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Abstract 
Krylov-subspace based methods for generating low-order models of 
complicated interconnect are extremely effective, but there is no opti- 
mality theory for the resulting models. Alternatively, methods based 
on truncating a balanced realization (TBR), in which the observability 
and controllability gramians have been diagonalized, do have an opti- 
mality property but are too computationally expensive to use on com- 
plicated problems. In this paper we present a r, sthod for computing 
reduced-order models of interconnect by projection via the orthogonal- 
ized union of the approximate dominant eigenspaces of the system's 
controllability and observability gramians. The approximate domi- 
nant eigenspaces are obtained efficiently using an iterative Lyapunov 
equation solver, Vector ADI, which requires only linear matrix-vector 
solves. A spiral inductor and a transmission line example are used 
to demonstrate that the new method accurately approximates the TBR 
results and gives much more accurate wideband models than Krylov 
subspace-based moment matching methods. 
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1 Introduction 
The need to accurately model interconnect and packaging in 
circuit-level simulators has led to the development of a va- 
riety of robust approaches for generating low-order models 
of interconnect. The most popular approach for computing 
these low-order models, either directly from 3-D simulation 
or from extracted RLC circuits, is based on moment-matching 
via numerically robust orthogonalized Krylov subspace meth- 
ods [ l ,  12,3, 10,9]. An alternative, the Truncated Balanced Re- 
alization methods (TBR) [4, 111, have never been given serious 
consideration even though they generate near-optimal reduced 
order models with a known L"-transfer function error bound. 
The difficulty with TBR methods is that they require the solu- 
tion of two Lyapunov equations and then a full singular value 
decomposition, and are too computationally expensive to use on 
complicated interconnect problems. 

In this paper we describe an approach to model reduction 
which attempts to approximate Truncated Balanced Realiza- 
tion cheaply. The technique presented uses the recently de- 
veloped Vector AD1 [7] algorithm for computing approxima- 
tions to the dominant eigenspace of matrices that satisfy the 
Lyapunov equation. Then, the reduced order model is con- 
structed by forming the orthogonalized union of the two domi- 
nant eigenspaces derived from solving the Lyapunov equations 
for the controllability and observability gramians. This is differ- 
ent from [7], in which only the dominant controllable subspace 
is used. In addition, we use Vector AD1 to obtain an approxima- 
tion of a higher rank than the desired reduction order, and then 
use a subspace in the projection. This results in a more accurate 
reduced model than in [7]. 

Section 2 gives brief background on model reduction. Sec- 
tion 3 describes using Vector AD1 to obtain an approximate 
dominant gramian eigenspace. In section 4 we describe the new 

model reduction algorithm. We prove iin section 5 the equiv- 
alence to TBR in a special case. In section 6 two numerical 
examples are used to compare the new approach with TBR and 
moment matching via Lanczos. Section 7 contains concluding 
remarks and acknowledgements. 

2 Model Reduction 
A linear time-invariant system with realixation (A, B, C) is char- 
acterized by the equations: 

R = h + B u  (1) 
y = cx (2) 

where x E Rnxl,  U E RPxl, and y E B:qxl are the vector of 
state variables, inputs, and outputs, respectively. A E Rnxn, 
B E RnxP, C E W x n ,  are the system matrix, the input coeffi- 
cient matrix, and the output coefficient matrix, respectively. It 
is assumed that p and q are both very small compared to the 
number of state variables n. 

The system has controllability gramian P and observability 
gramian Q, which are symmetric, positive definite, and satisfy 
the following Lyapunov equations 

A P +  PA= + B B ~  = o (3) 
A~Q+QA+C'C=O (4) 

The gramians are needed in optimal Hanlkel-norm or Truncated 
Balanced Realization-type model reductions[4, 111. 

The system described by equations (1-2) is characterized by 
its transfer function G(s), 

G(s) = C(sZ -A) - 'B ,  Y ( s )  == G(s)U(s) .  (5) 

Model order reduction seeks to obtain a. smaller system such 
that the number of state variables of this new systems is much 
smaller than n, and the transfer function of the new system is 
close to the original. 

2.1 Moment Matching Methods 
Krylov subspace-based moment matching methods [5, 61 usu- 
ally utilize the Amoldi or Lanczos method to find an orthonor- 
mal basis for some combination of Krylov subspaces, a ( A , B ) ,  
!7(,(AT,CT), %((A -pZ)-I ,B) ,  or -pZ)- ' ,CT),  where 

G ( A , B )  = ~ ~ U ~ { B , A B , A * B , - -  ,A(J- ' )B} .  (6) 

Projection of A onto an union of these Krylov subspaces results 
in a reduced system whose transfer function moments match 
those of the original system up to a certain order [5]. 
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Moment-matching methods require only matrix-vector 
products or solves, and hence are very efficient. However, there 
is no theoretical error bound for the reduced system's transfer 
function. The error will be small at points where moments were 
matched, but there is no guarantee that the error will also be 
small elsewhere. 

2.2 Truncated Balanced Realization 
Truncated Balanced Realization produces a guaranteed stable 
reduced system and has a theoretical transfer function error 
bound. The following summarizes the development in [4]. 

Given a stable system described by equations (1-2), with 
controllability and observability gramians, P and Q, respec- 
tively. Let Q have a factorization Q = RTR, then RPRT will 
be positive-definite and can be diagonalized as 

R P R ~  = U Z ~ U ~ ,  (7) 

with UTU = I and C = diag(o1 ,02 , . . .  ,on),  where 01 2 
0 2 . .  . 2 On > 0 are the singular values of RPRT. A balancing 
transformation is given by T = Z-'I2UTR. 

In the transformed state space coordinates, with realization 

and observability gramians are diagonal and equal, Pb = Qb = 

If ok > ( T k + l ,  then the kth order truncated balanced realiza- 
tion is given by 

(Ab = TAT-',Bb = TB,Cb = CT-') ,  the new controllability 

Z = d i a g { o l , o 2 , . . .  ,Ok,Ok+i , -* '  ,On} .  

3 Vector AD1 
Vector AD1 was developed in [7] to provide a low-rank approxi- 
mation to the solution of the Lyapunov equation with a low rank 
right hand side, and is derived from the full Alternate Direction 
Implicit method [2,8]. Dominant eigenspace information tends 
to emerge quickly in Vector ADI, even if the full solution error 
is not yet small. The following summarizes the development in 
173. 

VADI iterates on the matrix square root VJ of the approx- 
imate solution x, (x = VJV,'). to AX + XAT + BBT = 0. The 
number of iterations needed to achieve a required error toler- 
ance is determined a priori [8]. Then the AD1 parameters { p i }  
are calculated as a function of the required number of iterations 
and A's spectral bounds. 

If the number of iterations to be performed is J ,  then VJ = 
vadi(A, B,  J )  is: 

VJ = [ W J ,  PJ- 1 W J  , * * * , PIP2 ' * PJ- 1 W J ]  (10) 

WJ = &(A-pjI ) - 'B ( 1  1) 

The starting vector WJ is obtained from a linear matrix-vector 
solve, and each succeeding p-vector of VJ is obtained from the 
previous one at the cost of a linear matrix-vector solve. The 
columns of VJ span a rational Krylov subspace, K( WJ , P ( A ) ,  J ) .  

The Vector AD1 approximation is then XJ = VJV,', which 
has rank J p  and error bounded by 

IIXJ - X I I F  5 I I T I I $ I I T - '  Ilik(P)211XIIFi 

where T is a matrix of eigenvectors of A ,  and p = 
{ p i ,  p2,  . . . , p j }  are the AD1 parameters. 

If the Lyapunov solution X has the singular value decom- 
position X = U Z U T ,  U = [Uk,Un-k) ,  with diagonal of C = 
diag(o1 ,.. . , o,,), in decreasing order, then uk is the k-dim dom- 
inant eigenspace of X with associated eigenvalues (also singular 
values) 0 1 , .  . . , ok. If r7 is close to the exact solution X ,  a good 
approximation to uk is given by the k-dim dominant eigenspace 
4 of 2.  In practice, obtained by Vector AD1 tends to line 

The singular value decomposition of VJ = vadi(A,B,J)  = 
UJAJW,' can be obtained cheaply because VJ contains only J p  

inant eigenspace of R = VJV,', with associated eigenvalues 
diag(AJ(1 : k ,1  :k))=h: , . - . ,h i .  

up quickly with uk. 

Vectors. If k 5 J and UJ = [Uk,UJ-k], then uk iS the dom- 

4 Reduction via Union of Dominant 
Gramian Eigenspaces 

Because balancing the gramians require complete knowledge of 
the entire eigenspace of both gramians, it is not in general pos- 
sible to approximate TBR without good approximation to the 
full eigenspaces of both gramians. 

Since only the dominant eigenspaces of the controllability 
and observability gramians are obtainable cheaply through Vec- 
tor ADI, we propose a model reduction method which utilizes 
all the available information. We propose projecting the origi- 
nal system onto the orthogonalized union of the two dominant 
eigenspaces. 

Algorithm: 
1. Choose J and let V,? = vadi(A,B,J) and Wyb = vadi(AT,CT,J). 
2. Calculate SVD of Vj' and Wyb. V j f  = Uj'A5f(Ujf)T and W/ob = 
UYbAyb( Uj'b)T 
3. Choose k I: J and let U: = gram - schmidt[Uj'(:, 1 : k ) , V y b ( : ,  1 : 
k ) ] .  Note k 5 rank(Uy) = rn 5 2k. 
4. Reduce the system: AY = UTTAUy,BY = (U:)TB,C: = CU:. 

Remarks J may be much larger than k i f A  is poorly con- 
ditioned. To prevent ill-conditioning in forming the rational 
Krylov space in ( I O ) ,  back orthogonalization can be pegormed 
inside VADI. Then Vj' is stored as its QR decomposition, VJ" = 
QJRJXJ. 

5 A Special Case 
If the k most controllable modes span the same space as the 
k most observable modes, the kth-order TBR reduction can be 
obtained by projection via the k-dim dominant eigenspace of ei- 
ther gramian, without having to calculate the entire coordinate 
transformation T .  

Theorem1 Let the gramians P and Q have SVD, P = 
UpXpUT,Up = and Q = U,X,UT,U, = [U,k,U:-k]. 
Let (Afbr,Bfbr,C,kbr) be the kth-order TBR reduction, with the 
factorization Q = RTR given by R = Z;"U:. Let A: = 
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(U,")TAU,", Bf = (U,")TB, C," = CU," be the reduction by Q's 
dominant eigenspace. I f span(Ui)  = span( U,"), then 

c:(Sl --A:)-'@ = c,kb,(sl -A:b,)-'B,k,, (14) 

Proof: 

( ) is ( k ,  n - k)-block diagonal and both 0 u;;k 
1. u;up = 

blocks are themselves unitary. 

r .  . 
where Wiq = ( ~ ~ ) ' / 2 U i q C k p ( U ~ q ) T ( C ~ ) ' / 2 ,  and W;ik  = 

3. Let Wiq = Uk(Xk)2 (Uk)T  and W;ik  = Un-k(F-k)2 (U"-k) r  

be SVDs, then U = (T $ - k ) ,  which is unitary, and 

Z = (: .&) can be the SVD of RPRT in (7). 

( 2 i - k )  ' / 2 u ; ; k q - k (  ,;;k)T ( 2 i - k )  I/*. 

6 Numerical Results 
The new model reduction method was compared with TBR and 
moment matching around s = 0 via Lanczos. The first example 
comes from inductance extraction of an on-chip planar square 
spiral inductor suspended over a copper plane [6]. The origi- 
nal system is order 500 and symmetric, so only one Lyapunov 
equation is solved. The relative inductance errors of the differ- 
ent models are shown in Figures 1-2. 

Figure 1 compares reductions of order 7. VADI-7-11 comes 
from projection via the 7-dim dominant eigenspace obtained 
by 11 VADI iterations. VADI-7-12 uses 12 VADI iterations. 
MMVA-7 is order 7 moment matching around s = 0 via Amoldi. 

spiral 5m Sales qnem Relalm IndLnarm Error 
100 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Fig 1:- Spiral inductor inductance error. 

It can be seen in Figure 1 that running one more iteration of Vec- 
tor AD1 reduces the error by more than one order of magnitude. 
VADI-7-12 is a very good approximation to TBR-7 and both 
have flat error over the entire frequency range, unlike MMVA-7 
which has almost no error near s = 0 anld large error far away. 

Figure 2 compares order 13 moment matching (MMVA-13) 
with VADI-7-12. Note that though both require the same num- 
ber of matrix-vector solves, VADI-7-12 is a smaller reduced 
system, order 7 versus MMVA-13's order 13. 
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Fig 2: Inductance error. 

VADI-7-12's L"-error is about half an order of magnitude 
smaller than MMVA- 13's. 

The spiral inductor has relatively simple and smooth fre- 
quency response behavior, which makes it easy to model by 
both VADI and MMVA. 

An example that exhibits more complicated behavior comes 
from the discretization of a transmission line using the formu- 
lation in [9], with the original system having 256 states. The 
system matrix is not symmetric and it illustrates the general 
case when the dominant eigenspaces of the two gramians are 
different. 

Figures 3 compares projection by the union of the exact 
dominant eigenspaces (CTOB) with Truncated Balanced Real- 
ization. Both reductions are order 10. CTOB-10 uses the union 
of the two exact 5-dim dominant eigenspaces. 

R d u c l m  01 a 250 Stales System TER Y(L CTOE 

10'0 10'' 10" 
Frequency 

Fig 3: Transmission Line: CTOB close to TBR 
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For this transmission line example, projection by the union of 
the dominant eigenspaces produces a reduced model that is al- 
most indistinguishable from TBR. 

Figure 4 compares CTOB-10 with projection by either the 
10-dim dominant controllable subspace only (CT-10) or the 10- 
dim dominant observable subspace only (OB- 10). 

Redwon 01 a 258 Slaler System CTOB VI CT or OB 

1 0' 

10' 

+- - + E x e ~ t  
CTOB-10 
CT-10 

. os-IO 

-.-.- 
- - 

Frequency 

Fig 4: CTOB better than either CT or OB 
Neither CT-10 nor OB-10 alone comes close to capturing the 
frequency response behavior. 

Figure 5 compares the new method, using the approximate 
dominant eigenspaces calculated via Vector AD1 (ADIctob), 
with moment matching via Lanczos (MMlanz). MMlanz-18 re- 
quires 34 matrix-vector solves, ADIctob- 10( 1 9 ,  where the two 
5-dim dominant gramian eigenspaces are each obtained after 15 
VADI iterations, requires 30 matrix-vector solves. 

RedUllO" d a 258 stater Synem Lanuos "I VAOl 

MMlanz-I8 
AOlclob-1q15) t 

I 
lO(0  1011 10- 

Frequenol 

Fig 5: ADIctob captures global behavior. 
ADIctob- 10( 15) clearly captures the global frequency response 
behavior much better than MMlanz-18. It captured all but the 
next to last sharp peak and averages the first tiny peak and a 
couple of small bumps between sharp peaks. This keeps the Lw- 
error small without having to follow every topographical feature 
exactly. MMlanz- 18 completely loses accuracy after the first 
sharp peak. 

7 Conclusions and Acknowledgements 
In this paper we presented a new method of model reduction 
of interconnect via projection onto the orthogonalized union 

of the approximate dominant controllable and observable sub- 
spaces, which are obtained through an iterative Lyapunov equa- 
tion solver, Vector ADI. This new method is as inexpensive 
as Krylov space-based moment matching methods. It approxi- 
mates Truncated Balanced Realization in the special case when 
the most controllable modes and the most observable modes 
span the same subspace. Two numerical examples show that 
the new method captures global frequency response behavior 
much better than the moment matching methods, and offers the 
flexibility of keeping the reduced model order low even when 
making higher order approximations. 
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gram. In addition, this work was also supported by the Semi- 
conductor Research Corporation and Grants from Hewlett- 
Pac kard . 
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