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Abstract—Analysis and verification environments for next-
generation nano-scale RFIC designs must be able to cope with
increasing design complexity and to account for new effects,
such as process variations and Electromagnetic (EM) couplings.
Designed-in passives, substrate, interconnect and devices can no
longer be treated in isolation as the interactions between them
are becoming more relevant in the behavior of the complete
system. At the same time variations in process parameters lead
to small changes in the device characteristics that may directly
affect system performance. These two effects, however, can not
be treated separately as the process variations that modify the
physical parameters of the devices also affect those same EM
couplings. Accurately capturing the effects of process variations
as well as the relevant EM coupling effects requires detailed
models that become very expensive to simulate. Reduction tech-
niques able to handle parametric descriptions of linear systems
are necessary in order to obtain better simulation performance.
In this work Model Order Reduction techniques able to handle
parametric system descriptions are presented. Such techniques
are based on Structure-Preserving formulations that are able
to exploit the hierarchical system representation of designed-
in blocks, substrate and interconnect, in order to obtain more
efficient simulation models.

I. INTRODUCTION

New coupling and loss mechanisms, including EM field

coupling and substrate noise as well as process-induced

variability, are becoming too strong and too relevant to be

neglected, whereas more traditional coupling and loss mecha-

nisms are more difficult to describe given the wide frequency

range involved and the greater variety of structures to be

modeled. The performance of each device in the circuit is

strongly affected by the environment surrounding it. In other

words, the response of each circuit part depends not only on

its own physical and electrical characteristics, but to a great

extent also on its positioning in the IC, i.e. on the devices

to which it is directly connected to or coupled with. The

high level of integration available in current RFIC designs

leads to proximity effects between the devices, which induce

EM interactions, that can lead to different behaviors of the

affected parts. In any manufacturing process there is always a

certain degree of uncertainty involved given our limited control

over the environment. For the most part this uncertainty was

previously ignored when analyzing or simulating complete

systems, or assumed to be accounted for in the individual

device models. However, as we step towards the nano-scale

and higher frequency eras, such environmental, geometrical

and electromagnetic fluctuations become more significant.

Nowadays, parameter variability can no longer be disregarded,

and its effect must be accounted for in early design stages

so that unwanted consequences can be minimized. This leads

to parametric descriptions of systems, including the effects

of manufacturing variability, which further increases the com-

plexity of such models. Reducing this complexity is paramount

for efficient simulation and verification. However, the resulting

reduced models must retain the ability to capture the effects of

small fluctuations, in order to accurately predict behavior and

optimize designs. This is the realm of Parametric Model Order

Reduction (pMOR). Furthermore, these parametric fluctuations

of the physical characteristics of the devices can affect not

only the performance of such device, but the coupling between

devices. For this reason the parametric models of the individual

blocks of a system can no longer be simulated in isolation but

must be treated as one entity and verified together. Such re-

duction must take advantage of the hierarchical description of

those systems namely to account for designed-in elements as

well as interconnect effects. To this end, structure-preserving

techniques must be used which not only retain structural

properties of the individual systems but also its connections

and couplings.

The goal of this paper is therefore to discuss and present

techniques for model order reduction of interconnect, substrate

or designed-in passives, taking into account their dependence

on relevant process or fabrication parameters and their cou-

pling and connections. The paper is structured as follows: in

Section II an overview of several existing pMOR techniques

will be discussed. In Section III an introduction to two-level

hierarchy MOR will be done, and an extension to improve

the reduction will be presented. In Section IV the proposed

methodology for combining the parametric techniques with

the hierarchical reduction will be proposed. To illustrate the

procedure, its pros and cons, in Section V some reduction

results will be presented for several real-life structures. Finally

conclusions will be drawn in Section VI.
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II. PARAMETRIC MODEL ORDER REDUCTION

Actual fabrication of physical devices is susceptible to the

variation of technological and geometrical parameters due to

deliberate adjustment of the process or from random deviations

inherent to the manufacturing procedures. This variability

leads to a dependence of the extracted circuit elements on

several parameters, of electrical or geometrical origin. This

dependence results in a parametric state-space system repre-

sentation, which in descriptor form can be written as

C(λ)ẋ(t, λ)(λ) + G(λ)x(t, λ) = Bu(t)
y(t, λ) = Lx(t, λ)

(1)

where C,G ∈ R
n×n are respectively the capacitance and

conductance matrices, B ∈ R
n×m is the matrix that relates

the input vector u ∈ R
m to the inner states x ∈ R

n and

L ∈ R
n×p is the matrix that links those inner states to the

outputs y ∈ R
p. The elements of the matrices C and G, as

well as the states of the system x, depend on a set of P

parameters λ = [λ1, λ2, . . . , λP ] which model the effects of

the mentioned uncertainty. Usually the system is formulated

so that the matrices related to the inputs and outputs (B and L)

do not depend on the parameters. This time-domain descriptor

yields a parametric dependent frequency response modeled via

the transfer function

H(s, λ) = L(sC(λ) + G(λ))−1B (2)

for which we seek to generate a reduced order approximation,

able to accurately capture the input-output behavior of the

system for any point in the multidimensional frequency-

parameter space.

Ĥ(s, λ) = L̂(sĈ(λ) + Ĝ(λ))−1B̂ (3)

In general, one attempts to generate a Reduced Order Model

(ROM) whose structure is as much similar to the original as

possible, i.e. exhibiting a similar parametric dependence and

retaining as much of the original structure as possible. Many

techniques have been proposed to tackle this problem and in

the following we review some of the most commonly used.

A. Multi-Dimensional Moment Matching

These techniques appear as extensions to nominal moment-

matching techniques [1], [2], [3]. Moment matching algo-

rithms have gained a well deserved reputation in nominal

MOR due to their simplicity and efficiency. The extensions of

these techniques to the parametric case are usually based in the

implicit or explicit matching of the moments of the parametric

transfer function (2). This type of algorithms assumes small

fluctuations of the parameters, so that an affine model based on

the Taylor Series expansion can be used for approximating the

behavior of the conductance and capacitance, G(λ) and C(λ),
expressed as a function of the parameters. The Taylor series

can be extended up to the desired (or required) order, including

cross derivatives, for the sake of accuracy. Some schemes,

denoted as Multi-Parameter Moment Matching use this idea to

match, via different approaches, the multi-parameter moments

of the parametric transfer function (2) (for details see [4], [5],

[6]). However these methods usually suffer of oversize when

the number of moments to match is high.

A slightly different approach, that provides more compact

ROMs, is presented in [7], which relies on the computation

of several subspaces, built separately for each dimension, i.e.

the frequency s and the parameter set λ. Given a parametric

system (1), the first step of the algorithm is to obtain the ks

block moments of the transfer function with respect to the

frequency when the parameters take their nominal value (for

example, via [1]). This block moments will be denoted as Qs.

The next step is to obtain the subspace which matches the kλi

block moments of x with respect to each of the parameter λi,

and will be denoted by Qλi
. Once all the subspaces have been

computed, an orthonormal basis can be obtained so that its

columns spans the union of all previously computed subspaces.

Applying the resulting matrix in a projection scheme ensures

that the parametric ROM matches ks moments of the original

system with respect to the frequency, and kλi
moments with

respect to the parameter λi.

B. Variational PMTBR

A novel approach was recently proposed that extends the

PMTBR [8] algorithm to include variability [9]. This approach

is based on the statistical interpretation of the algorithm

(see [8] for details) and enhances its applicability. In this inter-

pretation, the approximated Gramian is seen as a covariance

matrix for a Gaussian variable, x(0), obtained by exciting the

underlying system description with white noise. Rewriting the

Gramian as

Xλ=

∫
Sλ

∫ ∞

−∞

(jωCλ+Gλ)−1BBT (jωCλ+Gλ)−Hp(λ)dwdλ

(4)

where p(λ) is the Probability Density Function (PDF) of λ

in the parameter space, Sλ. Just as in the original PMTBR

algorithm, a quadrature rule can be applied in the param-

eter plus frequency space to approximate the Gramian via

numerical computation (see [9] for details). The accuracy of

the resulting ROM does not depend on the accuracy of the

approximation of the integral, but on the projection subspace.

After the quadrature is performed in the overall variational

subspace, the deterministic procedure is followed and the most

relevant vectors are selected via Singular Value Decomposi-

tion (SVD) in order to build a projection matrix meant to

be used as a congruence transformation on the parametric

system matrices (1). As in the deterministic case, an error

analysis and control can be included, via the eigenvalues of

the SVD, but in this variational case, only an expected error

bound can be given The complexity and computational cost is

generally the same as that of the deterministic PMTBR plus

the previous quadrature operations, and, it has been shown

that the size of the reduced model is less sensitive to the

number of parameters in the description, or how this parameter

dependence is modeled.
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III. BLOCK HIERARCHICAL MODEL ORDER REDUCTION

A. Structure Preservation

As pointed out, individual blocks inside an RFIC can no

longer be treated in isolation, and for this reason the complete

system must be treated as an entity. Considering the linear

component blocks including designed-in passives, intercon-

nect, etc, the system description has an interesting structure,

where the diagonal blocks correspond to the individual block

matrices, whereas the off-diagonal blocks correspond to the

static interconnections (in the G matrix) and dynamic cou-

plings (C matrix). Standard model order reductions techniques

can be applied to this joint, global system and while the

resulting reduced model will usually be able to accurately

capture the input-output behavior of the complete set of blocks,

this approach leads to full reduced matrices. Furthermore,

the original two-level hierarchy with interconnections and

couplings can no longer be recovered.

An alternative approach is to perform the reduction of

the individual models in a hierarchical fashion, i.e to reduce

each model independently without taking into account the

rest of the models or the environment. Hence every model

is reduced separately and thus the hierarchy and structure of

the global system is maintained. However, to apply MOR to

each model means to capture its individual behavior, not the

global one. This can be inefficient as too much effort may

be spent capturing some local behavior that is not relevant

for the global response (maybe filtered by another model).

Furthermore certain aspects of the global response might

be missed as it is not clear at the component level how

relevant they are. To avoid these problems, one can reduce

each component block separately but oriented to capture the

global input-output response. This approach will provide us

with more control in the reduction stage while also preserving

the structure of the interconnections. The transfer function to

match is the global one, so the most relevant behavior for the

complete RF system is captured. What is more, only the global

inputs and outputs of the complete RF block are relevant, so

the inefficiencies caused by the large number of ports of the

individual component blocks is avoided.

Some recent methods have advocated this approach. In [10]

a control theoretic viewpoint of reduction of interconnected

systems was presented, but it has the disadvantage that it

is unable to treat capacitive couplings. The Block Structure

Preserving (BSP) technique was first presented in [11] and

later generalized in [12].

G=

⎡
⎢⎣

G11 . . . G1Nb

...
. . .

...

GNb1
. . . GNbNb

⎤
⎥⎦ C =

⎡
⎢⎣

C11 . . . C1Nb

...
. . .

...

CNb1
. . . CNbNb

⎤
⎥⎦

B =
[
B1

T . . . BNb

T
]T

L = [L1 . . . LNb
] (5)

The main idea was to retain the system block structure,

i.e. the two-level hierarchy, after reduction via projection,

allowing for a more efficient reduction and the maintenance

of certain system properties, such as the degree of sparsity,

Fig. 1. Illustration of block hierarchy in the system matrix and effect of
reduction using BSP.

and the block hierarchical structure. The procedure relies on

expanding the projector of the global system (obtained via

any classical MOR projection technique) into a block diagonal

matrix, with block sizes equal to the sizes of its Nb individual

component blocks (5). A basis that spans a suitable subspace

for reduction via projection is then computed (for example a

Krylov subspace). The projector built from that basis can be

split and restructured into a block diagonal one so that the 2-

level structure is preserved under congruence transformation.⎡
⎢⎣

V1

...

VNb

⎤
⎥⎦≡ colsp [Kr {A,R, q}] →

⎡
⎢⎣

V1

. . .

VNb

⎤
⎥⎦=V̆ (6)

where Kr {A,R, q} is the q column Krylov subspace of the

complete system (A = G−1C and R = G−1B). The block-

wise congruence transformation is (see Figure 1)

Ĝij = V T
i GijVj B̂i = V T

i Bi

Ĉij = V T
i CijVj L̂j = LjVj

(7)

It should be noticed that the above projection matrix V̆ has

Nb (number of blocks) times more columns than the original

projector . This leads to an Nb times larger reduced system.

On the other hand, this technique maintains the block structure

of the original system and gives us some flexibility when

choosing the size of the reduced model depending on the

block layout and relevance. The reduced system will be able

to match up to Nb times q block moments of the original

complete transfer function (see [12] for details) under the best

conditions (i.e. with very weak entries in the off-diagonal

blocks). Under the worst conditions, only q block moments

are matched, i.e. the same number than in the flat reduction.

This technique is applicable to the global system, composed

of the individual blocks and their connections (including both

resistive as well as capacitive or inductive couplings between

the blocks). The BSP technique therefore preserves the block

structure of the system. However, the inner structure of the

blocks themselves is lost since the procedure turns any non-

empty block in the original system into a full block, but it

is still possible to identify the blocks and relate them to the

original device or interaction block. Nevertheless, if any block

is empty in the global system matrix, it remains empty after

reduction, increasing the sparsity.
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B. PMTBR in Block Structure MOR

Any projection-based MOR procedure can be extended in

the BSP manner to maintain the hierarchical structure of a

system. In the case of the PMTBR algorithm, additional char-

acteristics of the procedure can be further taken advantageous

of in the current framework. The PMTBR algorithm links

the rational projection methods with the Truncated Balanced

Realizations (TBR) framework [13]. The procedure is based

on the estimation, via a quadrature rule, of the frequency-based

integral expression for the controllability Gramian, (4),

X̄ =
∑

k

zkzH
k = ZZH (8)

where Z = [z1 z2 . . . ] and zi = (jwiC + G)
−1

B. In [8]

it was shown that if the quadrature scheme (8) is accurate

enough, then the estimated Gramian X̄ converges to the

original one X , which implies that the dominant eigenspace of

X̄ converges to the dominant eigenspace of X . If the system

has some internal structure, then the matrix Z that is computed

from the vector samples of the global system can be split into

blocks. The estimated Gramian can be written block-wise as⎡
⎢⎣

Z1

...

ZNb

⎤
⎥⎦ → ZZH =

⎡
⎢⎣

Z1Z
H
1

. . . Z1Z
H
Nb

...
. . .

...

ZNb
ZH

1
. . . ZNb

ZH
Nb

⎤
⎥⎦=X̄ (9)

But if we expand the matrix Z into diagonal blocks

Z̆=

⎡
⎢⎣

Z1

. . .

ZNb

⎤
⎥⎦→ Z̆Z̆H=

⎡
⎢⎣

Z1Z
H
1

. . .

ZNb
ZH

Nb

⎤
⎥⎦=X̆. (10)

From (9) it can be seen that ZiZ
H
i = X̄ii, i.e. the matrix

X̆ = Z̆Z̆H is a block diagonal matrix whose entries are

the block diagonal entries of the matrix X̄ . Under a good

quadrature scheme, the matrix X̄ converges to the original X ,

and therefore X̆ will converge to the block diagonals of X .

This means that the dominant eigenspace of X̆ converges to

the dominant eigenspace of the block diagonals of X . We can

then apply an SVD to each block of the Z matrix

Zi = ViSiUi → X̆ii = X̄ii = ViS
2

i V T
i (11)

where Si is real diagonal, and Vi and Ui are unitary matrices.

The dominant eigenvectors of Vi corresponding to the dom-

inant eigenvalues of Si can be used as a projection matrix

in a congruence transformation over the system matrices for

model order reduction. The elements of Si can also be used

for a priori error estimation in a way similar to how Hankel

Singular Values are used in TBR procedures. Using these

block projectors Vi, a structure preserving projector for the

global system can be built (6) which will capture the most

relevant behavior of each block (revealed by the SVD) with

respect to the global response (recall that Z is composed

of sample vectors of the complete system). This approach

provides us with more flexibility when reducing a complete

system composed of several blocks and the interactions be-

tween them, as it allows to control the reduced size of each

device via an error estimation on the global response.

IV. PARAMETRIC BLOCK STRUCTURE MOR

From the two-level hierarchical description of a system it

is possible to have some extra block information that allows

us to perform a more efficient MOR. But the behavior of the

individual blocks that compose the system is subject to the

effect of process variations, both geometrical and electrical.

Such variations, as previously pointed out, also affect the

interactions and couplings between these blocks. Any system-

wide EM simulations must address these effects. Therefore,

the variability study must be done over the complete system,

and after model generation, a two-level parametric system will

be obtained, with the block matrices in the block diagonals

and the interactions between them in the off-diagonals. All

these blocks will be functions of the relevant process and

geometrical parameter. For instance, for conductivity,

G =

⎡
⎢⎣

G11(λ{11}) . . . G1Nb
(λ{1Nb})

...
. . .

...

GNb1
(λ{Nb1}) . . . GNbNb

(λ{NbNb})

⎤
⎥⎦ (12)

where λ{ij} represents the set of parameters affecting block

Gij . From (12) is clear that we have a parametric system

depending on λ =
[
λ{11} . . . λ{NbNb}

]
. Therefore we can

apply parametric MOR reduction. Note that any parameter

affecting several blocks (diagonal blocks and their interac-

tions) is treated as a single parameter (this reduces the number

of parameters). However, in order to maintain the system

structure, BSP techniques can be applied. This is possible as

long as the selected pMOR technique is based in a projection

scheme, which is the case for most of the existing procedures.

The extension is very simple: obtain a suitable basis for

projection from the complete system, and then split and expand

it into a block structure preserving projector. If the basis spans

the most relevant behavior of the parametric system, then the

expanded BSP projector will capture those as well. All the

advantages and disadvantages mentioned in Section III hold

here. But there is an extra and important advantage in the

parametric case: the BSP technique maintains the block

parametric dependance, i.e. if a block Cij depends on a set

of parameters λ{ij}, then the reduced block Ĉij = V T
i CijVj

will depend on the same parameter set and no other.

On the other hand, as previously discussed some pMOR

algorithms yield a very large ROM, and therefore their com-

bination with BSP techniques will lead to an extremely large

ROM. However, it was shown in Section II-B that the ROM

size of the Variatinal PMTBR method is less sensitivity to the

number of parameters. Furthermore, this method has a direct

relation with PMTBR: the only difference is in the sampling

scheme for obtaining the matrix whose columns spans the

desired subspace, the rest of the procedure being exactly

the same. Therefore, the results obtained in Section III-B

are applicable to the variational case. The advantage of the

control and error estimation still remains, although in this

case only an expected error bound can be given. Such control

is very useful when the models of a complete entity have

very different sizes: if the same ROM size is applied to every
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Algorithm I: Block Structure Preserving VPMTBR

Starting from a Block Structured System C, G, B, L with Nb

blocks:

1: Select a quadrature rule of K points in the space [s, λ]
2: For each point compute: zi = (siC(λi) + G(λi))

−1
B

3: Form the matrix columns Z = [z1 . . . zk]
4: Split it into Nb blocks,

Z =

2
64

Z1

...
ZNb

3
75

5: For each block Zj obtain the SVD: Zj = VjSjUj

6: For each matrix Vj drop the columns whose singular values falls
bellow the desired global tolerance

7: Build a Block Structure Preserving Projector from the remaining
columns

V̆ =

2
64

V1

. . .

VNb

3
75

8: Apply V̆ in a congruence transformation on the Block Structured
System C, G, B, L

block, the reduction may grow unnecessarily large. In contrast,

the complexity of the proposed methodology is exactly the

same as that for the non-structure-preserving techniques. The

only difference is that the SVD (or orthonormalization in

the moment matching approaches) must be done block-wise

in order to avoid numerical errors. This can turn into an

advantage, because for some blocks the number of vectors

needed is lower, so less computational effort is required.

V. RESULTS

To illustrate the proposed procedure we present results

from two examples to which several pMOR techniques were

applied. These included [9] denoted as VPMTBR, [7] denoted

as PPTDM, and two Block Structure preserving methods:

Algorithm I, denoted as BS VPMTBR, and block struture

based on [7], denoted as BS PPTDM. The non-reduced model

response will be denoted as Original or Perturbed, depending

on whether a parameter variation has been applied.

A. Example 1 - Spiral

The first example system is composed of three blocks: a

Multiple Input Multiple Output (MIMO) RC ladder of size

101, with 2 ports, a MIMO Spiral Inductor of size 4961, with

2 ports, and another RC ladder of size 101 and 2 ports. The

three systems are connected in series as shown in Figure 2, so

the global input is the input of the first RC and the output is

the output of the second RC. The Spiral has each of its ports

conected to each ladder. The system depends on five parame-

ters, affecting different blocks. Figure 3 shows the frequency

response of the self-admittance Y11 of the nominal system,

the pertubed response of the non-reduced system, and the

responses of the PMTBR-based models (the PPTDM and BS

PPTDM models do not produce competitive results sizewise,

Fig. 2. Interconnection scheme for Example 1, with original sizes and
parameter indication.
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Fig. 3. (Up) Magnitude in dB of Y11 versus the frequency of Example 1 for
the nominal, the pertubed and the parametric ROMs for a random parameter
variation. (Down) Error of the Magnitude of Y11 for the ROMs w.r.t. the
perturbed response.

TABLE I
CHARACTERISTICS OF THE PMOR METHODS APPLIED

Example 1 Example 2

MOR Method Size NNZ (G C) Size NNZ (G C)

NONE 5163 22545 6631 1600 4768 12588

VPMTBR 92 8464 8464 66 4356 4356

PPTDM 150 22500 22500 544 295936 295936

BS VPMTBR 106 11108 8228 96 722 5438

BS PPTDM 352 103502 42856 160 1600 17200

as seen from Table I, and therefore were omitted). Table I

shows the main characteristics of the obtained ROMs. The

moment matching techniques are less efficient, as the Spiral

requires a high-order model. The PMTBR-based techniques

obtain a better compression overall: BS VPMTBR yields a

sligthy bigger ROM, but it maintains the block structure of the

original system, and is able to control the size of each reduced

block depending on its relevance on the global response.

B. Example 2 - Coupled Buses

This example, depicted in Figure 4, is composed of 16
blocks: 2 buses of 8 parallel lines each (each line modeled as

an RC ladder of 100 segments), are on different metal layers,

and cross at a square angle. The inputs and outputs are taken at

the edges of each line of the first bus, so the system will have

16 ports. In this case there is no interconnection, just coupling
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Fig. 4. Bus topology for Example 2.
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Fig. 5. (Up) Y34 versus the frequency for Example 2 for the nominal,
pertubed and parametric ROMs with random parameter variation set. (Down)
Absolute Error of the ROMs w.r.t. the perturbed response.

effects. Each line is assumed coupled to the previous and the

next line of their bus, and to every line of the other bus in

the crossing area. Each line has its width (W) as a parameter,

which implies 16 independent parameters. The width variation

affects the line model, as well as the in-bus coupling (width

variation also affects the interline spacing), and the inter-bus

coupling (the crossing area varies). Figure 5 shows the fre-

quency response of the nominal system, the pertubed response

of the non-reduced system, and the responses of the ROMs for

VPMTBR, PPTDM, BS VPMTBR and BS PPTDM. Again,

the main characteristics of the resulting ROMs are shown in

Table I. The PPTDM based algorithms result in very large

ROMs even for small number of moments to match (2 w.r.t.

the frequency and 2 w.r.t. each parameter). For these reasons

each block moment from PPTDM was truncated to 10 vectors

to keep the size manageable (otherwise no reduction would

be possible). While this seems to produce acceptable results,

there is little control over the result. On the other hand, the

PMTBR based techniques leads to more compressed ROMs,

as the SVD reveals the most relevant vectors. In the case of

the BS VPMTBR, the control of each block allows different

reduction sizes for each bus: since the ports of the 2nd bus

are not taken into account, less effort is needed to capture its

behavior. In fact, the models for the 1st bus are of sizes 8 to

10, while models for the 2nd bus are all size 3. The ability to

control reduction locally is clearly an advantage of the method.

VI. CONCLUSION

In this paper we have presented a block structure-preserving

parametric model order reduction technique, as an extension of

existing pMOR techniques in order to improve the reduction

when a two-level hierarchical structure is available in the sys-

tem description. This type of structure is common in coupled

or interconnected systems, and can lead to simulation advan-

tages. The methodology presented here is general as it can

be used with any projection pMOR technique to mantain the

two-level hierarchy and the block-parameter dependance. The

presented extension of the PMTBR-based procedures into the

Block Structure Preserving framework, allows more control

on the reduction, provided by the inclusion of estimated error

bounds on the single blocks oriented to the global response.
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