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Principal  Component  Analysis in Linear 
Systems:  Controllability,  Observability,  and 

Model  Reduction 
BRUCE C. MOORE 

Abstmct--Knlmnn’s minimal realization  theory  involves geometric o b  
jeds (controUabk, uuobsewable subspaces) which are snbject to stradural 
instability. SpedkaUy, arbitrarily small pertnrbations in a model may 
cause a change in the dimensions of the associated subspaces. This 
situation is manifested in  computatiooal diffiities which arise in attempts 
to apply textbmk algorithms for computing a minimal realization. 

Structural instabiity associated with geometric theories is not unique to 
control; it arises in the  theory of hear eqoatiors as well. In thif setting, 
ttse computational problems have been studied for decades and excellent 
tools have been developed for coping with the situation. One of the main 
goals of this paper is to Can attention to p&zipal component analysis 
(Hotelling, l933), and an algorithm (Golub and  Reinsch, 1970) for comput- 
i n g t h e ~ w h r e ~ ~ s ~ o l a m a t r i x . T o g e t b e r t h e y f o r m a  
powerful tool for coping with structural instability in dynamic system. 
As developed in this paper, principal mmponeot analysis is a technique 

for analyzing signals. (S ia r  value decomposition provides the computa- 
tional machinery.) For this reason, Kalman’s minimal realization theory is 
recast in t e m ~  of responses to injected signals. Application of the signal 
am@& to contrdlability and observabii leads to a eoordinate system in 
which the ‘’ininternally baland’  model tm special properties For asymp 
totically stable systems, this yields  working  approximations of X,, X;, the 
controllable  and  unobservable subspaces. It is proposed that a natural f i i  
s tepinmodelreductioniotoapplythemechanicsofminimal~oa 
* ~ w o r k i n g s n b s p a c e s .  

I. INTRODUCTION 

A COMMON and quite legitimate complaint directed 
toward multivariable control literature is that the 

apparent strength of the theory is not accompanied by 
strong numerical  tools. Kalman’s minimal  realization  the- 
ory [2], [3], for  example,  offers a beautifully  clear  picture 
of the structure of linear systems.  Practically  every  linear 
systems  text  gives a discussion of controllability, observa- 
bility, and minimal  realization. The associated  textbook 
algorithms are far from satisfactory, however,  serving 
mainly tp illustrate the  theory  with  textbook  examples. 

The problem  with textbook algorithms  for  minimal 
realization  theory  is that they are based on the literal 
content of the theory and cannot cope with structural 
discontinuities (commonly called “structural instabilities”) 
which  arise. Uncontrollability corresponds to the situation 
where a certain subspace (controllable subspace)  is  proper, 
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but arbitrarily small perturbations in an uncontrollable 
model  may  make the subspace technically not proper. 
Hence, for the perturbed model,’ the theory, taken liter- 
ally,  says that (assuming  observability) there is no lower 
order model  with the same impulse  response  matrix. There 
may  well  exist,  however, a lower order model  which  has 
effectively the same impulse response matrix. There is a 
gap  between  minimal realization theory and the problem 
of finding a lower order approximation, which we shall 
refer to as the  “model reduction problem.” 

The purpose of this paper is to show that there are some 
very  useful  tools  which can  be used  to  cope  with  these 
structural instabilities.  Specifically, the tools will be a p  
plied to the model reduction problem.  We shall draw 
heavily  from the work of others in statistics and computer 
science,  where  the problem of structural instability associ- 
ated with  geometric  theories has been studied intensely. 
Principal component analysis, introduced in statistics 
(1933) by  Hotelling [4], [ 5 ]  will be used  together  with the 
algorithm by Golub and Reinsch [6] (see [7] for working 
code) for computing the singular value decomposition of 
matrix.  Dempster [8] gives an excellent geometric treat- 
ment of principal component analysis as well as  an over- 
view  of its history. A thorough discussion of the singular 
value  decomposition and its history is  given in a recent 
paper by Klema and Laub [9]. There are excellent books 
[lo]-[ 151 within the area of numerical linear algebra which 
explain  how structural instabilities arise and are dealt with 
in the theory of linear equations. 

The material  given  in  Sections I1 and I11 of this paper is 
more  general than that appearing in the remaining sec- 
tions. In Section I1 minimal realization theory is reviewed 
from a “signal injection” viewpoint. The main advantage 
of this viewpoint  is that the relevant subspaces are char- 
acterized in terms of responses to injected signals rather 
than in  terms of the model parameters ( A ,  B, C ) .  The full 
power of the ability to’inject signals of various  types is not 
fully  exploited  in this paper. Section I11 contains very 
general  results  which are valid  whenever one is  trying to 
find approximate linear relationships that exist among a 
set of time  variables. In no other way  is linearity required. 
(See [16] for ideas about nonlinear applications.) 

In Section IV controllability and observability  analysis 
is  discussed.  Most of the effort is spent coming to grips 
with the problem of internal coordinate transformations. 

0018-9286/81/0200-0017$00.75 0,1981 IEEE 



18 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-26,  NO. 1. FEBRUARY 1981 

This leads to the description of a coordinate system 
(generically  unique  within  sign changes) in which the 
model has special properties. This “internally balanced” 
model  is  essentially the same as the “principal axis realiza- 
tion” defined in a filtering context by  Mullis and Roberts 

For asymptotically stable systems,  one  can  view the 
controllability, observability analysis as a process by which 
one  computes  working  approximations of X,,  X,, the 
controllable and unobservable subspaces. In Section V we 
pursue the natural idea of applying the mechanics of 
minimal realization theory using these  working subspaces 
instead of the exact subspaces, which are subject to struct- 
ural instability. Examples are given in Section  VI. 

~ 7 1 .  

Notation 

The symbols R, P C [ t , ,   t 2 ]  represent the field of 
real numbers and the ring of piecewise continuous 
functions on the interval [ t l ,   t 2 ] ,  respectively. The cor- 
responding  vector  spaces R X R - - - X R and 

P C [ t , ,  t 2 ]  X X P C [ t l ,   t 2 ]  will be denoted by R”, 

P C ” [ t , ,   t 2 ] .  Ft r  a subspace SER“, S’- will represent its 
orthogonal complement in R“ with  respect to a basis 
defined by the context. A matrix U will be referred to as 
an orthonomzal basis matrix for S if its columns  form an 
orthonormal  basis. 

For a map M :  Rk + F i n ,  ker( M )  and im( M )  will repre- 
sent the kernel and the image of the map.  The  symbol M 
wilI also be  used to represent a matrix representation, in 
which case we shall write M E  Rnxk .  For such a matrix, 
M T  will represent its transpose, and IIMIIF, 1 1  MII, will 
represent, respectively, the Frobenius  and spectral norm. 
For a vector u E  R“, 11 u 1 1  will represent the Euclidean 
norm a. 

m 

11. A “SIGNAL INJECTION” VIEW OF MINIMAL 
REALIZATION THEORY 

The two  tools, principal component  analysis and singu- 
lar value decomposition, are ideal for analyzing vector 
time  signals. In an effort to make later use of these tools 
more transparent, minimal reahation theory will be 
reviewed  from a “signal injection” point of  view.  Specifi- 
cally, the controllable subspace and the unobservable 
subspace will be characterized in terms of vector time 
responses of the model to test signals injected at ap- 
propriate points. 

To avoid confusion, special care must  be taken to 
establish the state space setting. The assumed situation is 
the following.  There  is a plant, illustrated in Fig.  1,  with rn 
inputs (ti) and r outputs (f), operating quietly (at rest) at 
an equilibrium point (ye, ti,). Furthermore, there is a 
corresponding model 

I ( t ) = A x ( t ) + B u ( t )  

n 
Plant ... 
Fig. 1. 

( x ( t )  E W”) which,  when started at rest (x (0 )  = 0), simu- 
lates exactly the small signal input-output characteristics 
of the plant with the coordinate system translated to 

The  model  (1)  is required to simulate only the input- 
output characteristics of the plant, and it  is often true that 
little can  be  said about the relationship of x ( t ) ,  A ,  B, C to 
the physical  system.  Furthermore,  since  (1)  is only a 
model, we are free to insert a “test” input vector d ( t )  as 
follows: 

a,, ye. 

i ( t ) = A x ( t ) + B u ( t ) + d ( t )  

y ( t ) = C x ( t ) .  (2)  

The vector d ( t )  is introduced to aid in the discussion of 
observability of the model and  has no connection with the 
physical plant. 

Minimal realization theory gives a clear geometric 
answer to the following questions. Under  what conditions 
does there exist a lower order model  which,  when started 
at rest, also simulates exactly the small signal characteris- 
tics of the plant? If there is  such a lower order model, in 
what  way  does  it relate to the original model? The re 
mainder of this section offers a review of minimal  realiza- 
tion theory. 

Basic Geometric Review 

The  geometric picture which  goes along with  minimal 
realization theory is very simple and well known. There 
are two important subspaces of the state space (R”): X,, 
the controllable subspace, and X,, the unobservable sub- 
space. The subspace X, is the smallest  subspace  which 
contains the state response (x (0 )  = 0) to every  piecewise 
continuous vector  signal injected at the model input termi- 
nals ( u ( t ) ) .  The  subspace X, is the largest  subspace in 
which arbitrary piecewise  continuous  signals  can  be 
injected [through d ( t ) ]  with no  output response. 

With x(O)=O every state response can  be  decomposed 
into the sum of two orthogonal vector signals,  one in 
X,, = (X,nx,) l   nX, and one in X k .  The  signals in X,, 
completely determine the input-output response of the 
model. If U is an orthonormal basis matrix for X,, then 

A 

I 1 ( t ) =   U T A U x l ( t ) + U = B u ( t )  

A t )  = C U x , ( t )  

is a minimal order model  with the same  input-output 
characteristics as (1). 
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dftl=O 
measure state 
response (x(O)=Ol 

0 

signals 
Fig. 2. 

Characterization of X , 
It is  convenient to think of X, in terms of state re- 

sponses to test  signals, as indicated in Fig. 2. In this paper 
we shall  consider a sequence of test  signals ui(t) ,  1 < i < m 
given  by u'(t)= e$(?) where e,  is the ith column of the 
m X m  identity  matrix and a(?) is the scalar unit impulse 
function.' Let x]( t ), - * - , xm( t )  be functions corresponding 
to the state responses of the  model to the  respective  test 
input signals, and let 

X (  t ) L (XI( t ) x'( t ) . x y  t )) . 

For every instant of time we have X ( ? ) €  RnXm, and X, 
can be  characterized  as  follows. 

Proposition I: The controllable subspace X, is the sub- 
space of least  dimension  which contains im(X( t ) )  for all 
t E [0, TI, T> 0. 

Pruo$ With  impulses  used  as test signals, X ( ? )  = eAfB 
and the proof is straightforward. 

Characterization of X , 
For this we apply a series of tests as indicated by  Fig. 3. 
Within this paper the  test  signals d'( t )  1 < i < n are 

given  by d'(t)  = e&?) where e,  is the i th  column of the 
n X n identity matrix and a(?) is the scalar unit impulse 
function. * 

Let y '( t) ,  - , y "( t ) be  the output responses correspond- 
ing to the  respective  test  signals, and let 

Y ( t )  ( y ' ( t )  y 2 ( t ) .  - - y" ( t ) ) .  

For every instant of time we have Y( t )ERrX" ,  and X, is 
characterized as follows. 

Proposition 2: The unobservable  subspace Xa is the 
subspace of greatest dimension which is contained in 
ker( Y( t ) )  for all t E [0, TI, T> 0. 

Proufi With  impulses  used as test signals, Y( t )  = CeAf 
and the proof  is straightforward. rn 

Remark: Since ker(Y(t))= im( YT(t))", it is also true 
that X: is the  subspace of least dimension  which contains 
im(YT(t))  for a11 ~ E [ O ,  T I ,  T>O.  

'The  results  of this section  are  valid with 8 ( t )  selected to be  other 
scalar functions,  such as the  unit  step.  In this paper  we shall not  consider 
tests  other than impulses. but prelimhay work indicates that  future 
ref i ient  of the  model  reduction  framework  developed  here will take 
advantage  of this freedom  to  select  from a large  class  of  test  signals. 

inject  test  signals 
(x(0)=0) 

responses 

Fig. 3. 

111. PRINCIPAL. COhiPOhTENT ANALYSIS 

The results  given  in this section support the analysis 
techniques to be used in  later sections. The organization 
given here is  self-contained and,  to this author's knowl- 
edge,  unique.  Similar  mathematical constructions appear 
in control literature, but the material is closest in spirit to 
Hotelling's  work in statistics [4], [5]. 

Let I? R+RnXm be a piecewise continuous map repre- 
sented in matrix  form by F(t) .  One can think of F( t )  as a 
set of m vector  signals  involving n variables, i.e., each 
column  represents a single  vector  signal in R". The 
Gramian2 

w2 L p ( f ) F T ( t ) d t  

is a positive  semidefinite matrix with a set of nonnegative 
real  eigenvalues u: > u: > - > u," > 0 and corresponding 
mutually  orthogonal  unit  eigenvectors u l ,  u,, - , v,,. 

The map F may  be  represented  with v, ,  - - , v, used  as 
orthonormal basis  vectors for R", i.e., 

4 t ) = u , f i T ( t ) + v 2 f 2 T ( t ) + . . .  +u,fT(r) . 

where AT( t )  L uTF(t) for 1 < i < n.  Throughout the paper 
we shall  refer  to the "ith" 

principal component = vifiT(t), 

component  vector = vi, 

component  magnitude = a,, and 

component function vector L A( t ) .  
Proposition 3: The following  relationships hold for 1 < 

A 

A 

A 

( i ,  j )  < n: 

its eigenvector  structure  appears  not to have been fully exploited. 
'The Gramian appears in deterministic  control  literature  [18],  [19],  but 
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from which  the first two properties follow  easily. The third 
is  a  consequence of the fact that 

l,f211F(f)ll$dt=tr( l ? ( t ) F T ( t )  d t ) .  

There is a  nice  visual  image  which can be  useful in 
interpreting this  result.  One can think of Jt:z 11 F(t)ll dt as 
the total energy in the  signal  set  over [ t l ,  t2 ] ,  and the 
component vectors and magnitudes reflect the spatial 
distribution of this  energy.  Specifically,  assuming that 
a,, > 0, the set 

( ~ e l " : ~ ~ / ~ u ~ F ( t ~ ~ ~ ~ d t = l )  (3 )  

is an ellipsoid  with  semi-axes (l/uj)ui, 1 Q i Q n. 

Linear Dependence  and Least Squares Approximations 

It is often important to determine fixed (independent of 
t )  linear  relationships  which  exist among the rows of F ( t )  
over [ t l ,  t 2 ] .  From a  geometric point of  view, this amounts 
to finding the subspace S,' where 

sF: {u: uEim(F(t)), t ~ [ t , ,  t 2 ] } .  

It is clear that SF is spanned by the component vectors 
corresponding to nonzero magnitudes. 

In many  cases  exact linear dependence is not the case 
(SF = Rn) and one looks instead for "approximate"  linear 
relationships  over [ t l ,  t 2 ] .  The following  result  shows that 
the component magnitudes and vectors  reveal  the  possibil- 
ities  with  respect to such approximations. 

Proposition 4: Let k be a  fixed integer, 1 < k Q n. Over 
the class of piecewise continuous FA(t) satisfying 
dim{SFA} =k, the residuals 

J F ~  ~ , f 2 ~ ~ ~ ( t ) - ~ ( t ) ~ ~ ~ ~ t ;  

J S  max / " l l L ) ~ ( ~ ( t ) - - ~ ~ ( t ) ) l l 2 d t  
I lo l l= l  t ,  

are minimized  with 
k 

FA( t )=Fk( t )  2 uj&'(t).  
i= 1 

The error residuals are 
n 

JF= x a;; J S = U ~ + ~ .  
i = k + l  

Proo$ It is  easy to verify that Fk(t) gives the stated 
residuals. For an approximation FA which  minimizes JF or 
JS, it is necessarily true that Jt:2FA(t)E:((t) dt = 0, where 
EA( t )  = F ( t )  - F'(t). Hence, for such an approximation 

W 2 = ~ i f ' F A ( t ) F ~ ( t ) d t + ~ ' 2 E A ( f ) E ~ ( t ) ~ t .  ti 

response m a t r i x  F(t) 

Fig. 4. 

If Jt:2FA(t)&T(t) dt has rank k, it  follows  from perturba- 
tion properties of singular  values that 

n 

2EA(t)E:(t)dt> x U: 
i = k +  1 

Princ@aI  Components of Impulse Response Matrices 

If F ( t )  is  the  impulse  response  matrix of a linear time- 
invariant system, the principal components over [0, T ]  can 
be given sharp systemic interpretations. Consider the sys- 
tem depicted in  Fig. 4 where w ( t ) E  R" and z ( t ) E  R", and 
let G? represent the class of all input functions a(-) which 
are piecewise continuous on [0, TI and satisfy the norm 
bound ( J : I I ~ ( t ) l l ~ d t ) ' / ~  < 1. 

It is  well known (see  [19, p. 75D that the image of the 
convolution map 

( z E R " :   Z = L ' F ( ~ - T ) ~ ( T ) ~ T ,  T ,  a ( - ) € P C " [ O , T ] )  

is precisely the space S F .  The set (contained in SF) 

provides  more detailed structural information than the 
space SF. In the next few paragraphs we shall  show that S 
is  a  region  in Rn whose surface is an ellipsoid  [closely 
related to (3)] defined by the component magnitudes and 
vectors of F ( t )  over [0, TI. 

Let a,, oj,  1 < i Q n be  the component magnitudes and 
vectors of F ( t )  over [0, TI, and let Z, V E  Rnx" be defined 
as follows: 

Z = diag{aI,a2;..,an) A 

v =  (ul  0 2 " '  u,,). A 

The following proposition shows that the set s"= { z :   z =  
V Z p ,  11 p 11 = l }  (an ellipsoid  with  semi-axes qui ,  1 Q i Q n )  
corresponds to the surface of S. 

Proposition 5: The set S can be characterized as follows 

Proo$ For simplicity we shall assume that a, >O. The 
general proof  is  basically the same only  more  tedious. 
First it will be shown that 9 is contained in S.  For every 
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,?Ei there is a vector p, IIp 11 = 1, satisfying 
From the  definition of principal components, 
that 

w2 = I T F ( t ) F T ( t )  dt=  VZ2VT. 
0 

2 = vzp. 
we know 

This means that q A VE-'p satisfies 2= W2q, which im- 
plies (see [19,  p. 76D that  the  input w(t )=FT(T- t )q  
drives z( f ) to 2 at time T. Furthermore, simple  manipula- 
tion gives Jzo(t)oT(t)dt=l which  means that u(.)EQ 
and ZES. 

To complete  the  proof it is sufficient  (because of linear- 
ity) to show that the input o( .) constructed in the previ- 
ous paragraph is the  minimum norm input which  drives 
the system to 2 at time T. Let h(t) be any input which 
drives  the  system to 2 at time T. With A(?)=&(?)-w(t), 
simple manipulation gives  Jor;jT(t)A(t) = 0 and  it follows 
that 

It is  interesting to note that if 2=ujvi, then the mini- 
mum norm input function is 

o(t)=FT(T-t)vioi-1= 

which  is  the ith component function vector,  normalized 
and reflected in  time. 

Computation of Component  Magnitudes and Vectors 

First let us deal  with the special situation where  one  has 
an asymptotically stable model ( A ,  By C )  and wishes  to 
compute the  components of eArB(eAT'CT) over [O,co). In 
this case it is often convenient to use  the fact  that 

w,' A &meA'BBTeAT'dt 

W t  &meATfCTCeA' dt 

are the unique  symmetric  positive  semidefinite  matrices 
which  satisfy 

A we' + w;A== - B B ~  

A'WO' + W,2A = -cTc. 
One can first  solve for w,"(w,") (see [20] for one algo- 
rithm), and then  use a specialized routine for computing 
the  eigenvalues and eigenvectors of a symmetric  matrix. 

For the more  general  case it is necessary to compute 
approximate component  magnitudes and vectors  by sam- 
pling F( t ) .  With  evenly spaced sample  points T ~ ,  r,, - - e , 7N 

(70 A t,, rN = t2),  it follows from rectangular approxima- 
tion that if N is  large, then 

A 

21 

It is not necessary or desirable,  however, to compute such 
an approximation for W 2 .  Imagine  (it  need not be actu- 
ally constructed) a data matrix 

Since W; = DND,', it follows that  the singular  values and 
left  singular  vectors of  DN approximate the  component 
magnitudes and vectors of F( t )  over [t,, t2 ] .  

It is not necessary to store DN  in  memory-this  is 
important because the data matrices may contain many 
column  vectors. Instead, one may preprocess the data by 
recursively (treating as few as one column at a time) 
reducing DN to a unitarily equivalent matrix  (see  [12,  p. 
3831): 

R = DNQ ( Q  unitary-not stored). 

The matrix R E  Rnx" has singular  values and left  singular 
vectors  equal (to machine  precision) to those of DN. The 
algorithm (SVD) developed  by Golub  and Reinsch  [6] 
(working  code  in [7D can be  used to compute the singular 
values and left  singular  vectors of R. 

The main advantage in using SVD,  instead of comput- 
ing  the  eigenvalues and eigenvectors of W;, is in reduced 
resolution  requirements. The "squaring  process"  doubles 
the demand for resolution  in the computations. Specifi- 
cally,  suppose there is  12 bit resolution associated  with  the 
samples 4 7 , ) .  To preserve this same  resolution  with  the 
computed  singular  values, 

a, - 2- *2al Q {computed value of ai} 

Qo, +2-'2a, 

requires at least 12 bit  resolution  using  SVD and  at least 
24 bit  reeolution  using  the squared up version. 

Perturbation  Properties of Component  Magnitudes 
and Vectors 

Suppose F( t)  is perturbed  by AF(t) so that 
F , ( t )  F(t) + AF(t) is piecewise  continuous. As one 
might  expect  from the preceding paragraphs, the perturba- 
tion of component  magnitudes  may be bound in  much  the 
same way as singular  values of a matrix. 

Proposition 6: Let a,, u) be the ith component  magni- 
tudes of F(t), G(t), respectively. Then 

Pro08 From the discussion of the computation of 
components, the perturbed Gramian is 

W 2  - lim (ON +ADN)(DN +ADN)T 

where AD, =((t2 -tl)/N)1'2(AF(Tl) AF(r2).- mAF(7,)). 
Standard perturbation results for singular  values  implies 
that each  singular  value of  DN +AD, is perturbed from 

A -iv+Oo 
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that of DN by no more than Relationships Between (6 G,C) and Components of eA'B, 
e  art^ T 

In the limit the  right-  hand expression  approaches 
11 lz:2AF(r)AFT(t)dt 11 ;I2. 

As is the case  with singular vectors, the perturbation of 
component  vectors requires some explanation. Let uf rep- 
resent the i th  component vector of FA( t )  and  visuahe the 
two ellipsoids E ,  EA, the first with  semi-axes uiui, and the 
perturbed one  with u,%:. If AF(r) has very  small principal 
components, then EA is close to E ;  that is, no point in E is 
perturbed by  more than 1 1  Jz:zAF(t)AFT(t)dt 11 ;I2. If,  how- 
ever, E has two or more  semi-axes of nearly equal lengths 
(circular cross section), then these  axes  may  be  very 
sensitive to small perturbations. The space spanned  by 
them  is not sensitive,  however, and th is  presents no real 
difficulty.  The algorithm SVD gives singular vectors  which 
are orthogonal (to machine precision), even  with repeated 
singular values. 

IV. CONTROLLABILITY AND OBSERVABILITY 
ANALYSIS 

We are now prepared to consider the application of 
principal component analysis to responses of the model 

x( t )  =Ax( t )  + Bu( t )  

with the idea of combining it with the  signal-injection 
view  of minimal realization. The basic idea is  close to one 
advanced  by Friedland [21] and, as mentioned in the 
Introduction, is  very  closely related to the filtering work 
of Mullis and Roberts [17]. 

A central problem to be dealt with  is the fact  that 
internal responses eA'B,  eAr"CT depend on the internal 
coordinate system. This means that unless there is  some 
special  significance attached to the internal coordinate 
system, the existence of "small"  components in eA'B or 
eAr'CT implies nothing about their importance  with re-. 
spect to input-output properties of the model. To over- 
come this problem, we derive a special coordinate system 
where input-output properties are reflected  by internal 
principal components. 

In the development we  shall find it useful to carry along 
the discrete time subordinate obtained by  sampling (and 
holding inputs) every t ,  seconds. 

In analyzing responses of ( A ,  B, C )  over an interval [0, TI, 
it will  be  assumed that N =  T / t ,  is an integer. 

Let Q,(t,), Q,(t ,)  represent the extended controllability 
and observability matrices corresponding to ( F ,  G ,  C ) :  

Q,( t , )  ( G  FG * - *  F N G ) ;  

The matrix Q,(t ,)  is a data matrix which is closely related 
to eA'B, and QZ(t,) is  one  formed  by  sampling CeA' every 
t, seconds over the time interval [0, TI. To aid in the 
discussion, we shall adopt the following notation. 

1) V, = (uclu,,~ * ucn); Z, = diag{u,,; . . , u,,} where 
uti, uci represent the ith component  vector and magnitude 
of eA'B. 

2) V, = ( U ~ , O ~ Z ; ~ ~ - ~  * u,,); Z, = diag{u,,,- . . , uon} where 
uoi, uOi represent the ith component vector and magnitude 
of e A r z ~  '. 

3) T ( r , ) Z : ( t , ) ~ T ( t s )  the singular value  decomposi- 

4) ~ ( t s ) Z ; ( t , ) ~ T ( r s )  the singular value  decomposi- 

Proposition 7: The singular values satisfy 

A A 

A A 

tion of Q,(r,). 

tion of QZ(t,). 

If the diagonal elements of E,, Z, are distinct, then 

lim T ( t , ) = K ;  lim c(t ,)=V,.  
f ,+O I,+O 

Proof: It is easy to see, using rectangular approxima- 
tion of integration, that 

iTeArtCTCeA'dt= t,+O lim (< Q,(t,))'( fi Q,(t , ) )  

and we shall prove that 
T 

iTeA'BBTeA'dt= 

(5)  
These  two relationships imply that the claimed  limiting 
relationships hold. 

Now to see that (5)  holds, note  that 

and 

GGT=r:BBT+-(ABBT+BBqT)+-e-. t: 

Since eA' is  bounded on [0, TI, there exists finite K, S>O 
2 
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such that for t ,  < 6  

IIFi(t:BBT-GGT)FirII  <Kt: 

for all i > 0. Hence, 

lltsFiBBTFiT-  -F'GGTFiTll  <Kt:, 
1 .  
t ,  

and for t ,  < 6, 
N 

11 2 tseAtskBBTeATtsk - - Q c ( t , ) Q ~ ( t s ) ~ ~   < K N t :   = K T t , .  
1 

k=O tS 

Since T, K are fixed constants, the result  follows. E 

Principal  Components of eAtB, e ATfCT 

The component vectors corresponding to the nonzero 
principal components of eAtB span X,, the controllable 
subspace. For simplicity we shall assume that there are no 
components which are identically zero. For this author, 
the mental image  developed in the previous  section  is 
helpful. The ellipsoid  with  semi-axes uclvcl,  
uC2vc2, * - - , ucnvcn is the surface of the region in the state 
space corresponding to points which can be reached from 
the origin  with input vectors  satisfying j:ll w(t)ll dt Q 1. 
In some  respects the ratio y, = uCl /ucn serves as a condi- 
tion number with  respect to pointwise state contr01.~ 

The component vectors corresponding to the nonzero 
principal components of eArfCT span X i .  Again we shall 
rule out the trivial case where there are components which 
are identically  zero. Here one can imagine an ellipsoid in 
R" with  semi-axes  (descending order according to length) 

v o n ~ ' o o n - ~ v o n - l ~ " ' ~ u o l  '01 
- 1  - 1  - I  

which corresponds to the set of all initial conditions which 
satisfy J:IICeAtxg 1 1  2d t=  1 .  The ratio p o  =uol/uon acts in 
some  respects as a condition number with  respect to 
zero-input state observation. 

It may  be tempting to treat very  small components of 
eAtB or eAT" as though they  were  identically zero (i.e., 
approximate X,, X, using least squares). A little reflection 
reveals that this is not generally appropriate. Consider the 
model 

y ( t ) = ( 1 0 6  1 0 - 6 ) (  X I ) .  
x2 

It is easy to see that eAtB,  eATrCT both have one very 
s m d  principal component with yo ~ p ,  M 1 0 ' ~ .  In this case 
the highly distorted ellipsoids  simply  reflect an internal 

3This ratio  depends on the  selected  coordinate  system-a  poor condi- 
tion number  may  simply  reflect a  poor  internal  coordinate  system. 
Discussion of this will appear  later in this section. 

The preceding  example illustrates the fact that eAtB, 
CeAf depend upon the internal coordinate system. A coor- 
dinate transformation x ( t )  = P 2 ( t )  gives the model 

i = h ( t ) + i u ( t )  

y ( t ) = C x ( t )  

where A^=P-'AP,  B^=P-'B, c = C P .  It is important to 
observe that 

eat i=p- leAtB;  eeit =CeAfp. 

In discussing coordinate transformations, the  following 
notation will be adopted: 

For the case  where P = I (original coordinate system), we 
shall  simply  write W,', W,'. 

Coordinate  Invariant  Values-Second-Order  Modes 

Looking again at the example used to illustrate the 
dependence on internal coordinates, one can see that 
small components of eATtCT may be offset  by large com- 
ponents of eAtB. Intuitively, it seems  this problem could 
be alleviated  by transforming to a coordinate system 
where the components of eAtB all  have unit magnitude, 
i.e., select P so that W,'( P ) = I .  Since W,' = V,Z:V,T it is 
clear that this can be achieved by setting P =  KZ,. A little 
algebra gives W,'( P )  = HTH where 

H A  ZoVTV,Z,. 

Note that the singular  values of H are the component 
magnitudes of eiTtcT. Although the matrix H depends on 
the initial coordinate system, one can easily  verify that its 
singular  values do not. These  values,  which will be shown 
to reflect input-output properties of the  system,  play  a 
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central role  in the remainder of this paper. For this reason 
we shall attach special termin~logy.~ 

Definition: The singular values of H will be represented 
by ut > u: > - - - >u,' > O  and will  be referred to as 
second-order modes of the system. 

There is an interesting connection  between the second- 
order modes and discrete-time Hankel matrices corre- 
sponding to ( F ,  G ,  C). Recall that for a given interval 
[0, TI and sampling  time t , ,  we  have the extended control- 
lability and observability matrices Q,(t,), Q,( t , )  defined 
by (4). With T fixed, the corresponding Hankel matrix 
M,(t,) = Q,(t,)Q,(  t,) grows in size (number of rows and 
columns)  without  bound as ts+O, but MH has at most n 
nonzero singular values. 

Proposition 8: Let u;(t,), 1 Q i < n be  the ordered singu- 
lar values of MH(tr) .  Then for 1 Q i < n, 

lim a,*( t , )  = Ui' 
1, -0 

where u; is the i th second-order mode. 
Pro08 Proposition 7 implies that 

1 
-Qc(t , )=(Kzc  +Rl( t , ) )U:'( ts)  
fi 
fi Q , < t , ) =   K + ( t , ) ( z , V ~ + R z ( t , > )  

where R,( t , ) ,   R2( t s )  are n ~ n  matrices satisfying 

lim II R1(ts)ll= lim II R2(ts)ll =o. 
1, -0 t,+o 

It follows, therefore, that 

~ ~ ( t , ) = Q ~ < t ~ ) Q ~ ( t , )  

= v*(t,)(zov~v,z,)utcr(t,) 
+ u,'( t ,>E(t , )~:T(t ,> 

where E(t , )  is n X n and satisfies l i m t s 4  11 E( t,)ll= 0. Since 
U,*( t,), q( t , )  each has orthonormal  column vectors, and 
the second-order modes are the singular values of 
H Z,VTV,Z,, the result  follows. w 

Models with Normalized and Balanced Internal Dynamics 

It is  evident that the condition W:(P)=I does not 
define a unique coordinate system.  We shall now define 
and discuss three closely related, essentially  unique coor- 
dinate systems' in which the structure associated with the 
second-order  modes  is displayed clearly. Let Z2 = 
diag{u:, u:; . , u,'}. 

Definitions: The  model (a,& e) is input-normal on 
[O, TI if w,'( P )  = I ;  w,'( P ) =  E4; oulput-nomi on [o, TI 
if W,'( P )  = E4; W,'( P )  =I; and internal& balanced on 
[0, TI if w,'( P )  = w,'( P )  = z2. 

4 T h i s  terminology is borrowed from Mullis and Roberts [ 171. 
5 T h e s e  correspond to "principal axis realizations'' introduced by Mul- 

lis and Roberts [ 171. 

Let &, represent a transformation which  gives an inter- 
nally balanced model. It is  easy to verify that 
Po, = &x-' ,  pi, = Cb2  give,  respectively, output- 
normal and input-normal models. The three coordinate 
systems are, therefore, related by simple scale factors. The 
internally balanced  model will receive the most attention 
in Iater sections,  largely  because of the property given in 
the next paragraph. 

Let p:( P) ,  p t (  P )  represent the condition numbers (with 
respect to inversion) of w,'( P ) ,  w , ~ ( P ) .  Then, as dis- 
cussed in previous paragraphs, p c ( P ) ,  p , ( P )  act as condi- 
tion numbers of the model (2, i, e) with  respect to 
pointwise state control and zero input state observation, 
respectively.  The  following result shows that, in one sense, 
the internally balanced  model gives the best compromise 
between the two condition numbers. 

Proposition 9: The quantity m a (  pc(  P ) ,  p,(  P ) )  achieves 
its minimum with P =  <b.  

Proof: Let p ( M )  represent the condition number of 
the matrix M with  respect to inversion. It is easy to show 
that 

A A 

Furthermore, it is a simple matter6  to show that 

for square nonsingular matrices MI, M2. It follows that 

and that 

Since pc(  eb)=pL,( Pib) = ( u1 /u,), this completes the proof. 
w 

The  following result shows that if the second-order 
modes are distinct, then the internally balanced  model is 
essentially  unique. 

Proposition 10: If the second-order modes are distinct, 
then the basis  vectors defining the internally balanced 
model are unique  within a change of sign. 

Proof: Suppose A ,  B,  C is internally balanced so that 
W,' = W,' = 2' and assume that P satisfies W,'( P ) =  
w,'( P )  = 2'. This implies that 

p - I z 2 p - l T = p T ~ 2 p = ~ 2  

which further implies that P -'Z4P = Z4. These equations 
constrain P to be a diagonal matrix with 2 1 in each 
diagonal entry. 

result  holds in general for nonsquare  matrices,  but  the  general  result is 
61t is not a simple  matter, as one reviewer  observed, to show that this 

not needed here. 
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The transformation P;.6 can be executed  with the follow- 
ing algorithm. 

Step I )  Compute V,, Z, and apply the transformation 
P ,  = V,Z, to give w:(P,> = I. Let 2 P; 'AP, ;  

B" P r ' B ;  t? CP,.  
Step 2) Compute F,, Zo corresponding to the compo- 

nent vectors and magnitudes of eiTrET. Apply to ( A ,  By C )  
the transformation P2 = f,z;1/2 to give the internally 
balanced model 

- _ -  

a=P,-'P,'AP,P,; 

e= CP, P,. 

j = p - 1  -1B. 
2 P1 9 

Properties of AJymptotically Stable, Internal&  Balanced 
Models 

Let us now limit the discussion to asymptotically stable 
systems and assume that ( A ,  By C )  is internally balanced 
over [0, ao), i.e., 

eArBBTeATI dt= L" eATI C T CeAtdt=Z2 

or, equivalently, 

AX2 + Z2AT = - BBT (6)  

ATE2 +Z2A=-CTC.  (7) 

Under these conditions the model ( A ,  By C )  has a rather 
extraordinary property involving the stability of subsys- 
tems.  Consider arbitrary reorganization of the internally 
balance2 system into two interconnected subsystems, i.e., 
let (8, B, C )  be obtained by reordering the state variables 
and partition (a, i?, e) as follows: 

U 

Lemma The matrices ill, satisfy limt+me'llt 
= K ,  , lim,+meAUf = K ,  where  generically K ,  = 0, K2 ~ 0 .  

Proof: It is  a  s@ple matter to show that AX2 + 
e2A7= - l?iT where Z is  a nonsingular diagonal matrix 
(reordered version of X). This implies that 

al,e: +e;AF, = -z,i?T, 
and it  follows (integration by parts, or see [22, p. 2991) 
that for t > 0 

proved a stronger stability result [U]. 
'During the  process of revising this paper, Parnebo and Silverman 

The symmetric,  positive semidefinite matrix Jie211rl?,l?r 
e'T1'd.r is, therefore, norm bounded and it follows that 

limt,,eaI1'.kl = O  and that lim,,,eAII'Z, exists. Since 2, 
is  nonsingular, limt,meA1lt must exist.  A straightforward 
argument (omitted)  shows that controllability of a,,, 2, is 
a  generic property, and this implies further that asymp- 
totic stability of a,, is a  generic property. Similar  argu- 
ments apply for a,. 

The previous  stability result is really more general than 
we need  here.  Consider the case where the state variables 
of the internally balanced model ( A ,  B , C )  are simply 
partitioned and not reordered. Specifically, suppose the 
matrix 2' of second-order modes  is partitioned where 
Z1=diag{u,,---,uk},  Z2=diag{uk+l,~-~,un}. This i m p  
ses  a corresponding partition of the state variables of the 
internally balanced model 

- A  

where  we  have again inserted the test injection input d ( t ) .  
We  may  view this as two interconnected subsystems: 
( A , , ,  B , , C , )  and (A,, ,  B,, C2). Using  Lemma 7, it is not 
difficult to prove the following. 

Proposition 11: The two subsystems ( A , , ,  B , ,   C , ) ,  
(A,,, B,, q) are generically asymptotically stable and in- 
ternally balanced with 

00 
dt= 1 eArt I I  C T C , eA11tdt=Z2 1 

Prooj Stability  was proved in  Lemma 7; the second 
part follows  from  simple inspection of (6) and (7) in 
partitioned form. 

Prelude to Model  Reduction 

The basic  model reduction idea to be pursued in the 
next  section  follows  intuitively  from  Proposition 11. Con- 
sider the case  where u ~ > > u ~ + , .  Then the subspace 

X ,  im( :) 
(where Ik is the k x  k identity matrix) in  some  sense  "acts 
like" both X, and X$. If the mechanics of Kalman's 
minimal  realization  theory are applied to the internally 
balanced model  with X, used as a  working approximation 
of X,,, the  resulting  lower order model  is ( A , , ,  B , ,C , ) .  
This model is generically asymptotically stable and intern- 
ally balanced. 

This idea is  given strength by Proposition 10  which 
shows that the second-order modes are the singular values 
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of the (infinite) Hankel matrix of the discrete-time sub- 
ordinate with t,+O. It is  well known that the number of 
nonzero  singular  values of this matrix determines the 
order of the model.  Hence, if u i  then the Hankel 
matrix is nearly  singular. In some  model reduction work 
[24]-[27], model reduction is based on near singularity of 
the Hankel matrix. 

V. TOOLS FOR MODEL REDUCTION 

Model reduction involves  a  tradeoff  between  model 
order and the degree to which  the characteristics of the 
plant are reflected  by the model.  Because the relative 
importance of various plant characteristics is  highly  de- 
pendent upon the application, there can be no universal 
model reduction algorithm. The best one can hope for is  a 
good set of tools and some reliable guidelines for using 
them. 

In this  section we shall illustrate one way that principal 
component analysis can be applied to the model reduction 
problem  for the case  where the full  model  is asymptoti- 
cally stable. The intention is to convey  a  way of thinking 
about model reduction which lends itself  well to the signal 
injection view  of minimal realization theory. The results 
are promising but incomplete; future research will hope- 
fully  refine the viewpoint and sharpen the  tools. 

In this section  a reduced-order model (A, ,  B,, C,) will 
be judged by its impulse  response  matrix. The error im- 
pulse  response matrix 

He( t )  A CeArB - CReAR‘BR 

characterizes  the error. We shall say that a reduced order 
model  is  “good” if the largest principal component of 
H e ( t )  over [O ,co)  is  “small” compared to the smallest 
principal component of CeArB, i.e., if 

1/2 

<< IIL.ll= min 1 { v T ( ~ r n C e A r B B T e A ~ r C ~ d r ) v }  . (8) 

This viewpoint  forces an assumption: the map CeA‘B 
may  have  pathologically  small or zero components (e.g., 
two rows of C are identical), and we must  assume that this 
situation has been corrected by  a  projection onto an 
output space of appropriate dimension. To make  the 
condition (8) simpler,  it will be further assumed that  an 
output coordinate transformation has been applied so that 

imCeArBBTeA“CT = I 

in which  case (8) may  be  replaced  by 

l/i 
(subsystem which  contributes  nothing 

to impulse  response  matrix 

Fig. 5. 

dominqt subsystem 

1 
n 

1 f 

. , 
/ 

reduced  model  obtained 
by severing  these . . . connections . 

v weak  subsystem 

Fig. 6. 

Reduction by Subsystem Elimination 

Minimal  realization  theory says that there is an exact 
lower order model if and only if in some coordinate 
system the full model can be organized  as  follows. 

where  the  subsystem (A, ,  BR, C,) has the same impulse 
response matrix as the full model. This is illustrated by 
Fig. 5. 

The main  idea  underlying the model reduction work 
here is to eliminate any weak subsystem  which contributes 
little to the impulse  response matrix. In other words, we 
shall  try to reorganize the full model  with an internal 
coordinate transformation as illustrated by  Fig. 6. This 
implicitly  defines the meaning of a “dominant” subsys- 
tem: it is one  whose  impulse response matrix is close (in 
the  sense  discussed  in  the beginning of this paragraph) to 
that of the full  model. 
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It is here that we must face up to a theoretical gap in 
the paper. We are not able to use this definition of y ( t )  = (CJ1 C,T,) (10) 
dominance directly, and we introduce instead the concept 
of internal  dominance which is natural within the frame- 
work  developed in Sections II-IV. Toward the end of this where I ~ ,  represent k x k and ( n  - k )  x ( n  - k )  iden- 
section, a conjecture will be advanced concerning the t iv  matrices,  respectively. With 
relationship between this concept and actual dominance. 

Internai Dominance '- 1n-k  
VI=(;); v-( O ) 

Consider  now the organization of ( A ,   B ,  C )  shown in 
Fig. 7. Loosely speaking, internal  dominance of 
(A , ,  B,, C,) means that signal  injection  tests  involving 
d l ,  x1 give  much stronger signal components than corre- 
sponding tests at the second set of terminals d,, x 2 .  

Care must be taken here for the same reasons which 
called for balancing in  Section IV. Clearly, if internal 
dominance is to relate to  actual dominance, it should be 
invariant under coordinate transformations of the type 
xl ( t )=Tl2 . , ( t ) ,  x2( t )=T22, ( t ) ,  but the responses to tests 
are not invariant under such transformations. Again the 
idea of balancing may be used to resolve  this  problem. 

In matrix form, we may  express  the  model  in  Fig. 1 
with arbitrary transformation x l ( t )  = TI2, ( t ) ,  x 2 ( t )  = 
&z2(t) as follows. 

injection of impulses at w ( t ) ,  dl( t ) ,  respectively,  gives 

and it  follows that 

imZl(t)glr(l) dt= Tl-'(V~W,2Vl)Tl-1T 

im?:(t)?(t)dt= T ; ( V ; K ~ V J T ~ .  

Similar  expressions hold for 2,( t ) ,  f2(t). (5, T2 replace 

These  expressions indicate tbat weAmay  select Tl so that 
the principal components of XI( t ) ,  Y'(t) are aligned with 
equal magnitudes,  i.e., 

VI, TlJ 
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Definition: The model  (10) is said to be “balanced  with 
respect to X,” iff (1 1) holds and “balanced  with  respect to 
X,” i f f  (12) holds. 

If the model ( A ,  B, C) in Fig. 1 is transformed to (lo), 
which  is  balanced’  with respect to  both X,, X2, then we 
shall  say that ( A ,  By C) in Fig. 1 “has been  balanced  with 
respect to X ,, X2.” We are now  prepared to give a defini- 
tion of internal dominance. 

Definition: The  system ( A R ,  BR,CR) is an internal& 
dominant subsystem iff in some coordinate system the full 
model ( A ,  B, C) can be organized as in Fig. 1 such  that, 
when  balanced  with  respect to X,, X,, 

l l ~ ~ l l F ~ l l ~ ; l l F -  

Internal Dominance and Second-Order Modes 

The following result shows that  the second-order modes 
reflect the existence of internallv dominant  subsystems. 

Proposition 12: There  exists an internally 
subsystem of order k if and only if 

i= 1 i = k + l  

dominant 

(13) 

where u:, 1 Q i < n are the second-order modes. 
Pro08 First sufficiency.  Suppose ( A ,  B ,  C) is intern- 

ally balanced  and let Z ,  = diag{a,, u2, - . . , u k } ,  
Z2 2 diag{uk+,;.. , on} .  It can  be  easily  verified that 
( A ,  B,  C) is balanced  with  respect to X,. X 2  with 2, =E,, 
2, = E,. Hence, if (1  1) holds, then 

A 

To establish  necessity,  assume that (4, B”, e) is bal- 
anced  with  respect to X,, X 2  and satisfies ( 1  Z: ( 1  .>> ( 1  e: ( 1  F .  

This model is related to the internally balanced  model 
( A ,  B, C )  by a coordinate transformation 

and since PQT = I, we may write 

X 2 = Z C P Q T Z = Z P , Q r Z + Z P 2 Q r X .  

Since EPIQrZ has rank k ,  it follows  from perturbation 
properties of singular values that 

1 / 2  

IlzP2QTZII .( 0;) . 
i = k +  1 

‘Note that this does n p  imply  that  the  model (8) is internally balanced 
or that the  elements of X:, X: are  second-order  modes. 

Hence, we  need only show that internal dominance im- 
plies that 

I I ~ P ~ Q T ~ I I F ~ I I ~ ~ ~ Q , ‘ ~ ~ ~ ~ ~  
To verify this relationship, observe that 

and since (a, 2, e) is balanced  with  respect to X X2, 

2: = P T Z ~ P ,  = Q T X ~ Q ,  

2; = p,Tx2p2 = Q;X~Q,. 

m s  means that Z P ,  = u12,, QTZ =elw,, ZP, = u22,, 
Q:Z=e2W2 for some orthogonal matrices U,, W,, U2, 
W,. It follows, therefore, that 

XP,QTX= U , ~ : W , ;  ZP,Q,’X=U2e;W2. 

n u s  I I ~ P ~ Q ~ ~ I I ~ = I I ~ ~ I ~ ~ ~ ~ ~ ~ ~ I I ~ = I I ~ ~ ~ Q T ~ ~ ~ F  and 
the proof is complete. 

This result, Proposition 12,  suggests a natural first step 
in model reduction: compute the internally balanced 
model and inspect the second-order modes. If condition 
(11)  is not satisfied, there is no internally dominant sub- 
system. If  (1  1)  is satisfied, then the subsystem correspond- 
ing to the first k state variables of the model  is internally 
dominant and, generically, internally balanced  and 
asymptotically stable. This subsystem is precisely that 
obtained by applying the mechanics of minimal  realiza- 

tion (Section 11) using ( t)  as a working  basis for Xco. 
\ “ I  

Now let us return to the issue of dominance  versus 
internal dominance. An internally dominant  subsystem 
may  be tested for dominance by applying principal com- 
ponent  analysis  to the impulse response error matrix H,(t) .  
The interesting question is  whether  it is possible for a 
dominant  subsystem of order k to exist  with no corre- 
sponding internally dominant  subsystem of order k. 

Conjecture: Every  dominant  subsystem  is internally 
dominant. 

On  the  Question of Opiimaiity 

Wilson [28], [29] and Applevich [30] have  given  neces- 
sary conditions for optimality of the reduced order model, 
i.e.,  necessary conditions for JFII He(t)ll i d t  to be a 
minimum. It is natural  to question the relationshp be- 
tween their work and the model reduction results given 
here. 

The  first point to be made  is that Wilson and Applevich 
consider the entire class of k th-order r-output, m-input 
linear systems as possible reduced-order models of order 
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k. This is a largerg class than that considered here: those 
which can be obtained by subsystem  elimination. It is not 
surprising, then, that the reduced model of order k  defined 
by the internally balanced model is  not optimal. Computa- 
tional experience of this author suggests,  however, that if 
it corresponds to an internally dominant subsystem, it is 
near optimal.” 

In the situation where one is  trying to find an optimal 
kth-order model (from the large class)  where there is no 
internally dominant subsystem of order k, it seems rea- 
sonable to use the kth-order subsystem defined by the 
internally balanced model as a startingpoint in the model 
reduction computations. 

VI. ILLUSTRATIVE EXAMPLES 

To illustrate internal balancing and the proposed model 
reduction framework, we shall  consider two single  input, 
single output examples. The examples are not particularly 
important other than for the purpose of illustration. 

As stated in  Section V, we shall judge potential reduced 
models on the  basis of the relative error in the impulse 
response 

( /owHe(t)’  dt)’/* 

( i m H ( t ) ’  dt)”’ 

Example I :  The first  example illustrates that phase 
canonical models, often chosen  for  convenience,  may be 
extremely  poorly balanced. 

0 0 1 0  
0 0 0 

C=(50 15 1 0) 

C(sI -A) - ’B=  
(s+ 10)(s+5) 

(s+ 1 +j4.9)(s+ 1 -j4.9)(s+ l)(s+2) 

The principal component vectors and magnitudes of eA*B 
are given  by 

v, = 

0 - 0.0643 0 0.998 

- 0.0335 0 0.999 0 

0 0.998 0 0.0643 

0.999 0 0.0335 0 

achieved  by  subsystem  elimination does not contain all models  of  order 
91t is intuitively  clear  that  the  class of models of order k which can be 

k. This fact  is shown by  example  in [31]. 
‘Ohdeed, Example 2 was  considered  by Wilson who  reported  a larger 

residual. This undoubtedly arises from  the  nature of his search algo- 
rithm. 

0.461 

x,= [ 0.04183 
0.01456 

0.0112 

and those of eATzCT are 

0.899 - 0.426  0.0991  0.0225 

0.43  1  0.824  -0.361  -0.0738 

0.0721  0.368  0.927  -0.00891 

0.0122  0.0738  -0.0206  0.997 

47.95 

v, = 

2.96 
0.667 

0.244, 

The underlined entries in V, show that it is  essentially 
antidiagonal (the higher  derivatives of the output are most 
excited  by an impulse). For V, it is  the opposite; V, is 
essentially diagonal (initial conditions involving  lower de- 
rivatives cause the greatest output response). The second- 
order modes are 

{a~,u~,u~,u~}={0.576,0.147,0.0904,0.0192}. 

The internally balanced model” for this system  is  given 
bY 

-0.5183  1.45  -0.3911  0.3501 
i=[ -1.45  -2.195  4.753  -1.218 

j =  iO*_l 
-0.3911 -4.753 -0.6297 1.196 
-0.3501 -1.218 -1.196 -1.657 

0.7729 

0.3373 
0.2523 

?=(0.7729 -0.8047  0.3373  -0.2523). 

Table I summarizes the respective reduced models found 
by subsystem elimination. 

Example 2: The following  example  was considered by 
Wilson [28]. 

( 0  0 0 -150) 

C=(O 0 0 1) 

c ( s I - A ) - ’ B =  
s + 4  

(s+ l)(s+3)(s+5)(s+ 10) * 

For this system the component vectors and magnitudes of 
eAzB are 

model. This property  has  appeared in every  single  input,  single  output 
”It is interesting to observe  the  “absolute  value”  symmetry  of  the 

example  tested  by this author. 
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TABU I 
REDUCED ORDER MODEL pRo~rnm--ExAMpLE 1 

-3 I .03193 

1553 .3332 (s+1.357+j1.183)(~+1.357-jl.l83) 
- . 0 5 0 1 4 ( s - 5 4 . 4 )  

. 5974  
s+.5183 
- 

- 0.8897 - 0.4495  0.0769 0.002 

%=[ 0.45  0.0706  10  0.3073  0.8981  0.3065 ’ 0.8385  -0.2951 -0.008 . 

0.359X  0.01903  0.3169  0.9483, 

14.13 
0.367 

2.35 x 10 - 3  

I 

2.5 x 10 
0 - 0.0809 0 

0 0.9967 0 
+0.9999 0 0.987X 

v, = -0.987x 0 0.999 

0.174 
0.0173 x, = 

4.48 X 10 - 3  

3.68 X 10 - 3  

The second-order modes are 

= {0.0159,0.272~  10-2,0.127x  10-’,0.8x 

and the internally balanced  model is 

-0.4378 - 1.168  -0.4143  0.05098’ 
2=[ 1.168  -3.135  -2.835  0.3288 - 0.4143 2.835 - 12.48 3.249 

-0.05098 0.3288 -3.249 -2.952 , 

f-0.1181 1 

I - 0.006875 J 
e=(-0.1181 -0.1307  -0.05634  0.006875). 

Table I1  summarizes properties of  lower order models. 
It is interesting to note that  the relative error of Wilson’s 
second-order model  is  0.04097. The fact that his “optimal” 
model  gives  higher  relative error  than the one  obtained 
here must  be  due to the details of his search algorithm. 

+ 0.9967 

+ 0.0809 
0 

- 
VII. CONCLUDING REMARKS 

There are several points in this paper  which, in this 
author’s opinion, are  natural points of departure for fur- 
ther study. With  respect to model reduction, the signal 
injection results  given in Section I1  provide one such 
point. The  results in Sections IV and V were  developed 
for impulse injection, but this may not be appropriate if, 
say, one is modeling in an environment  where  computer 
control is to  be  used to implement  low gain feedback for 
disturbance rejection. Preliminary results  show that one 
can “tune” the model reduction tools to certain classes of 
inputs. 

Another point of departure that is probably  more im- 
portant  than the one discussed in the preceding  paragraph 
is Section 111, which describes very  general  tools for 
detecting near linear dependence. The focus of this paper, 
model reduction as it relates to minimal realization the- 
ory, is t’ery narrow compared to the domain  where the 
tools are applicable. 

One point in this  paper  might better be described as a 
“loose  end” than a “point of departure.” The relationshp 
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REDUCED ORDER MODEL F’ROPERTIES--EXAMPLE 2 
TABLE I1 

order  (k) relative [ o : v [  of]‘ 

actual 

i=k+l i=l error 
transfer  function 

3 l  
007882 1 .03938 1 

1 I .1711 I .4321 I s+ .4378 
.01395 

between  subsystem dominance and  internal dominance is 
not clear; the latter concept was clearly created for 
pragmatic reasons. The relationship between  general 
model reduction and reduction by subsystem elimination 
is not well understood, either. (A discussion of this is 
given in [31].) 
As a final comment,  this  work  has  left  the author with a 

strong bias  toward operating directly on signah whenever 
possible. This means, of course, a bias  against  working 
with secondary  objects  such as model  parameters. There 
are  at least  two  reasons  which support this bias. First, 
limitations of physical hardware (measurement  accuracies, 
regions of linearity,  etc.) can usually be stated directly in 
terms of signals. Second, tools  for  coping  with  multiple 
signals  (principal  component  analysis +singular value  de- 
composition) are available. 
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Principal  Gains and Principal Phases in the 
Analysis of Linear Multivariable 

Feedback Systems 

Abshcrct-ne concepts  of principal gain and prineipalphase are intro- 
dnd for linear multivariable systems, and their use in the analysis of 
feedback behavior is demonstrated. A sufficient Nyquist-type stability 
criterion is presented in terms of these  quantities and is used to char- 
acterize the r0bwhw-s of  the  closed-loop W i  property when the 
system madel is subjected to a linear perturbation  (either  multiplicative  or 
additive) at any point in the  feedback  configuration.  The results preseoted 
are less conservative than tbose obtained  via  the small gain theorem. 

I. INTRODUCTION 

N recent  years there has been a revival of interest in the I development and application of frequency-response 
techniques to the  design and analysis of linear multivaria- 
ble  feedback control systems  (see, for example,  [1]-[3]). 
One of the major reasons for this has been the availability 
of increasingly  inexpensive  computers  and the consequent 
increase in  all  branches of engineering of interactive com- 
puting facilities to assist in design and analysis. The 
frequency-response approach is particularly attractive in 
this context since,  having a strong complex-variable con- 
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tent, it lends  itself  well to graphical representations which 
are a way of presenting results that engineers  have  found 
helpful in the pasf,  as shown  by the success of the classic 
Nyquist and Bode  plots. Technically, frequency-response 
methods  have  the  advantage of being largely  insensitive to 
small errors in a system  model.  Should the actual system 
suffer  from  large  parameter variations, however, or should 
the model  be  very inaccurate because of various ap- 
proximations and uncertainties, then the control system 
should naturally be  designed to have a large degree of 
stability. The  mere  presence of feedback is not sufficient 
to gtiarantee the robustness of the stability property, and 
so techniques for assessing the relative stability of a multi- 
variable design are required. This problem has been 
studied by  Doyle [4] who characterizes the robustness of 
the closed-loop stability property in terms of the spectral 
norm of an appropriate frequency-response matrix. In this 
paper we gve a less conservative characterization of the 
robustness of the closed-loop stability property in terms of 
a Nyquist-type plot  by introducing phase information. 

The  phase information used  terms from the polar de- 
composition of a complex matrix [5]  which  is defined as 
follows.  Analogous  to the polar form of a complex  num- 
ber, a complex matrix T can  be represented in the forms 

T =  UHR (1.1) 

T= HLU (1 -2) 
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