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Principal Component Analysis in Linear
Systems: Controllability, Observability, and
Model Reduction

BRUCE C. MOORE

Abstract—Kalman’s minimal realization theory involves geometric ob-
jects (controllable, unobservable subspaces) which are subject to structural
instability. Specifically, arbitrarily small perturbations in a model may
cause a change in the dimensions of the associated subspaces. This
situation is manifested in computational difficulties which arise in attempts
to apply textbook algorithms for computing a minimal realization.

Structural instability associated with geometric theories is not unique to
control; it arises in the theory of linear equations as well. In this setting,
the computational problems have been studied for decades and excellent
tools have been developed for coping with the situation. One of the main
goals of this paper is to call attention to principal component analysis
(Hotelling, 1933), and an algorithm (Golub and Reinsch, 1970) for comput-
ing the singular value decomposition of a matrix, Together they form a
powerful tool for coping with structural instability in dynamic systems.

As developed in this paper, principal component analysis is a technique
for analyzing signals. (Singular value decomposition provides the computa-
tional machinery.) For this reason, Kalman’s minimal realization theory is
recast in terms of responses to injected signals. Application of the signal
analysis to controllability and observability leads to a coordinate system in
which the “internally balanced” model has special properties. For asymp-
totically stable systems, this yields working approximations of X, X;, the
controllable and unobservable subspaces. It is proposed that a natural first
step in model reduction is to apply the mechanics of minimal realization
using these working snbspaces.

I. INTRODUCTION

COMMON and quite legitimate complaint directed
toward multivariable control literature is that the
apparent strength of the theory is not accompanied by
strong numerical tools. Kalman’s minimal realization the-
ory [2], [3], for example, offers a beautifully clear picture
of the structure of linear systems. Practically every linear
systems text gives a discussion of controllability, observa-
bility, and minimal realization. The associated textbook
algorithms are far from satisfactory, however, serving
mainly to illustrate the theory with textbook examples.
The problem with textbook algorithms for minimal
realization theory is that they are based on the literal
content of the theory and cannot cope with structural
discontinuities (commonly called “structural instabilities™)
which arise. Uncontrollability corresponds to the situation
where a certain subspace (controllable subspace) is proper,
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but arbitrarily small perturbations in an uncontrollable
model may make the subspace technically not proper.
Hence, for the perturbed model, the theory, taken liter-
ally, says that (assuming observability) there is no lower
order model with the same impulse response matrix. There
may well exist, however, a lower order model which has
effectively the same impulse response matrix. There is a
gap between minimal realization theory and the problem
of finding a lower order approximation, which we shall
refer to as the “model reduction problem.”

The purpose of this paper is to show that there are some
very useful tools which can be used to cope with these
structural instabilities. Specifically, the tools will be ap-
plied to the model reduction problem. We shall draw
heavily from the work of others in statistics and computer
science, where the problem of structural instability associ-
ated with geometric theories has been studied intensely.
Principal component analysis, introduced in statistics
(1933) by Hotelling [4], [S] will be used together with the
algorithm by Golub and Reinsch [6] (see [7] for working
code) for computing the singular value decomposition of
matrix. Dempster [8] gives an excellent geometric treat-
ment of principal component analysis as well as an over-
view of its history. A thorough discussion of the singular
value decomposition and its history is given in a recent
paper by Klema and Laub [9]. There are excellent books
[10]-[15] within the area of numerical linear algebra which
explain how structural instabilities arise and are dealt with
in the theory of linear equations.

The material given in Sections II and III of this paper is
more general than that appearing in the remaining sec-
tions. In Section II minimal realization theory is reviewed
from a “signal injection” viewpoint. The main advantage
of this viewpoint is that the relevant subspaces are char-
acterized in terms of responses to injected signals rather
than in terms of the model parameters (A4, B, C). The full
power of the ability to inject signals of various types is not
fully exploited in this paper. Section III contains very
general results which are valid whenever one is trying to
find approximate linear relationships that exist among a
set of time variables. In no other way is linearity required.
(See [16] for ideas about nonlinear applications.)

In Section IV controllability and observability analysis
is discussed. Most of the effort is spent coming to grips
with the problem of internal coordinate transformations.
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This leads to the description of a coordinate system
(generically unique within sign changes) in which the
model has special properties. This “internally balanced”
model is essentially the same as the “principal axis realiza-
tion” defined in a filtering context by Mullis and Roberts
[17].

For asymptotically stable systems, one can view the
controllability, observability analysis as a process by which
one computes working approximations of X., X;, the
controllable and unobservable subspaces. In Section V we
pursue the natural idea of applying the mechanics of
minimal realization theory using these working subspaces
instead of the exact subspaces, which are subject to struct-
ural instability. Examples are given in Section VI.

Notation

The symbols R, PCl[#,?,] represent the field of
real numbers and the ring of piecewise continuous
functions on the interval [¢,?,], respectively. The cor-
responding vector spaces RXR---XR and

PC[1),1,]x -+ XPC[1,,1,] will be denoted by R™,

PC™1,,1,]). For a subspace SER”, S+ will represent its
orthogonal complement in R” with respect to a basis
defined by the context. A matrix U will be referred to as
an orthonormal basis matrix for S if its columns form an
orthonormal basis.

For a map M: R* »R", ker(M) and im( M) will repre-
sent the kermel and the image of the map. The symbol M
will also be used to represent a matrix representation, in
which case we shall write M & R***. For such a matrix,
M7 will represent its transpose, and || M ||z, | M|, will
represent, respectively, the Frobenius and spectral norm.
For a vector vER", ||v|| will represent the Euclidean

norm Voo .

I1. A “SiGNAL INJECTION” VIEW OF MINIMAL
REALIZATION THEORY

The two tools, principal component analysis and singu-
lar value decomposition, are ideal for analyzing vector
time signals. In an effort to make later use of these tools
more transparent, minimal realization theory will be
reviewed from a “signal injection” point of view. Specifi-
cally, the controllable subspace and the unobservable
subspace will be characterized in terms of vector time
responses of the model to test signals injected at ap-
propriate points.

To avoid confusion, special care must be taken to
establish the state space setting. The assumed situation is
the following. There is a plant, illustrated in Fig. 1, with m
inputs (#) and r outputs (¥), operating quietly (at rest) at
an equilibrium point (y,,4,). Furthermore, there is a
corresponding model

x(£)=Ax(2)+ Bu(r)

Plant

Fig. 1.

y(1)=Cx(1) (1

(x(t)ER") which, when started at rest (x(0)=0), simu-
lates exactly the small signal input-output characteristics
of the plant with the coordinate system translated to
U, Yo

The model (1) is required to simulate only the input-
output characteristics of the plant, and it is often true that
little can be said about the relationship of x(¢), 4, B, C to
the physical system. Furthermore, since (1) is only a
model, we are free to insert a “test” input vector d(¢) as
follows:

#(1)=Ax(t)+ Bu(r)+d(1)
y(2)=Cx(z). (2)

The vector d(¢) is introduced to aid in the discussion of
observability of the model and has no connection with the
physical plant.

Minimal realization theory gives a clear geometric
answer to the following questions. Under what conditions
does there exist a lower order model which, when started
at rest, also simulates exactly the small signal characteris-
tics of the plant? If there is such a lower order model, in
what way does it relate to the original model? The re-
mainder of this section offers a review of minimal realiza-
tion theory.

Basic Geomeiric Review

The geometric picture which goes along with minimal
realization theory is very simple and well known. There
are two important subspaces of the state space (R*): X,
the controllable subspace, and X;, the unobservable sub-
space. The subspace X, is the smallest subspace which
contains the state response (x(0)=0) to every piecewise
continuous vector signal injected at the model input termi-
nals (u(z)). The subspace X; is the largest subspace in
which arbitrary piecewise continuous signals can be
injected [through 4(¢)] with no output response.

With x(0)=0 every state response can be decomposed
into the sum of two orthogonal vector signals, one in

X.o = (X.NX;)* NX, and one in X2, The signals in X_,
completely determine the input—output response of the
model. If U is an orthonormal basis matrix for X, then

2 (£)=UTAUx,(¢)+ UTBu(1)
y(1)=CUx\(t)

is a minimal order model with the same input—output
characteristics as (1).
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d(t)=0

measure state
response (x(0)=0)

B O fat C O

apply test
signals

Fig. 2.

Characterization of X,

It is convenient to think of X, in terms of state re-
sponses to test signals, as indicated in Fig. 2. In this paper
we shall consider a sequence of test signals u’(z), 1 <i<m
given by u(t)=e¢,;8(¢) where e; is the ith column of the
mXm identity matrix and 8(¢) is the scalar unit impulse
function.! Let x(¢),- - -, x™(¢) be functions corresponding
to the state responses of the model to the respective test
input signals, and let '

X() = (x'(2) x*(2)- -+ x™(2)).

For every instant of time we have X(z)ER"*™, and X,
can be characterized as follows.

Proposition 1: The controllable subspace X, is the sub-
space of least dimension which contains im(X(z)) for all
t€l0, T], T>0.

Proof: With impulses used as test signals, X(¢)=e*‘B
and the proof is straightforward. [

Characterization of X;

For this we apply a series of tests as indicated by Fig,. 3.

Within this paper the test signals d(¢) 1<i<n are
given by d’(t)=e;8(¢) where e, is the ith column of the
nXn identity matrix and 8(¢) is the scalar unit impulse
function.!

Let y'(¢),- - -, y™(¢) be the output responses correspond-
ing to the respective test signals, and let

Y(2) = (¥'(2) »3(2)- - - »"(2)).

For every instant of time we have Y(¢)ER™™”", and X; is
characterized as follows.

Proposition 2: The unobservable subspace X; is the
subspace of greatest dimension which is contained in
ker(Y(?)) for all t€[0,T], T>0.

Proof: With impulses used as test signals, Y(z)= Ce**
and the proof is straightforward. [ |

Remark: Since ker(Y(¢))=im(YT(r))*, it is also true
that X3 is the subspace of least dimension which contains
im(Y'(t)) for all t€[0, T}, T>0.

"The results of this section are valid with 8(¢) selected to be other
scalar functions, such as the unit step. In this paper we shall not consider
tests other than impulses, but preliminary work indicates that future
refinment of the model reduction framework developed here will take
advantage of this freedom to select from a large class of test signals.
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inject test signals

(x(0)=0)

u{t)=0 O B @, {dt F— c O

measure output

responses

Fig. 3.

III. PrINcCIPAL COMPONENT ANALYSIS

The results given in this section support the analysis
techniques to be used in later sections. The organization
given here is self-contained and, to this author’s knowl-
edge, unique. Similar mathematical constructions appear
in control literature, but the material is closest in spirit to
Hotelling’s work in statistics [4], [5].

Let F: R—>R"*™ be a piecewise continuous map repre-
sented in matrix form by F(¢). One can think of F(z) as a
set of m vector signals involving » variables, i.e., each
column represents a single vector signal in R”. The
Gramian®

w2a f “B(¢)FT(¢) dt

is a positive semidefinite matrix with a set of nonnegative
real eigenvalues o7 >o07 > -+ >a?2 > 0 and corresponding
mutually orthogonal unit eigenvectors v, v, *, 0,.

The map F may be represented with v,,- - -, v, used as
orthonormal basis vectors for R”, i.e.,

F(t)=o,f{(1)+0, () + -+ +0,£7(1)

where f,7(¢) = v7F(z) for 1<i<n. Throughout the paper
we shall refer to the “ith”
principal component =

U,-f;-T(t),

A
= v,

component vector ;

component magnitude = g;, and
S (0).

Proposition 3: The following relationships hold for 1<
G N<n

. a¥
component function vector =

D [T d=0  forizj
) [PIAoNd=}
QNN HOTEEEES

Proof: It is a simple matter to show that

ftzjj.T(t)Jj.(t) dt=vT W2,

2The Gramian appears in deterministic control literature [18], [19], but
its eigenvector structure appears not to have been fully exploited.
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from which the first two properties follow easily. The third
is a consequence of the fact that

ft"||F(t)§|},dt=tr{ft"F(t)FT(t)dt}. ™)

There is a nice visual image which can be useful in
interpreting this result. One can think of f2|| F(¢)||>df as
the total energy in the signal set over [tl,tz], and the
component vectors and magnitudes reflect the spatial
distribution of this energy. Specifically, assuming that
g,>0, the set

[UER": £t2||uTF(t)||2dt=l} (3)

is an ellipsoid with semi-axes (1/q,)v;, 1 <i<n.

Linear Dependence and Least Squares Approximations

It is often important to determine fixed (independent of
t) linear relationships which exist among the rows of F(¢)
over [¢,, ¢,]. From a geometric point of view, this amounts
to finding the subspace Si where

Sy = {v: vEIM(F(1)), t€[ 1, 1,]}.

It is clear that Sy is spanned by the component vectors
corresponding to nonzero magnitudes.

In many cases exact linear dependence is not the case
(Sz=R") and one looks instead for “approximate” linear
relationships over {7,, 7,]. The following result shows that
the component magnitudes and vectors reveal the possibil-
ities with respect to such approximations.

Proposition 4: Let k be a fixed integer, 1 <k <n. Over
the class of piecewise continuous F,(¢) satisfying
dim{S } =k, the residuals

1
JF2 f, ORI AOFE
1

Js2 max [“oT(F()~ E(0)I2de
fell=1Y¢
are minimized with
k

F,(t)=F(t) = > 0, £7(2).
i=1
The error residuals are

n

2 0:'2;

i=k+1

JF= JS=06?,,.

Proof: It is easy to verify that F,(¢) gives the stated
residuals. For an approximation F, which minimizes JF or
JS, it is necessarily true that f,’leA(t)E}(t)dt=0, where
E (t)=F(t)— F,(¢). Hence, for such an approximation

W2=f’2FA(z)F (z)dz+f E()EI(1)dt.

-0 z(t)

w(t) O

linear system with impulse
response matrix F(t)

Fig. 4.

If f,:zE,,(t)Ef(t)dt has rank k, it follows from perturba-
tion properties of singular values that

n
2 0.'2

i=k+1

JF=trf”EA(:)E}(z)dt>
41

JS=“ft"EA(t)E}(:)dt“ >0, . ]
! 2

Principal Components of Impulse Response Mairices

If F(¢) is the impulse response matrix of a linear time-
invariant system, the principal components over [0, T'] can
be given sharp systemic interpretations. Consider the sys-
tem depicted in Fig. 4 where w(¢t)ER™ and z(z) €R", and
let © represent the class of all input functions w(-) which
are piecewise continuous on [0, 7] and satisfy the norm
bound (g |le(0)]|*df)'/> <1

It is well known (see [19, p. 75]) that the image of the
convolution map

{ZER": Z=f‘F(l—T)OJ(T)dT, t<T,w(-)ePC™[0, T]}
0
is precisely the space Sy. The set (contained in Sy)
s={zew:z=f’F(z—T)w(7)dT,z< T, w(-)EQ}
(]

provides more detailed structural information than the
space Sg. In the next few paragraphs we shall show that S
is a region in R" whose surface is an ellipsoid [closely
related to (3)] defined by the component magnitudes and
vectors of F(¢) over [0, T].

Let 0;, v, 1 <i<n be the component magnitudes and
vectors of F(¢) over [0, 7], and let Z, VER"*" be defined
as follows:

= £ diag{o,, 65, * 5 9,}

V= (0,07 0,)-

The following proposition shows that the set S ={z: z=
VZ2p, |lP|l=1)} (an ellipsoid with semi-axes g,v;, 1 <i<n)
corresponds to the surface of S.

Proposition 5: The set § can be characterized as follows

S={z:z=qas with ;€S and 0<a< 1}.

Proof: For simplicity we shall assume that ¢, >0. The
general proof is basically the same only more tedious.
First it will be shown that S is contained in S. For every
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eS8 there is a vector p, || p||=1, satisfying 2=V Zp.
From the definition of principal components, we know
that

W2=fTF(t)FT(t)dt=V22VT.
0

This means that ¢ = V'S ~'p satisfies 2= W?2g, which im-
plies (see [19, p. 76]) that the input w(¢t)=F7(T—1t)q
drives z(¢) to £ at time 7. Furthermore, simple manipula-
tion gives [ w(#)w’(#)dt=1 which means that w(-)EQ
and Z€S.

To complete the proof it is sufficient (because of linear-
ity) to show that the input w(-) constructed in the previ-
ous paragraph is the minimum norm input which drives
the system to £ at time 7. Let &(z) be any input which
drives the system to 7 at time 7. With A(#)=&(¢) —w(2),
simple manipulation gives [/&7(2)A(¢2)=0 and it follows
that

T . 2 . Tw 2 T 2
fo o)) di= fo ()12 de+ fo 1A()|2de>1. m

It is interesting to note that if Z=o;1,, then the mini-
mum norm input function is

olt)=F(T~ )00 = T f(T~1)

which is the ith component function vector, normalized
and reflected in time.

Computation of Component Magnitudes and Vectors

First let us deal with the special situation where one has
an asymptotically stable model (A4, B,C) and wishes to
compute the components of eA’B(eAT’CT) over [0, 00). In
this case it is often convenient to use the fact that
w2= fwe“”BBTe“’T‘dt

(i

[
w2 [CericTCe  dr
0

are the unique symmetric positive semidefinite matrices
which satisfy

AW? +W2AT=—BB"

ATWE +Wia=-CTC. .
One can first solve for W2(W.2) (see [20] for one algo-
rithm), and then use a specialized routine for computing
the eigenvalues and eigenvectors of a symmetric matrix.

For the more general case it is necessary to compute

approximate component magnitudes and vectors by sam-
pling F(z). With evenly spaced sample points 7, 7;,- - -, Ty
(1o = 1, Ty = t,), it follows from rectangular approxima-
tion that if N is large, then

W2iaWw2i 4 %F( FT,
TR ) 2 WE (7).

21

It is not necessary or desirable, however, to compute such
an approximation for W2, Imagine (it need not be actu-
ally constructed) a data matrix

a (=12
Dy 2 (251) " (Rm) Rm)-- Fay).
Since W;Z =Dy D7, it follows that the singular values and
left singular vectors of D, approximate the component
magnitudes and vectors of F(¢) over [¢,,1,]).

It is not necessary to store D, in memory-—this is
important because the data matrices may contain many
column vectors. Instead, one may preprocess the data by
recursively (treating as few as one column at a time)
reducing D, to a unitarily equivalent matrix (see [12, p.
383):

R=Dy,Q (Q unitary—not stored).

The matrix R&R"*" has singular values and left singular
vectors equal (to machine precision) to those of D,. The
algorithm (SVD) developed by Golub and Reinsch [6]
(working code in [7]) can be used to compute the singular
values and left singular vectors of R.

The main advantage in using S¥VD, instead of comput-
ing the eigenvalues and eigenvectors of W2, is in reduced
resolution requirements. The “squaring process” doubles
the demand for resolution in the computations. Specifi-
cally, suppose there is 12 bit resolution associated with the
samples F(7;). To preserve this same resolution with the
computed singular values,

0, —2~ 26, <{computed value of o;}
<o;+27 %,

requires at least 12 bit resolution using SVD and at least
24 bit recolution using the squared up version.

Perturbation Properties of Component Magnitudes
and Vectors

Suppose F(t) is perturbed by AF(¢) so that
F(1) = F(1)+AF(t) is piecewise continuous. As one
might expect from the preceding paragraphs, the perturba-
tion of component magnitudes may be bound in much the
same way as singular values of a matrix.

Proposition 6: Let a,, o be the ith component magni-
tudes of F(r), Fy(¢), respectively. Then

1/2

Io,-—o,.A]<’ f A F()AFT(1)
31

2

Proof: From the discussion of the computation of
components, the perturbed Gramian is

AR Nlim (Dy +ADy ) Dy +ADy)T
where AD, =((t, —t,)/N)/*(AF(r,) AF(%,)- - - AF(1y)).

Standard perturbation results for singular values implies
that each singular value of Dy +AD, is perturbed from
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that of D, by no more than

1/2
IADy|l,=

(tz};tl )iélAF(ﬂ')AFT(T")

2

In the limit the right-hand expression approaches
| [2AF()AFT(2)at|| >, [ |

As is the case with singular vectors, the perturbation of
component vectors requires some explanation. Let v® rep-
resent the /th component vector of Fy(¢) and visualize the
two ellipsoids E, E,, the first with semi-axes o,v;, and the
perturbed one with 6/v?. If A F(¢) has very small principal
components, then £, is close to E; that is, no point in E is
perturbed by more than || [,2A F(:)AF"(¢) dr || Y. If, how-
ever, E has two or more semi-axes of nearly equal lengths
(circular cross section), then these axes may be very
sensitive to small perturbations. The space spanned by
them is not sensitive, however, and this presents no real
difficulty. The algorithm SVD gives singular vectors which
are orthogonal (to machine precision), even with repeated
singular values.

IV. CONTROLLABILITY AND OBSERVABILITY
ANALYSIS

We are now prepared to consider the application of
principal component analysis to responses of the model

X(2)=Ax(t)+Bu(z)
y(1)=Cx(z)

with the idea of combining it with the signal-injection
view of minimal realization. The basic idea is close to one
advanced by Friedland [21] and, as mentioned in the
Introduction, is very closely related to the filtering work
of Mullis and Roberts [17].

A central problem to be dealt with is the fact that
internal responses e“'B, e 'CT depend on the internal
coordinate system. This means that unless there is some
special significance attached to the internal coordinate
system, the existence of “small” components in e#B or
edcT implies nothing about their importance with re-
spect to input—output properties of the model. To over-
come this problem, we derive a special coordinate system
where input—output properties are reflected by internal
principal components.

In the development we shall find it useful to carry along
the discrete time subordinate obtained by sampling (and
holding inputs) every ¢, seconds.

* p— *k %
X%y =Fxi+ Guy Flet, G2 ft’eA(l,—'r)B dr.
y,’:=Cx;§ 0

In analyzing responses of (A4, B, C) over an interval [0, T'],
it will be assumed that N=T7/1¢_ is an integer.

Relationships Between (F,G,C) and Components of e''B,
ATe T
e 'C
Let Q.(7,), O (t,) represent the extended controllability
and observability matrices corresponding to (F,G,C):

0.t,) = (G FG --- F"G);
C
~ | CF
o,(t,)=1". (@)
CF¥

The matrix Q.(¢,) is a data matrix which is closely related
to e“'B, and Q(¢,) is one formed by sampling Ce?* every
t, seconds over the time interval [0,7]. To aid in the
discussion, we shall adopt the following notation.

D) V. = (v 0,); Z, = diag(oyy,
v,;, 0,; represent the ith component vector and magnitude
of e*B.

2) ¥, = (01t 0)s E, = ding{oy, -
v,;, 0,; represent the /th component vector and magnitude
of et CT.

3) V*(¢,)2(t,YU*"(t,) = the singular value decomposi-
tion of Q(z,).

4) V*(1,)ZH(t,)U*(t,) = the singular value decomposi-

tion of QI(z,).
Proposition 7: The singular values satisfy

! lim V7, 2*(s,)=2,.
t,—0

»0,,} Where

-,6,,} where

lim
t,—0 -\/—t_s

2 =2

If the diagonal elements of 3, 2, are distinct, then
lim V¥(2,) =V lim V() =V,.
t,—0 t,—0

Proof: 1t is easy to see, using rectangular approxima-
tion of integration, that

[[letcTcen dr= lim (V, 04(1))"(V1, ,(1,))

and we shall prove that

Qc(zs))( ! Qc(m).
Vi,
)

These two relationships imply that the claimed limiting
relationships hold.
Now to see that (5) holds, note that

f TAtBBTeAt gy — Yim ( L
0

1, -\/t_s

2
= (5, 40,7 = L
G foe Bdr=1,B+ > AB+
and

t3
GGT=12BBT+ %(ABBT+BBTAT)+ e

Since e’ is bounded on [0, 7], there exists finite K, 8>0
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such that for 7, <&
| Fi(t2BB” — GGT)F'"|| < K13
for all i > 0. Hence,

¢, F'BBTF" — tlF"GGTF"’ | < Kt2,

5

and for ¢, <8,

N
1
I 2 t,et*BBTe* — —0.(1,)Q1(1,)I| <KN} =KT,.
k=0 s

Since T, X are fixed constants, the result follows. [ |

Principal Components of e*B, e*'CT

The component vectors corresponding to the nonzero
principal components of e%B span X, the controllable
subspace. For simplicity we shall assume that there are no
components which are identically zero. For this author,
the mental image developed in the previous section is
helpful. The ellipsoid with semi-axes 0,0,
6.,0.2,° " » 0,0, is the surface of the region in the state
space corresponding to points which can be reached from
the origin with input vectors satisfying [ ||w(?)||2dz< 1.
In some respects the ratio p. =0, /0, serves as a condi-
tion number with respect to pointwise state control.>

The component vectors corresponding to the nonzero
principal components of e4*C7 span X} . Again we shall
rule out the trivial case where there are components which
are identically zero. Here one can imagine an ellipsoid in
R" with semi-axes (descending order according to length)

e v a7l

. -1
on Yon®“on—1%on—1> » 01 Op1

which corresponds to the set of all initial conditions which
satisfy [] ||Ce?*xy||*dt=1. The ratio u, =0, /g,, acts in
some respects as a condition number with respect to
zero-input state observation.

It may be tempting to treat very small components of
e4'B or e*'CT as though they were identically zero (i.e.,
approximate X, X; using least squares). A little reflection
reveals that this is not generally appropriate. Consider the

model
B\ (-1 0)fx 107°
(-0 )0 o

y(t)=(10° 10-6)("1).
X

2

It is easy to see that e*B, e?'CT both have one very
small principal component with p, ~p,~10'2, In this case
the highly distorted ellipsoids simply reflect an internal

3This ratio depends on the selected coordinate system-—a poor condi-
tion number may simply reflect a poor internal coordinate system.
Discussion of this will appear later in this section.
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scaling imbalance. Rescaling X,(¢)= 10%x,(2); %,(¢)=
10 ~%x,(z) gives

J'E1=—1 0 x1+1u(t)
£, 0 -2||x, 1
ORI 1)["' :

*2

The preceding example illustrates the fact that e4'B,
Ce** depend upon the internal coordinate system. A coor-
dinate transformation x(z)=Px(¢) gives the model

F=A%(t)+Bu(z)
y(ty=Cx(1)
where A=P~'4P, B=P~'B, C=CP. It is important to
observe that

e B=p-le4B; Cedt = CeP.

In discussing coordinate transformations, the following
notation will be adopted:

W2(P) = P—'(fTeA’BBTeA"dz)P-"
0
=fTe“’A’B?ﬁTe’iT’dt
0
WE(P) = PT( f TeAT’CTCe“"dt)P
0
=fTe“iT'CA’TCA'e“i’dt.
0

For the case where P=1 (original coordinate system), we
shall simply write W2, W2.

Coordinate Invariant Values—Second-Order Modes

Looking again at the example used to illustrate the
dependence on internal coordinates, one can see that
small components of ettt may be offset by large com-
ponents of e’B. Intuitively, it seems this problem could
be alleviated by transforming to a coordinate system
where the components of e#B all have unit magnitude,
i.e., select P so that W2(P)=1I. Since W>=V,322¥V7 it is
clear that this can be achieved by setting P=V_3Z . A little
algebra gives W(P)=H"H where

H23 VIV,

Note that the singular values of H are the component
magnitudes of e ‘C7. Although the matrix H depends on
the initial coordinate system, one can easily verify that its
singular values do not. These values, which will be shown
to reflect input—output properties of the system, play a
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central role in the remainder of this paper. For this reason
we shall attach special terminology.*

Definition: The singular values of H will be represented
by 62>02>--- >a2>0 and will be referred to as
second-order modes of the system.

There is an interesting connection between the second-
order modes and discrete-time Hankel matrices corre-
sponding to (F,G,C). Recall that for a given interval
[0, T] and sampling time ¢,, we have the extended control-
lability and observability matrices Q.(¢,), Q,(¢,) defined
by (4). With T fixed, the corresponding Hankel matrix
My(2)=0Q(1,)0(¢,) grows in size (number of rows and
columns) without bound as 7,—0, but My has at most »
nonzero singular values.

Proposition 8: Let 6*(1,), 1 <i<n be the ordered singu-
lar values of My,(¢,). Then for 1<i<n,

lim Gi*(ts) =oi2
t:—>0

where o7 is the ith second-order mode.
Proof: Proposition 7 implies that

L 0.1 = (V2. + Ry(£)UFT(,)

Vi,
V1, 0,(1.)= Ut (VT +Ry(1,))

where R,(2,), R,(¢,) are n X n matrices satisfying

lim || R,(z,)]| = lim || R,(z,)||=0.
t,—0 t,—0

It follows, therefore, that
MH(ts) =Qa(ts)Qc(ts)
=Ur(t,)(ZV, V.2, )UX (1)
+ U () E(1)Ur (1)

where E(¢,) is nXn and satisfies lim, 4| £(¢,)|| =0. Since
UX(t,), U¥(t,) each has orthonormal column vectors, and
the second-order modes are the singular values of

H £ 3 VTV,Z,, the result follows. )

Models with Normalized and Balanced Internal Dynamics

It is evident that the condition W?2(P)=I does not

define a unique coordinate system. We shall now define
and discuss three closely related, essentially unique coor-
dinate systems® in which the structure associated with the
second-order modes is displayed clearly. Let 3%=
diag{s?, 67, - +,02}). .

Definitions: The model (A4, B,C) is input-normal on
[0,T] if W2A(P)=I, WX(P)=ZX* output-normal on [0, T]
if W2(P)=3% W2X(P)=I; and internally balanced on
[0, T]if W2(P)=W2(P)=22

4 This terminology is borrowed from Mullis and Roberts [17].
5These correspond to “principal axis realizations” introduced by Mul-
lis and Roberts [17].

Let P, represent a transformation which gives an inter-
nally balanced model. It is easy to verify that
P, P,="!, P_= P,3 give, respectively, output-
normal and input-normal models. The three coordinate
systems are, therefore, related by simple scale factors. The
internally balanced model will receive the most attention
in later sections, largely because of the property given in
the next paragraph.

Let p?( P), u2( P) represent the condition numbers (with
respect to inversion) of W2(P), W2(P). Then, as dis-
cussed in previous paragraphs, p (P), u,(P) act as condi-
tion numbers of the model (/f, B, (:") with respect to
pointwise state control and zero input state observation,
respectively. The following result shows that, in one sense,
the internally balanced model gives the best compromise
between the two condition numbers.

Proposition 9: The quantity max(p (P), p(P)) achieves
its minimum with P=P,,.

Proof: Let u(M) represent the condition number of
the matrix M with respect to inversion. It is easy to show
that

p(P)=p(PTV.Z);  p(P)=p(ZV]P).

Furthermore, it is a simple matter® to show that
p(M)u(My) > p(M, M,)

for square nonsingular matrices M;, M,. It follows that

k(P (P)=p(ZVIPYR(P™V2,)
>u()=(2)
and that
max(s (P). 1o (P) > 2.

Since p (P )=p (P,)=(0,/0,), this completes the proof.
|

The following result shows that if the second-order
modes are distinct, then the internally balanced model is
essentially unique.

Proposition 10: 1If the second-order modes are distinct,
then the basis vectors defining the internally balanced
model are unique within a change of sign.

Proof: Suppose A, B, C is internally balanced so that
W2=W2?=3? and assume that P satisfies W2(P)=
W?2(P)=ZX2 This implies that

P-IZ2p-V= pT2p=32

which further implies that P~ 'Z*P=3* These equations
constrain P to be a diagonal matrix with *+1 in each
diagonal entry. a

SItis not a simple matter, as one reviewer observed, to show that this
result holds in general for nonsquare matrices, but the general result is
not needed here.




MOORE: PRINCIPAL COMPONENT ANALYSIS IN LINEAR SYSTEMS

The transformation P, can be executed with the follow-
ing algorithm.

Step 1) Compute V,, 3 and apply the transformation
P,=V,2, to give WXP)=I Let A= P 4P;
= P7'B; C = CP.

Step 2) Compute V, E correspondmg to the compo-
nent vectors and magmtudes of e4'CT. Apply to (A B,C )
the transformation P,=V¥,3-'/2 to give the internally
balanced model

B

A=P;7'PUPP,;
B=P;'p'B;

Properties of Asympiotically Stable, Internally Balanced
Models

Let us now limit the discussion to asymptotically stable
systems and assume that (A4, B,C) is internally balanced
over [0, o0), i.e.,

j;)ooe”’BBTe“’T‘ dt=j(;°°e

or, equivalently,

ACTCe dr =32

AZ? +3247= —BBT
ATZ? +3%4=-C"C.

(6)
™

Under these conditions the model (A, B, C) has a rather
extraordinary property involving the stability of subsys-
tems. Consider arbitrary reorganization of the internally
balanced system into two interconnected subsystems, i.e.,
let (A B,C ) be obtamed by reordering the state variables
and partition (4, B, C) as follows:

% Ay Ap (| % + B, u
b 23 Ay Anj|*; B,
y=(C1 Cz) N ]
X3

Lemma 4.1.7 The matrices A,,, A,, satisty lim,__e4n*

=K, lim, , e”»' = K, where generically K, =0, K2 O

Proof: It is a sunple matter to show that A3+
$247 = — BBT where 3 is a nonsingular diagonal matrix
(reordered version of £). This implies that

Allzl +21A11— _B]Bl’

and it follows (integration by parts, or see [22, p. 299])
that for >0
A“-rB

A -~ Y AT
3 =eAury2e it +f AT dr,

0

"During the process of revising this paper, Parnebo and Silverman
proved a stronger stability result [23].
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The symmetric, positive semidefinite matrix fle4n"B, BT

.edlr gy is, therefore, norm bounded and it follows that
lim,_, e4n'B, =0 and that lim,_, e eAntS exists. Since $,
is nonsmgular lim,  _e e41 must exist. A stralghtforward
argument (omitted) shows that controllability of A“, Bl is
a generic property, and this implies further that asymp-
totic stability of A“ is a generic property. Similar argu-
ments apply for A22 ]

The previous stability result is really more general than
we need here. Consider the case where the state variables
of the internally balanced model (A4, B,C) are simply
partitioned and not reordered. Specifically, suppose the
matrix =2 of second-order modes is partitioned where

=diag{oy, - -, 6,}, 2, =diag{oy 4, * -, 6,}. This impo-
ses a corresponding partition of the state variables of the
internally balanced model

(1) )
dy(?)

(G- ) (52

»()=(c, cz)(;“)

2

where we have again inserted the test injection input d(z).
We may view this as two interconnected subsystems:
(A4,,, B;,C,) and (A4,,, B,,C,). Using Lemma 7, it is not
difficult to prove the following.

Proposition 11: The two subsystems (A4,,, B, C)),
(A4, B,, C,) are generically asymptotically stable and in-
ternally balanced with

(=] > o] T
f e4n'B, BTe AN dt = f AW CTC et di =32
[+] . (]

® dpip pT, ALt & AL ~T Apt 52
f e“2'B Bren dt=f e 2 CyCyen' =33,
()} 0

Proof: Stability was proved in Lemma 7; the second
part follows from simple inspection of (6) and (7) in
partitioned form. B

Prelude to Model Reduction

The basic model reduction idea to be pursued in the
next section follows intuitively from Proposition 11. Con-
sider the case where o7 >>07, ;. Then the subspace

X, éim(I"‘)
0

(where 1, is the kX k identity matrix) in some sense “acts
like” both X. and Xj. If the mechanics of Kalman’s
minimal realization theory are applied to the internally
balanced model with X, used as a working approximation
of X,,. the resulting lower order model is (4, B, C)).
This model is generically asymptotically stable and intern-
ally balanced.

This idea is given strength by Proposition 10 which
shows that the second-order modes are the singular values
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of the (infinite) Hankel matrix of the discrete-time sub-
ordinate with 7,—0. It is well known that the number of
nonzero singular values of this matrix determines the
order of the model. Hence, if 62 >02, ,, then the Hankel
matrix is nearly singular. In some model reduction work
[24]-[27], model reduction is based on near singularity of
the Hankel matrix.

Y. TooLs FOR MODEL REDUCTION

Model reduction involves a tradeoff between model
order and the degree to which the characteristics of the
plant are reflected by the model. Because the relative
importance of various plant characteristics is highly de-
pendent upon the application, there can be no universal
model reduction algorithm. The best one can hope for is a
good set of tools and some reliable guidelines for using
them.

In this section we shall illustrate one way that principal
component analysis can be applied to the model reduction
problem for the case where the full model is asymptoti-
cally stable. The intention is to convey a way of thinking
about model reduction which lends itself well to the signal
injection view of minimal realization theory. The results
are promising but incomplete; future research will hope-
fully refine the viewpoint and sharpen the tools.

In this section a reduced-order model (A, By, Cg) will
be judged by its impulse response matrix. The error im-
pulse response matrix

H, (1) = Ce®'B— Cge”*'By

characterizes the error. We shall say that a reduced order
model is “good” if the largest principal component of
H (1) over [0,00) is “small” compared to the smallest
principal component of Ce?'B, i.e., if

“LmHe(t)Hf(t)dt

172
2

< min
lefi=1

. 1/2
{vT( f CeA‘BBTe”T’CTdt)vJ . (8)
0
This viewpoint forces an assumption: the map Ce*'B
may have pathologically small or zero components (e.g.,
two rows of C are identical), and we must assume that this
situation has been corrected by a projection onto an
output space of appropriate dimension. To make the
condition (8) simpler, it will be further assumed that an
output coordinate transformation has been applied so that

o0
f CeBRTeA"'CT =]
0

in which case (8) may be replaced by

1/2
«l1.

&)

”fowﬂe(t)H}(t)dt 2

fn
ApsBpsCp 7? —
lower order model
ey ~— _|-~ obtained by severing
- - these connections
|~
~
-

/

gsystem which contributes nothing
to impulse response matrix

Fig. 5.

dominant subsystem

!

reduced model obtained
by severing these
connections

weak s.ul‘:system5

Fig. 6.

Reduction by Subsystem Elimination

Minimal realization theory says that there is an exact
lower order model if and only if in some coordinate
system the full model can be organized as follows.

U )+ (3
= o 0!
X2 Ay Ap)\x, B,

y(t)=(Cg Cz)(il )

2

where the subsystem (Ag, By, Cg) has the same impulse
response matrix as the full model. This is illustrated by
Fig. 5.

The main idea underlying the model reduction work
here is to eliminate any weak subsystem which contributes
little to the impulse response matirix. In other words, we
shall try to reorganize the full model with an internal
coordinate transformation as illustrated by Fig. 6. This
implicitly defines the meaning of a “dominant” subsys-
tem: it is one whose impulse response matrix is close (in
the sense discussed in the beginning of this paragraph) to
that of the full model.
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4, (t)
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w(t)

y(t)

4,(t)

Fig. 7.

It is here that we must face up to a theoretical gap in
the paper. We are not able to use this definition of
dominance directly, and we introduce instead the concept
of internal dominance which is natural within the frame-
work developed in Sections II-1V. Toward the end of this
section, a conjecture will be advanced concerning the
relationship between this concept and actual dominance.

Internal Dominance

Consider now the organization of (A4, B,C) shown in
Fig. 7. Loosely speaking, internal dominance of
(Apg, By, Cp) means that signal injection tests involving
d,, x; give much stronger signal components than corre-
sponding tests at the second set of terminals 4, x,.

Care must be taken here for the same reasons which
called for balancing in Section IV. Clearly, if internal
dominance is to relate to actual dominance, it should be
invariant under coordinate transformations of the type
x (1)=T%,(2), x,(t)=T,%,(¢), but the responses to tests
are not invariant under such transformations. Again the
idea of balancing may be used to resolve this problem.

In matrix form, we may express the model in Fig. 1
with arbitrary transformation x,(z)=T,%,(2), x,(¢)=
T,%,(t) as follows.

'7%1 T 4.7y Ty 4,0
%,

T AnT, T AnT,

3

2

i

+ d(t)+

0 }‘?2(1)

n—k

X
Gn)| !

y(t)=(CrTy (10)

X2

where I, I,_, represent kXk and (n—k)X(n—k) iden-
tity matrices, respectively. With

=) (i)

injection of impulses at w(¢), d,(7), respectively, gives

X(t) =2 T, W/e®B, Y,(:)=Ce'V\T,,

and it follows that

—-17

fw/\’;l(t)/?{(t) dr= Tl_l(VlTVVCZI/l)Tl
0

[T R a= TV W),
0

Similar expressions hold for X,(z), ¥(¢). (V;, T, replace
V,, Ty

These expressions indicate that we may select 7 so that
the principal components of X,(¢), ¥ ’(¢) are aligned with
equal magnitudes, i.e.,

fw)?l(t))?f(t)dt=fw?IT(t)f’,(t)dt=if. (11)
0 (4]

Similarly, 7, may ‘e chosen so that

[ R0 a= [T a=2. (12)
0 0 i
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Definition: The model (10) is said to be “balanced with
respect to X,;” iff (11) holds and “balanced with respect to
X, iff (12) holds.

If the model (4, B,C) in Fig. 1 is transformed to (10),
which is balanced® with respect to both X, X,, then we
shall say that (A4, B, C) in Fig. 1 “has been balanced with
respect to X;, X,.” We are now prepared to give a defini-
tion of internal dominance.

Definition: The system (Ag, B, Cg) is an internally
dominant subsystem iff in some coordinate system the full
model (A4, B,C) can be organized as in Fig. 1 such that,
when balanced with respect to X;, X,

121> 1230 -

Internal Dominance and Second-Order Modes

The following result shows that the second-order modes
reflect the existence of internally dominant subsystems.

Proposition 12: There exists an internally dominant
subsystem of order k if and only if

1/2 R 12
) >>( > o,.“)
i=k+1

where o7, 1 <i<n are the second-order modes.

Proof: First sufficiency. Suppose (A4, B,C) is intern-
ally balanced and let X, = diag{o,, 65, - - -, 0, },
2, = diag{o;, - - -.0,}. It can be easily verified that
(A, B, C) is balanced with respect to X,, X, with 3, =3,
iz =3,. Hence, if (11) holds, then

k 172 n 1/2
122 = (Eo,-“)- >>( > o,-“) =22 ;.
i=k+1

i=1

To establish necessity, assume that (A B,C )} is bal-
anced with respect to X, X, and satisfies ||22||F>>||22 I £
This model is related to the internally balanced model
(A4, B, C) by a coordinate transformation

(1) =(P, P)(jig)
2

(o) (Gio (r2e)

and since PQ7 =1, we may write

S2=3pQTZ=3P,Q0TS+3P0]%.

k
( S of (13)

i=1

Since £P,Q7 = has rank &, it follows from perturbation
properties of singular values that

n 1/2
I=P,0] Enp/( > o,-“) :

i=k+1

#Note that this does not imply that the model (8) is internally balanced
or that the elements of 2] , E% are second-order modes.

Hence, we need only show that internal dominance im-
plies that

I1ZPOTZ] p > |IZP0T Z|| -

To verify this relationship, observe that

A PT

{ me’”BBTeAT‘dt=( 1),EZ(P, P,)
T
0 P,

/ me’;r’é’ée"dm(Q‘ )22(91 0,)
0 07

A A A

and since (4, B, C) is balanced with respect to X;, X5,
£} =PI=?p =03,

522Q2‘

This means that P, = U, oTz= b W, 2Py = UZEZ,

Q7= 22W2 for some orthogonal matrices U;, W), U,,
W,. It follows, therefore, that

22-pIs?p, =

SPOTE=U8W,; =IPROIZS=U0,3Iw,.
Thus |ZPOTE| =112} | > 112311 r = ZP,0T =l and
the proof is complete. |

This result, Proposition 12, suggests a natural first step
in model reduction: compute the internally balanced
model and inspect the second-order modes. If condition
(11) is not satisfied, there is no internally dominant sub-
system. If (11) is satisfied, then the subsystem correspond-
ing to the first k state variables of the model is internally
dominant and, generically, internally balanced and
asymptotically stable. This subsystem is precisely that
obtained by applying the mechanics of minimal realiza-

tion (Section II) using as a working basis for X,.

Now let us return to the issue of dominance versus
internal dominance. An internally dominant subsystem
may be fested for dominance by applying principal com-
ponent analysis to the impulse response error matrix H,(¢).
The interesting question is whether it is possible for a
dominant subsystem of order & to exist with no corre-
sponding internally dominant subsystem of order k.

Conjecture: Every dominant subsystem is internally
dominant. '

On the Question of Optimality

Wilson [28], [29] and Applevich [30] have given neces-
sary conditions for optimality of the reduced order model,
i.e., mecessary conditions for [°| H(?)||3d: to be a
minimum. It is natural to question the relationship be-
tween their work and the model reduction results given
here.

The first point to be made is that Wilson and Applevich
consider the entire class of kth-order r-output, m-input
linear systems as possible reduced-order models of order
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k. This is a larger® class than that considered here: those
which can be obtained by subsystem elimination. It is not
surprising, then, that the reduced model of order k defined
by the internally balanced model is not optimal. Computa-
tional experience of this author suggests, however, that if
it corresponds to an internally dominant subsystem, it is
near optimal.'

In the situation where one is trying to find an optimal
kth-order model (from the large class) where there is no
internally dominant subsystem of order k, it seems rea-
sonable to use the kth-order subsystem defined by the
internally balanced model as a starting point in the model
reduction computations.

VI. ILLUSTRATIVE EXAMPLES

To illustrate internal balancing and the proposed model
reduction framework, we shall consider two single input,
single output examples. The examples are not particularly
important other than for the purpose of illustration.

As stated in Section V, we shall judge potential reduced
models on the basis of the relative error in the impulse

response
o 1/2
( f H(1) dt)
0

(fomH(t)2 dt)l/2

Example 1: The first example illustrates that phase
canonical models, often chosen for convenience, may be
extremely poorly balanced.

C=(5 15 1 0)

(s+10)(s+5)
(5+1+4.9)(s+1—j4.9)(s+1)(s+2)

C(sI—-A) 'B=

The principal component vectors and magnitudes of e'B
are given by

0 ~0.0643 0 0998

—0.0335 0 099 0 |

S 0.998 0 0.0643|
0.999 0 00335 0

91t is intuitively clear that the class of models of order k& which can be
achieved by subsystem elimination does not contain all models of order
k. This fact is shown by example in [31].

0Tndeed, Example 2 was considered by Wilson who reported a larger
residual. This undoubtedly arises from the nature of his search algo-
rithm.
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0.461
s - 0.04183
¢ 0.01456
0.0112
and those of e?'CT are
(0899 —0.426 0.0991  0.0225
y 0.431 0.824 —0361 —0.0738
° 100721  0.368 0927 —0.00891
00122 00738 —0.0206  0.997
(47.95
_ 2.96
2 0.667
0.244

The underlined entries in ¥, show that it is essentially
antidiagonal (the higher derivatives of the output are most
excited by an impulse). For ¥V, it is the opposite; V, is
essentially diagonal (initial conditions involving lower de-
rivatives cause the greatest output response). The second-
order modes are

(02,02, 02,07} ={0.576,0.147,0.0904,0.0192}.

The internally balanced model'! for this system is given

by

(—0.5183 145 —0.3911 0.3501

i 145 —2.195 4753 —1.218
—0.3911 —4.753 —0.6297 1.196
[ —0.3501 —1218 —1.196 —1.657
(0.7729

s 10.8047

B=1 03373
[0.2523

C=(0.7729 —0.8047 0.3373 —0.2523).

Table I summarizes the respective reduced models found
by subsystem elimination.

Example 2: The following example was considered by
Wilson [28].

0 0 0 —150 4
1 0 0 —245 1
A= M =
0o 1 0 —113]° o
00 1 —19 0
c=(0 0 0 1)
C(sI-4)"'B= s+4

T (s D(s+3)(s+5)(s+10)

For this system the component vectors and magnitudes of
e*'B are

17t is interesting to observe the “absolute value” symmetry of the
model. This property has appeared in every single input, single output
example tested by this author.
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TABLE I
REDUCED ORDER MODEL PROPERTIES— EXAMPLE 1

[ n 4]7[ k 4]35 actual
order (k) PN 1 o} relative transfer function
i=k+1 i=1 error
5 o | s | SSNsAtIT Gl
2 -1553 -3332 51 .357;53?2;;)(?:?:27-3'1.183)
1 .302 .4849 _.5974
5+.5183
—0.8897 —0.4495 0.0769 0.002
v = 0.4510 0.8385 —0.2951 —0.008 |.
¢ 0.0706 0.3073 0.8981 0.3065 |’
0.359x 102 0.01903 0.3169 0.9483
(4.13
3= 0.367 .
2.35%10
L 2.5%10~¢
( 0 —0.0809 0 +0.9967
v = —0.987x103 0 0.999 0 .
° 0 0.9967 0 +0.0809
| +0999 0 0987x10~* 0
(0.174
s = 0.0173 .
4.48% 10
3.68x 1073
The second-order modes are VII. CoNCLUDING REMARKS

{0,2,022,032,042}
={0.0159,0.272 X 1072,0.127%1073,0.8 % 10>5}

and the internally balanced model is

(-04378 —1.168 —0.4143 0.05098

i=| 1168 —3.135 —2.835 0.3288
—0.4143 2835 —12.48 3.249
| —0.05098 03288 —3249 —2952
[ —0.1181

~ | 0.1307

B=1 _0.05634

| —0.006875

C=(-0.1181 —0.1307 —0.05634 0.006875).

Table II summarizes properties of lower order models.
It is interesting to note that the relative error of Wilson’s
second-order model is 0.04097. The fact that his “optimal”
model gives higher relative error than the one obtained
here must be due to the details of his search algorithm.

There are several points in this paper which, in this
author’s opinion, are natural points of departure for fur-
ther study. With respect to model reduction, the signal
injection results given in Section II provide one such
point. The results in Sections IV and V were developed
for impulse injection, but this may not be appropriate if,
say, one is modeling in an environment where computer
control is to be used to implement low gain feedback for
disturbance rejection. Preliminary results show that one
can “tune” the model reduction tools to certain classes of
inputs.

Another point of departure that is probably more im-
portant than the one discussed in the preceding paragraph
is Section III, which describes very general tools for
detecting near linear dependence. The focus of this paper,
model reduction as it relates to minimal realization the-
ory, is very narrow compared to the domain where the
tools are applicable.

One point in this paper might better be described as a
“loose end” than a “point of departure.” The relationship
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between subsystem dominance and internal dominance is
not clear; the latter concept was clearly created for
pragmatic reasons. The relationship between general
model reduction and reduction by subsystem elimination
is not well understood, either. (A discussion of this is
given in [31].)

As a final comment, this work has left the author with a
strong bias toward operating directly on signals whenever
possible. This means, of course, a bias against working
with secondary objects such as model parameters. There
are at least two reasons which support this bias. First,
limitations of physical hardware (measurement accuracies,
regions of linearity, etc.) can usually be stated directly in
terms of signals. Second, tools for coping with multiple
signals (principal component analysis+singular value de-
composition) are available.
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Phases in the

Analysis of Linear Multivariable
Feedback Systems

TIAN POSTLETHWAITE, MEMBER, IEEE, JOHN M. EDMUNDS, aNp ALISTAIR G. J. MACFARLANE,
SENIOR MEMBER, IEEE

Abstract—The concepts of principal gain and principal phase are intro-
duced for linear multivariable systems, and their use in the aopalysis of
feedback behavior is demonstrated. A sufficient Nyquist-type stability
criterion is presented in terms of these quantities and is used to char-
acterize the robustness of the closed-loop stability property when the
system model is subjected to a linear perturbation (either multiplicative or
additive) at any point in the feedback configuration. The results presented
are less conservative than those obtained via the small gain theorem.

I. INTRODUCTION

N recent years there has been a revival of interest in the

development and application of frequency-response
techniques to the design and analysis of linear multivaria-
ble feedback control systems (see, for example, [1]-[3]).
One of the major reasons for this has been the availability
of increasingly inexpensive computers and the consequent
increase in all branches of engineering of interactive com-
puting facilities to assist in design and analysis. The
frequency-response approach is particularly attractive in
this context since, having a strong complex-variable con-
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tent, it lends itself well to graphical representations which
are a way of presenting results that engineers have found
helpful in the past; as shown by the success of the classic
Nyquist and Bode plots. Technically, frequency-response
methods have the advantage of being largely insensitive to
small errors in a system model. Should the actual system
suffer from large parameter variations, however, or should
the model be very inaccurate because of various ap-
proximations and uncertainties, then the control system
should naturally be designed to have a Jarge degree of
stability. The mere presence of feedback is not sufficient
to guarantee the robustness of the stability property, and
so techniques for assessing the relative stability of a multi-
variable design are required. This problem has been
studied by Doyle [4] who characterizes the robustness of
the closed-loop stability property in terms of the spectral
norm of an appropriate frequency-response matrix. In this
paper we give a less conservative characterization of the
robustness of the closed-loop stability property in terms of
a Nyquist-type plot by introducing phase information.
The phase information used terms from the polar de-
composition of a complex matrix [5] which is defined as
follows. Analogous to the polar form of a complex num-
ber, a complex matrix T can be represented in the forms

(1.1)
(1.2)

T=UH,
T=H,U
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