n, B ∈ R
n×p, C ∈ R

p×n, and D ∈ R
p×p. These algo-

rithms take as input a linear system of the form (1) and produce
a reduced model, i.e.,

dz

dt
= Âz + B̂u, y = Ĉz + Du (2)

where Â ∈ R
q×q, B ∈ R

q×p, and C ∈ R
p×q. This is achieved

by constructing matrices W and V whose columns span a
“useful” subspace and projecting the original equations in the
column spaces of W and V as

Â ≡ WTAV, B̂ ≡ WTB, Ĉ ≡ CV. (3)

The most common choices are based on picking the columns of
W , V to span a Krylov subspace [1], [2]. A more sophisticated
approach is to construct the projection matrix V from a mul-
tipoint Krylov subspace [8]–[10]. Given m complex frequency
points sk, a projection matrix may be constructed whose kth
block column is k = 1, . . . ,m for every sk, i.e.,

zk = (skI −A)−1B. (4)

Multipoint projection is known to be an efficient reduction
algorithm in that the number of columns, which determines
the final model size, is usually smaller for a given allowable
approximation error when compared to pure moment matching
approaches. In this paper, we are addressing a practical question
of implementation: How many points sk should be used, and
how should the sk be chosen?

B. Review of the PMTBR Algorithm

An alternative method of model reduction, i.e., balanced
truncation, is based on analysis of the controllability and ob-
servability Gramians X and Y , respectively. The Gramians are
usually computed from the following Lyapunov equations:

AX + XAT = −BBT (5)

ATY + Y A = − CTC. (6)

Reduction is performed by projection onto the invariant sub-
spaces associated with the dominant eigenvalues of the product
of Gramians XY [17], [23].

The PMTBR analysis is based on an alternative frequency-
domain expression for the Gramian, e.g.,

X =

∞∫
−∞

(jωI −A)−1BBT (jωI −A)−H dω (7)

for the controllability Gramian. Given a quadrature scheme
with nodes ωk and weights wk and defining

zk = (jωkI −A)−1B (8)

an approximation X̂ to X could be computed as

X̂ =
∑

k

wkzkz
H
k . (9)
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Alternatively, let Z be a matrix whose columns are zk, and
W a diagonal matrix with diagonal entries Wkk =

√
wk, and

perform the singular value decomposition (SVD) of ZW as

ZW = VZSZUZ (10)

where SZ is a real diagonal, and VZ and UZ are unitary
matrices. Clearly, then, X̂ = VZS

2
ZV

T
Z ; thus, in fact, the dom-

inant singular vectors in VZ , as can be identified from the
singular values in SZ , give the eigenvectors of X̂ . Therefore,
VZ converges to the eigenspace of X , and the Hankel singular
values are obtained directly from the entries of SZ . VZ can
then be used as the projection matrix in a model-order reduc-
tion scheme. The PMTBR method in fact advocates using the
projection matrix V = VZ for model reduction in a congruence
fashion; much like is done in [2]. As such, stability as well as
passivity of the final model is guaranteed, at least for problems
resulting from interconnect or electromagnetic structure analy-
sis formulated using the standard techniques. It has been shown
that constructing projection matrices by multipoint frequency
sampling, as in (4), followed by an SVD, converges to the
TBR algorithm [19]. One of the important features of TBR
is an absolute bound on the error of approximation that is
related to the singular values of the products of the Gramians.
Likewise, the singular values of the matrix ZW can be used in
the PMTBR procedure for error control. However, we will not
use these quantities here because they are purely a posteriori
estimates. Instead, we are motivated by another interesting
interpretation of the PMTBR algorithm, which can readily be
shown by writing

X =

∞∫
−∞

z(ω)zH(ω)p(ω)dω = E
{
z(ω)zH(ω)

}
(11)

where z(ω) = (jωI −A)−1B, and p(ω) can be interpreted
as an assumed or known distribution [thus generalizing the
integration weights from (9)]. In this interpretation, (7) is
the counterpart of (11) assuming uniform distribution over all
possible frequency values. In a sense, this corresponds to an
uninformed modeling procedure since no distinction is made
between frequencies. In other words, direct computation of
the Gramians, as performed by TBR, corresponds to a prior
assumption of distribution on the inputs that is uninformative
(see [24] for a discussion of this interpretation in Bayesian
terms and a direct relation to system entropy). The interesting
thing about this interpretation is that any general knowledge
one might have about the system structure or behavior can be
incorporated into p(ω) to guide selection of the projection ma-
trix. Under this interpretation, any knowledge that is available
a priori or can be gained from measuring or otherwise directly
analyzing the system can be used directly to guide the choice
of the projection matrix. Such an approach was, for instance,
exploited in [7], [15], and [24], where, for instance, frequency
selection or knowledge of input characteristics was used with
immediate consequences in model quality and efficiency.

Here, we will reverse the implication. Suppose we take
M samples of ω drawn independent identically distributed

with density given by p(ω) (the argument is independent of
the precise density). This, in turn, generates M vectors that
can be used, via projection and possibly SVD, to generate a
reduced-order model of order M or less. As M → ∞, the
singular values and vectors of Z will converge to those of X
calculated from (11). Now, suppose a “different” set of M
samples is drawn with the same density. Under the statistical
interpretation, these are all “equally reasonable” order-M re-
duced models for the state-space system excited by inputs with
frequency power density related to p(ω). Each of the two sets
of projection vectors—or for that matter, any size-M subset of
the projection vectors—can generate a viable candidate model
for consideration. It turns out that such an interpretation leads
to an adaptive scheme for sample point selection.

C. Variance Metric

Clearly, multipoint projection relies on effective placement
of sample points. Obvious strategies include random selection
of points or uniform griding of the domain. Both of these can
be shown as uninformed algorithms about either the structure
or the behavior of the system, and as such, they may not be
optimal. More importantly, for problems in multiple dimen-
sions (e.g., nonlinear or parameter-varying systems), uniform
sampling may quickly become too expensive, while random
sampling may fail to recognize relevant areas of behavior.
Furthermore, neither uniform nor random sampling, akin to
Monte Carlo simulation, really addresses the question of where
to place new points.

Intuitively, an efficient point selection algorithm should place
new points where the error or model uncertainty is large.
However, such practical reasoning introduces a “chicken-or-
egg” problem: We do not know the model error without resort
to evaluating the detailed model, which is expensive. Once a
detailed model evaluation has been made, we might as well
include the associated vector in the projection subspace. Im-
mediately, we are faced again with the question of where to
evaluate the next candidate. Instead, we desire a point selection
approach that does not require any reference to the larger
original system when evaluating candidate points.1 In other
words, we would like to perform most computation in reduced
spaces and not resort to the original space at all.

The first insight into achieving our goal comes from the sta-
tistical interpretation of the PMTBR procedure. In this scheme,
each matrix Z represents a sample drawn from a distribution
that generates the Gramians. Suppose we construct “multiple”
matrices Z1, . . . , ZB , each of the same finite dimension q.
Each of these in turn defines a model with transfer function
Hk(s), k = 1, . . . , B. As argued above, there is no reason to
prefer one over the others, and so, if they do not give similar
results, something has clearly gone wrong—some model aspect
needs to be improved. We propose that the places where the
transfer functions disagree the most are likely to be good2

places to put a new sample point.

1Effectively, we are assuming that the cost of evaluating the detailed model
is quite large, i.e., n is considerably larger than q.

2Note that error control, in terms of stopping the procedure, can be managed
separately, e.g., by the normal singular value tests.
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Specifically, if we also define a “nominal” or “mean” pro-
jector Z(nom) that is obtained from the column union of Zk,
Z(nom) =

⋃B
k=1 Zk, then as a metric of model uncertainty, we

propose the variance-like quantity, i.e.,

var(s) =
1
B

B∑
1

‖Hk(s) −Hnom(s)‖2 . (12)

Note that for large and/or complex starting systems, eval-
uation of the variance in (12) can be considerably less ex-
pensive than evaluation of the full model (assuming that the
reduced models themselves can be constructed inexpensively;
see Section III-A for this critical step). This is true because
all the models involved are reduced-order models of size O(q)
(assuming fixed B). Therefore, evaluation of (12) at multiple
points is acceptable if it will lead to a good choice of the next
expansion point. However, we have introduced a new diffi-
culty. We must now construct multiple reduced systems, i.e.,
construct and manipulate a very large number of reduced
models that must be related in a statistically meaningful way.
De facto, the main step boils down to efficient construction
and manipulation of multiple projection matrices. A naive
implementation would construct the B models independently,
but more efficient alternatives exist as we now discuss.

D. Resampling for Variance Estimation

To address this new challenge, we borrow some ideas from
what are known as “resampling plans” in the statistics literature.
Resampling plans, such as the jackknife and bootstrap [22],
construct “replica” data sets by appropriately selecting samples
from an original data set. Once the replica data sets are avail-
able, robust estimates of statistical estimators can be obtained
by considering each of the replica data sets as samples from a
parent population. Such techniques are most relevant whenever
large numbers of samples are not available or are too expensive
to obtain.

The bootstrap is a nonparametric method for estimating the
sampling distribution of a statistic. In the bootstrap setting,
one generates a replica set D(b) = {z∗1, z∗2, . . . , z∗M} consisting
of M data values drawn randomly with replacement from an
original data set Dm of size m. D(b) is called a bootstrap
sample. Consider performing B repetitions of the D(b) sam-
pling. Suppose we are interested in a generic parameter θ
(which could be mean, variance, or some other function of some
parameter) and want to compute an estimate of it, i.e., θ̂. We
can obtain such an estimate θ̂(b) from the statistic computed
by D(b), b = 1, . . . , B. For instance, the bootstrap estimator

of the variance of the estimator θ̂ is the variance of the set
θ̂(b), b = 1, . . . , B, i.e.,

varbs(θ̂) = varbs

(
θ̂(b)

)
=

∑B
b=1

(
θ̂(b) − θ̂(•)

)2

B − 1

where θ̂(•) = 1/B
∑B

b=1 θ̂(b).
Note that the bootstrap employs sampling with replacement.

In statistical terms, a random sample is a set of items that

have been drawn from a population in such a way that each
time an item was selected, every item in the population had an
equal opportunity to appear in the sample. To meet the equal
opportunity requirement, it is important that the sampling be
done with replacement. That is, each time an item is selected,
the relevant measure is taken and recorded. Then, the item must
be replaced back into the population before the next item is
drawn. If the items are not replaced in the population, each
time an item is withdrawn, the probability of being selected for
each of the remaining items will have been increased. It is also
important to recognize that when sampling with replacement,
it is possible for the same item to appear more than once in
a sample, and it is possible to draw a random sample that is
larger than the population from which it came. Notice also
that it is possible to draw as many random samples as we
like from a given population. The key idea here is that we
either sample with replacement or draw our samples from a
population that is so large that the withdrawal of successive
items changes probability by an amount that is too small to be of
concern.

Now, let us discuss resampling in the context of PMTBR and
point selection. Assume we have a set of candidate projection
vectors z1, . . . , zm as the m columns of the matrix Z, i.e.,

Z = [z1, . . . , zm]

and consider, for instance, bootstrapping this data set by con-
structing B replica sets, each of size M , with replacement, from
Z (M could equal m, be larger or smaller). For each of the B
replica sets, we draw vectors randomly from Z, which form the
columns of our bootstrap sample Z

(k)
bs , k = 1, . . . , B. Each of

these bootstrap samples should have approximately the same
distribution from which the columns of Z were drawn. We are
abusing notation here by referring to draws of the columns of
Z since, in reality, the draws are of the frequency variable ω,
i.e., draws determined by the density p(ω), but there is a one-
to-one correspondence via (8) between ωk and zk. For the kth
bootstrap sample, consider the vector s(k) ∈ R

m such that the
ith entry s

(k)
i represents the number of occurrences of the vector

zi in the replica set Z
(k)
bs . Let S(k) ∈ R

m×m be a diagonal
matrix whose diagonal is formed by s(k). To form the projector,
we construct the matrix for each replica set, i.e.,

Z(k) = ZS(k) (13)

and proceed to perform an SVD on it, from which the projector
of size q (q ≤ M) is obtained as described in Section II-B.
This step and (13) are easily shown to be akin to the procedure
followed in (10). This step is then repeated for each replica
step, in each case leading to a different projector V (k). Once
the B bootstrap projectors are obtained, one can form reduced
models from each of them. The “nominal” model in this case
can be constructed, for instance, by summing the individual
s vectors and proceeding in the same fashion to obtain its
projector. Given the projectors, it is a trivial matter to obtain the
corresponding reduced-order models, which we denote with the
stencil [Ak, Bk, Ck].
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III. IMPLEMENTATION

In this section, we consider the computational implementa-
tion of the previously proposed scheme.

A. Efficient Construction of Projectors

The efficient reuse of previously computed data (i.e.,
caching) is critical to a fast implementation of this algorithm.
Explicit construction of the replica Z matrices, followed by
SVD, followed by projection for each, would defeat our goal
of having an estimator that does not require reference to the
original system. The simplest procedure is to drop the SVD step
and use the Z matrices directly for projection when construct-
ing the estimators. The replica models can be constructed by
computing and saving zT

i Azj . To illustrate, consider a concrete
example. Suppose that three candidate vectors z1, z2, and z3

have been computed. The reduced Â is

Â =



A11 A12 A13

A21 A22 A23

A31 A32 A33


 =



zT
1 Az1 zT

1 Az2 zT
1 Az3

zT
2 Az1 zT

2 Az2 zT
2 Az3

zT
3 Az1 zT

3 Az2 zT
3 Az3


 .

Consider a two-sample bootstrap replica (z2, z1). The needed
reduced model is

Â2 =
[
A22 A21

A12 A22

]

which is trivially constructed from Â. Now, consider a
four-sample replica (z1, z3, z1, z2). This is equivalent to
(2z1, z2, z3). The required model is

Â4 =


 4A11 2A12 2A13

2A21 A22 A23

2A31 A32 A33


 .

A more sophisticated strategy involves reconstruction of the
SVDs in the reduced space. To see this, note that if we have
computed the SVD of Z as Z = UΣV T = UR, where R is an
m×m matrix, then the SVD of ZS can be computed if we
know the SVD of RS, which is another m×m matrix. When
combined with the previously mentioned caching scheme for
the projected matrices, all operations can be done in the reduced
space. In the second example above, R will be a 3 × 3 matrix,
and S will be a diagonal matrix with entries (2, 1, 1). If we
perform the SVD of RS, RS = U4Σ4V

T
4 , the reduced system

matrix is given by

Â4,SVD = UT
4 ÂU4.

It should be clear that the construction of the reduced B̂, Ĉ
is precisely similar. Note that the matrix multiplying dz/dt is
not necessarily the identity if the congruence transform is not
unitary.

B. Linear Matrix Inequality (LMI)-Based Approach

Next, we need to find the place where the variance is max-
imized over the replica models. It turns out that we can pose

the problem of optimal point selection as optimization problem
with LMI constraints by constructing a specific composite
linear system whose norm will give the “variance.” In the
following, we outline a procedure to perform this computation.
Existence of such a procedure shows that the proposed metric
can be effectively computed without resorting to any reference
to the original large system.

Let A, B, and C denote the system matrices for the cur-
rent best model (assume D = 0 for now). Let Ak, Bk, and
Ck denote the system matrices for the kth bootstrap replica.
With the bootstrap replica transfer function Hk(s) = Ck(sI −
Ak)−1Bk, we interpret H(s) = C(sI −A)−1B as the “mean”
model and then compute the variance as in (12). Now,
construct

Āk =
[
A

Ak

]
, B̄k =

[
B
Bk

]
, C̄T

k =
[

CT

−CT
k

]

and using all B bootstrap replicas

Ā =



Ā1

Ā2

. . .
ĀB


 , B̄ =




B̄1

B̄2
...

B̄B


 , C̄T =



C̄T

1

C̄T
2
...

C̄T
B


 .

Then, ‖C̄(sI − Ā)−1B̄‖2 is the required variance var(s).
The objective of point selection is to find the frequency point
smax at which var(s) is maximized. This is a standard norm
computation problem, which is solved by posing the norm
constraint as an LMI [25], with the norm (which in our case
we interpret as variance) and the point smax found by solving a
sequence of LMIs in a bisection procedure. Thus, in principle,
we can guarantee that the quantities for the variance-based
search can be computed in polynomial time. Unfortunately, the
procedure outline leads to very large LMIs, which are expensive
to solve in practice. This obviously limits the practical applica-
tion of this technique. Nevertheless, the general framework is
still valid. Furthermore, again in principle, it might be possible
to exploit knowledge about the particular structure of our
system, which is quite peculiar, to obtain significant complexity
improvements. A technique for exploiting such knowledge was
previously presented in [26] for passivity enforcing in LMI-
based system identification. Instead of pursuing that approach,
however, we note that the point search is only an adjunct to
the reduced-model computation. As such, it is not necessary
that the search be exact. An approximate point found at lower
cost might be more desirable and certainly more efficient to
determine. With this goal in mind, in the following section, we
propose a heuristic procedure for determining a sampling point
with high variance value.

C. Heuristic Search

In light of the comments in the preceding section, we have
experimented with a simple heuristic stochastic search proce-
dure. To begin the procedure, we generate at random an initial
set of candidate search points, with enough points being chosen
to cover the search space at very coarse resolution (e.g., in the
experiments later, we have used around 20 points). At each
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iteration, the variance is evaluated on the search points, and
the point with maximal value of the variance is chosen as the
next sample. To repopulate the search point population, we
drop some fraction of the “worst” points at each iteration—for
example, we may drop one third of points with the smallest
variance. These points represent places that are presumably the
best approximated. Since the system is already “reliably under-
stood” at those points, it is unlikely that placing a sample there
in the future is going to be a good expenditure of effort. We
will discard such points and look somewhere else. Conversely,
points with large variance are more likely to represent regions
that are harder to approximate. We may wish to remember these
points and consider them as possible future samples. The cost
of this procedure is acceptable since determining the value of
the metric at those points can be done using only systems of
reduced size, as described by (12). Once the point with the
maximal variance is computed, then we refer to the original
system and include the new point in the projection scheme. The
whole procedure is then repeated to determine the next sample
point for projection. If enough points are already available, or
the variance in all search points is considered acceptable, the
procedure is terminated.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we present computational experiments de-
signed to illustrate various properties of the resampling pro-
cedures for point selection. As test cases, we took three RLC
circuits that originate from partial element equivalent circuit
(PEEC)-based analysis of actual three-dimensional (3-D) IC
packages. The first example refers to a printed circuit board
structure from Teradyne, Inc., whereas the second example
refers to the model of a subset of a backplane connector. Finally,
the third example is the lumped-element equivalent circuit
for a 3-D problem modeled via PEEC. All three examples
have previously appeared in the literature [1], [27], [28]. The
details of the modeling procedure are not very relevant for our
purposes here; thus, for the most part, we will omit them and
refer to the examples as PEEC-A, PEEC-B, and PEEC-C.

A. Fidelity of Metric

First, we illustrate the behavior of the model construction
process as the sample points are selected via the bootstrap
procedure. In this experiment, the variance-versus-frequency
curves were searched exhaustively3 for the maximum variance
point at which to take a new sample. For each sample, a
circuit solved at a single (complex) frequency is performed,
generating two new projection vectors. Fig. 1 shows snapshots
for four (increasing) model orders (specifically, after 10, 14,
21, and 24 samples, with the first ten starting samples selected
randomly), e.g., PEEC-A. As model construction proceeds, the
model achieves closer and closer match to the original system.
Likewise, the degree of variation of the bootstrap samples
decreases as construction proceeds. Particularly, in the third

3These would be the curves produced by an LMI-based search procedure.

Fig. 1. Example PEEC-A. Snapshots of transfer function (solid), reduced-
model approximations (dash), and bootstrap samples (light dash) for four
progressive refinements of model. Note the large variance in bootstrap replicas
near regions of large model error.

Fig. 2. Example PEEC-B. Snapshot of transfer function (solid), current
reduced model (dash-dot), and bootstrap replicas (light dashed) for one step
in adaptive approximation procedure.

plot, we see the signature characteristic of this method—areas
where the error is large are also areas of uncertainty; thus,
there is “instability” under bootstrapping, which results to large
variance.

Fig. 2 shows a single-model snapshot (e.g., PEEC-B) in
the very early stage of the model construction process. Note
that this example has much sharper resonances than example
PEEC-A. A similar result is obtained with example PEEC-C,
which has even sharper resonances (see Fig. 8).

Next, we investigate explicitly the point selection behavior
of the bootstrapping variance estimation approach. One way to
do this is to compare the point picked by the variance metric
with the error in the current model. Fig. 3 shows four consec-
utive sample point selections from a run on model PEEC-A.
(Note well that these are not the same scenarios as previously
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Fig. 3. Example PEEC-A. Transfer function error (line) and four consecutive
sampling point selections (diamond).

Fig. 4. Relation of variance-based to error-based sampling.

discussed.) In our experience, these scenarios are very repre-
sentative; in two cases, the maximal variance metric picked the
point that also had maximal error, in one case, it picked a nearby
point, and in one case, it picked a point that was in fact fairly
far away from the maximal error point but whose error was not
hugely smaller and that was in fact a local maximum in the
error. Fig. 4 shows a histogram of the percentage deviation of
points picked by the maximal variance when compared with
points with maximal error. Note that the correspondence is not
perfect—maximal variance is not the same as maximal error
after all—but it is fairly good. This answers in the affirmative
one of the main questions of this paper. The variance metric can
be a useful proxy for error control in point placement. While we
have not conducted systematic studies, we have also observed
that the variance metric seems to pick points near poles or
resonances in the transfer function, which is known to be a good
point selection heuristic. While not shown here, we have been
able to adapt the algorithm to select based on either absolute or
relative error metrics.

Fig. 5. Example PEEC-A. Comparison of sample selection methods.

Fig. 6. Example PEEC-B. Comparison of sample selection methods.

B. Efficiency of Sampling

Next, we investigate the efficiency of the sampling pro-
cedures themselves. Figs. 5 and 6 show comparisons of the
bootstrap procedure to random sampling, uniform sampling,
and interval bisection. It turns out that the different properties
of the two examples have an interesting interaction with the
point selection. On example PEEC-A, the bootstrap procedure
is disappointing—it performs somewhat, but not hugely, bet-
ter than random sampling. It is about as good as the (much
simpler) uniform sampling procedure. Again, of course, we
wish to emphasize that uniform sampling cannot be performed
adaptively and is not workable in multiple dimensions4; thus,
this is not really a fair comparison. On example PEEC-B, as
shown in Fig. 6, however, the bootstrap performs significantly
better than random sampling and in fact slightly better than
uniform sampling. We have also shown interval bisection for

4Multiple-dimensional sampling occurs, for example, in parametric model-
order reduction problems, [7], [16].
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Fig. 7. Example PEEC-C. Comparison of sample selection methods.

Fig. 8. Example PEEC-C. Exact transfer function and bootstrap generated
model after 50 samples. The plots are virtually indistinguishable.

this example to illustrate, while unlike uniform sampling, it
can be done adaptively, the coarseness in the number of pos-
sible sample points due to doubling the number at each stage
limits its usefulness. The different behavior has to do with the
properties of the examples. As can be shown in Figs. 1 and 2,
example PEEC-B has sharp localized resonant features. An
adaptive procedure is much better at selecting for these
features. On the other hand, example PEEC-A has fairly smooth
features. On this example, because of the global nature of
the features, almost any selection scheme works very well.
Fig. 7, which is the equivalent plot on example PEEC-C, further
stresses this point. As previously mentioned, this example
has extremely sharp resonances that are very hard to capture
accurately with simplified point selection schemes. This can
be shown in Fig. 8, where the exact transfer function and a
model with 50 samples picked by the bootstrap procedure are
plotted. In this case, the simplified selection schemes are unable
to pick all the resonances and still show larger errors even

Fig. 9. Example PEEC-B. Comparison of exhaustive versus heuristic boot-
strap sample searches.

after a large number of samples was picked. The bootstrap
procedure, however, does a much better job of selecting appro-
priate points.

C. Comparisons of Schemes

Finally, we show some results from the simple heuristic
search algorithm. Fig. 9 shows the results on example PEEC-B.
We see some degradation in efficiency compared to exhaustive
search, as is expected. The important result is that “trim”
bootstrap procedure is conclusively superior to the competing
random search strategy.

V. CONCLUSION

In this paper, we presented an approach to sample point
selection in model-order reduction that is based on a combi-
nation of the statistical interpretation in [19], a variance-based
metric, and a bootstrap-motivated procedure for computing the
variance. The goal of this paper was twofold: on one hand,
determining if the proposed metric can be effective in selecting
sample points and, on the other hand, when the metric is
effective in this sense, determining the conditions under which
substantial improvements in the model reduction efficiency can
be achieved.

First, we have shown that the variance metric, whose approx-
imate computation involves only reduced systems, indeed turns
out to be an effective strategy for point selection, in particular
that it is reasonably correlated with the model error. This is a
result of potentially practical significance in reducing very large
systems because it means that adaptive error control can be
done, at least in some circumstances, without having to resort
to evaluating the larger system.

Second, it appears that it may be the case that a supposedly
better point selection strategy often does not give significant
overall benefits in the reduction procedure. While this is prac-
tically disappointing, it is theoretically interesting, further indi-
cating that projection-based reduction is a powerful and robust
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modeling technique. It may help to explain why the technique
in [7] obtained good results using extremely dumb point se-
lection strategies. On the other hand, we have shown that
on at least some more difficult problems, the bootstrap-based
procedure can be more robust than competing strategies; thus,
when a new problem is being investigated, it may present itself
as an interesting alternative.

Future work will involve extending this search strategy to
function in multiple dimensions as is needed for construction
of nonlinear and parametric models [7], [16]. In such situations,
simplified selection schemes are virtually useless, and alterna-
tive procedures must be sought.
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