Computing 70, 295-334 (2003)

Digital Object Identifier (DOT) 10.1007/s00607-003-0019-1 Computlng

Printed in Austria

Construction and Arithmetics of #-Matrices
Lars Grasedyck and Wolfgang Hackbusch, Leipzig, Germany

Received November 28, 2002; revised April 15, 2003
Published online: July 28, 2003
© Springer-Verlag 2003

Abstract

In previous papers hierarchical matrices were introduced which are data-sparse and allow an
approximate matrix arithmetic of nearly optimal complexity. In this paper we analyse the complexity
(storage, addition, multiplication and inversion) of the hierarchical matrix arithmetics. Two criteria,
the sparsity and idempotency, are sufficient to give the desired bounds. For standard finite element and
boundary element applications we present a construction of the hierarchical matrix format for which
we can give explicit bounds for the sparsity and idempotency.

AMS Subject Classification: 65F05, 65F30, 65F50.

Keywords: Hierarchical matrices, data-sparse approximations, formatted matrix operations, fast
solvers.

1 Introduction
1.1 Overview

In [8] a new format for the representation of matrices was introduced, the so-
called hierarchical matrices or shortly s#-matrices. This format is well-suited for
the data-sparse representation of matrices arising in the boundary element
method or for the approximation of the inverse to a finite element discretisation of
an elliptic partial differential operator. In subsequent papers, several model
problems were analysed and for each of them a suitable #-matrix format was
defined. A short overview and an introduction to hierarchical matrices can be
found in [3].

In this paper we do not describe the various applications of the #-matrix
arithmetic, but present a precise complexity analysis. It turns out that such an
analysis can be based on two criteria, namely the sparsity and idempotency of the
underlying tree. Corresponding to the exact matrix operations +, - we define the
so-called formatted matrix operations @, ©® that allow us to compute an
approximate inverse to an s -matrix in almost linear complexity. For standard
finite element and boundary element applications we are able to give a con-
struction of the #-matrix format where we can give explicit bounds for the
sparsity and idempotency.

296 L. Grasedyck and W. Hackbusch

The rest of the paper is organised as follows. The next subsections give a short
introduction to #-matrices. In Section 2 we present the algorithms for the
formatted arithmetic operations within the set of /#-matrices and estimate their
complexity. Section 3 describes the image of the inversion operator in the set of
A -matrices and introduces the admissibility condition that allows us to
approximate efficiently (BEM) stiffness matrices or the inverse to a (FEM)
stiffness matrix in the set of s -matrices. Based upon the admissibility condition
we construct the hierarchical structures and J#-matrices in Section 4. The
theoretical results are confirmed by numerical tests which are presented in
Section 5.

1.2 R(k)-Matrices

The basic building blocks for s#-matrices are matrices of low rank (as compared
to their size). We use a data sparse representation for this kind of matrices.

Definition 1.1 (R(k)-matrix representation) Let k,n,m € Ny. A matrix M € R™" is
called an R(k)-matrix (given in R(k)-representation) if M is given in factorised form

M = ABT, A e Rk B e R™*, (1.1)

with A, B in full matrix representation.

Throughout this paper the storage is measured by the number of floating point
numbers to be stored, while the cost of an operation is given by the number of
elementary operations +, —, -, /.

Remark 1.2 (storage and matrix-vector product) The storage requirements
Nr si(n,m) for a matrix M € R™™ in full matrix representation is Ng s (n,m) = nm.
The storage requirements Ngs(n,m, k) for an n x m R(k)-matrix M is

Nrsi(n,m k) = k(n + m). (1.2)

The complexity Ng.,(n,m) and Ng.,(n, m, k) for the computation of the matrix-vector
product of M in full matrix and R(k)-matrix representation is

Np.o(n,m) =2nm —n, Ng,(n,m,k) =2k(n+m)—n—k.

In the next lemma, the term ‘truncated’ will appear in two meanings. First in part
(a) the truncated singular value decomposition (SVD) and the truncated QR-
decomposition are the exact ones, where the corresponding factors are reduced to
the non-zero part. In part (b) of the lemma, truncation from rank k to &' <k
includes loss of information.

Lemma 1.3 (truncated SVD, truncation) (a) Let R = ABT € R™™ be an R(k)-
matrix. A truncated singular value decomposition of R can be computed with
complexity Nsvp(n,m,k) < 5k*(n+m) + 23k> as follows:

Construction and Arithmetics of #-Matrices 297

1. Calculate a truncated Q R-decomposition A = Q4R of A, Q4 € R™* R, € RF¥F,
2. Calculate a truncated Q R-decomposition B = QgRp of B, Qp € R™* Rz € R,
3. Calculate a singular value decomposition RyRE = UZVT of R4R%.

4. Define U := QU € R™* and V .= QV € R™*.

Then R =UXVT is a (truncated) SVD. Due to [5, Sections 5.2.9 and 5.4.5], the
complexity of the previous steps is

OR — decomposition of A: 4nk>

OR — decomposition of B: Amk?
multiplication of R4RY: 263
SVD of R4R%: 2153
Multiplication of 04U and QgV: 2nk* + 2mk>
Altogether: Ngsvp(n,m, k) = 6k*(n +m)+ 23k

(b) A truncation of an R(k)-matrix R to rank k' < k is defined as the best approx-
imation with respect to the Frobenius and spectral norm of R in the set of R(k')-
matrices. This can be computed by using the first k' columns of the matrices UX and
V from the truncated singular value decomposition of R with the same complexity as
above. We denote the truncation from rank k to k' by the symbol

TE i (1.3)

If ¥ >k, F/—f@k is the identity. In the representation (1.1), the matrices A,B are
extended by k' — k zero columns.

We remark that the truncation in part (b) becomes non-unique when the &’th and
(k" + 1)st singular values are equal. Consequently, all operators defined below and
involving a truncation may be non-unique.

Definition 1.4 (formatted addition) The formatted addition R& S of two nx m
R(k)-matrices R and S is defined as a truncation of R + S to the set of R(k)-matrices,
ie, R®S:=TF ,,(R+S).

Note that @ is commutative, but in general not distributive (i.e., (4 & B) ® C and
A @ (B @ C) may differ).

Remark 1.5 The formatted addition can be computed with complexity
Nra(n,m k) < 24Kk>(n + m) + 184k°.

Proof. Use the truncation of Lemma 1.3b for the R(2k)-matrix R + S. O

Lemma 1.6 (spectral and Frobenius norm) The spectral and Frobenius norm of an
nxm R(k)-matrix R can be computed as in Lemma 1.3a with complexity
NRA’”.H(}’I,m,k) < 4k2(n + m) + 2353,

298 L. Grasedyck and W. Hackbusch

Proof. The norms can be obtained from the singular values, i.e., steps 1-3 from
Lemma 1.3a are to be performed. Ul

1.3 A -Matrices

In essence, the hierarchical structure of J#-matrices is the tree structure defined
below.

1.3.1 A#-Trees T;

Here, we give only the definition of an s -tree and introduce some notations. The
concrete construction of the tree will be discussed in §4.1.

Definition 1.7 (#-tree, sons) Let I be a finite set and let Ty = (V,E) be a tree with
vertex set V and edge set E. For a vertex v € V we define the set of sons of v as
S() :={weV|(v,w) € E}. The tree T; is called an #H-tree of I, if the following
conditions hold.

Iis the root of Ty and 0 v C I forallveV, (1.4a)
Yo e V. either S(v) =0 or v = Uwes(v)w. (1.4b)

In (1.4b) we use the notation U for the disjoint union.

In the following we identify ¥ and 7;, i.e., we write v € T; instead of v € V. The
edge set E is not needed, since S(-) contains all information about the edges.

Definition 1.8 (descendant, father, leaf, level, depth) Let T; be an # -tree. We define
the descendants of a vertex v € Ty by S*(v) :={w € T; | w C v} and the uniquely
determined predecessor (father) of a non-root vertex v € Ty is denoted by F (v). The
set of leaves of the tree Ty is L(T;) = {v € T; | S(v) = 0}. The levels of the tree Tj
are defined as

O = {I}, TI(E) ={vel; | F(v) e TIM_])} for £ € N,

and we write level(Y=L ifve T The depth of T is defined as depth(T) :=
max{ﬁ € N% | T # 0}, The leaves of T on level ¢ are denoted by L (T;,0) ==
L(T,

The introduced notation requires implicitly #S(v) # 1, as discussed in

Remark 1.9 (general J#-trees) In the definition of an H'-tree the vertices were
labelled by subsets of the index set I. Therefore, it is not possible that a vertex v has
exactly one son w ((1.4b) would demand v = w). This could be overcome by denoting
the vertices of an #-tree by a tuple (v,/), where v C I and ! is the level number of
the vertex. Then the vertex (v,£) is allowed to have exactly one son (v, + 1). In the

Construction and Arithmetics of #-Matrices 299

rare cases where it becomes important, we will explicitly note the level number, e.g.,
by v e T, but omit the tuple notation otherwise.

Remark 1.10 (a) Any #'-tree T; with root I has the property Uyc (1,0 =1, i.e., the
leaves of an A -tree yield a partitioning for the index set I.

(b) For any A -tree Ty and £ € {0, ... ,depth(T)} there holds

1= Uv U U v]|U---U U v

ver® veZ(T;,0~1) ve2(T;,0)

(¢) Each vertex v € T; induces a subtree
= (V) E,), Vi={weSW)}, E,=En,xV),

which is an # -tree of the index set v.

Proof. a) Use induction over the depth of s -trees. b) Consider 7} := Y}\U
and apply part a).

depth(T;)
=(+1

1.3.2 Block #-Trees T;yy

For (rectangular) matrices from R’ we need # -trees with the root I x J. The
case I x I for square matrices is a particular subcase. Again, the concrete con-
struction is postponed to §4.2.

Definition 1.11 (block s#-tree) Let I and J be finite sets and let T; and Ty be H -
trees of I and J. An #-tree Ty is called a block # -tree (based upon Ty and Ty) if
Sfor all v e T;XJ there exist r € T([) and s € T() such that v=rx s. In the case
T; = T; we say that Ty is based on T.

Given v € Ty, Definition 1.11 does not fix whether a vertex v is a leaf or not. But
if v=rxs is not a leaf, the set of sons is given by S(v) ={vV' =/ xs' |/ €
S(r),s € S(s)} Since by definition, » and s belong to some identical level number
¢, the sons v =+ x s € S(v) are products of /' and s from level number £ + 1.
Furthermore, the set T,(Q, defined in Definition 1.11 is a subset of 7; “ % T, @,

Definition 1.12 (cardinality, submatrix, supermatrix) Let M € R/ be a matrix
over the index set I x J. We denote the cardinality of a set I by #I. The submatrix
(Mij) i jyerwp for a subset I' x J' of I x J is denoted by M|y, . For a superset
I"xJ">IxJ we denote the matrix M" e R'"™" with entries M} =
]Mij if (i,j) clxJ s J" Y
k M .
{ 0 otherwise by M|

Remark 1.13 (partitioning) Due to Remark 1.10a, any block #-tree Ty with root
I xJ has the property Ue o(1,,,) = 1 x J. Vice versa, given a partitioning # C Tj;

300 L. Grasedyck and W. Hackbusch

such that Uve,,, =1 xJ, there is a unique A -subtree T}, ; of Tjxy (with same root
I xJ) so that (T}, ;) = 2.

In previous papers (e.g., [8], [10]), we have based the s#-matrix on a partitioning
P C Tixs. Equivalently, we can use the associated # -tree T7,; with Z(T}, ;) = 2
(see Remark 1.13).

In principal, the #-matrix uses the R(k)-representation (1.1) for all blocks
v=rXxs € T;. By practical reasons this is less efficient for small-sized blocks.
Therefore, a minimal block size npi, will be introduced. The use of the R(k)-
representation is restricted to min{#r,#s} > nmin, otherwise the standard full
representation is used (in the later numerical examples we choose nyi, = 32).

1.3.3 Set of Hierarchical Matrices

Definition 1.14 (/7-matrix) Let k, nyin € No. The set of A -matrices induced by a
block # -tree T with blockwise rank k and minimal block size ny, is defined as
H(T,k):={M e R |Vrxse L(T):rank(M|,) <k or #r < nmin OF #5 < Hmin }.
A matrix M € A (T, k) is said to be given in H-matrix representation, if for all
leaves r x s with #r < nyin or #s < nmin the corresponding matrix block M|, is
given in full matrix representation and in R(k)-matrix representation for the other
leaves.

2 -Matrix Arithmetics and Their Complexity

In the first part of this section we estimate the storage requirements of an
A -matrix, the cardinality of the s -tree, the complexity of the matrix-vector
multiplication, truncation and formatted addition of J#-matrices based on the
sparsity of the s -tree T. In the second part we define the idempotency constant
which is needed to bound the complexity of the matrix multiplication and
inversion in the set of #-matrices.

2.1 Sparsity Based Estimates

Hierarchical matrices possess a certain kind of sparsity which is essential for
favourable estimates of the storage and the cost of the matrix-vector multiplica-
tion and matrix addition.

2.1.1 Sparsity Constant and #-Trees

The block #-tree T;«; may have a sparsity property which is measured by the
quantity Cs, defined below. In §4.2, the construction of 7;,; will lead to block
J -trees with a sparsity constant Cy, independent of the size of #/.

Construction and Arithmetics of #-Matrices 301

Definition 2.1 (sparsity constant) Let T;.; be a block # -tree based on T; and T;.
We define the sparsity (constant) Cs, of Trxy by

Cyp := max{maTx#{s eETy|rxse TIXJ},me}x#{r eT|rxse]}XJ}}. (2.1)
rely sely

In many estimates (e.g., in (2.2) below) sums over the quantities #{...} appear.
Then the maximum Cg, from (2.1) could be replaced by the possibly smaller
average.

In the following, we simplify the notation 7;,; by 7 without subscripts.

Lemma 2.2 (a) Let T be a block #-tree based on T; and T; with sparsity constant
Cop. If T and Ty satisfy #S(v) # 1 for all vertices v € T; U T}, then

(b) Let p := depth(T) > 1. If #S(v) # 1 is not necessarily fulfilled, then it still holds
#T; < 2p#l, #T < 2pCi,min{#I,#J}.

(¢) The previous estimates provide a bound for # % (T) < #T.

Proof. The first inequality of part (a) is trivial. The second inequality is derived by

#T =D 1= #{rxseT}<Y Cp < 2#IC, (2.2)
rxseT rel; reld;
Part (c) is a consequence of #(T) C T. O

Due to the distinction between the R(k)-representation and the full representation,
we introduce %~ (T) and Z*(T).

Definition 2.3 Let T be a block #'-tree based on T; and T;. The set of “small”
leaves of T is denoted by ¥~ (T) :={r xs € L(T) | #r < nmin or #s < nmin} and
the set of “large” leaves is denoted as ¥ (T) := L(T)\ &£ (T).

Later, in (3.6), it will turn out that ny;, should not be smaller than a constant
given there.

2.1.2 Storage

The estimate in the next lemma makes use of the set of occupied levels L of a block
A -tree T defined by

L:={ieNy| L(T,i)#0}. (2.3)

In particular, #L is of interest. Note that #L < depth(T) + 1.

302 L. Grasedyck and W. Hackbusch
Lemma 2.4 (storage) Let T be a block #-tree based on T; and T; with sparsity
constant Csp, (cf. (2.1)) and minimal block size ny;,. Then the storage requirements
Ny (T, k) for an #-matrix M € A (T, k) are bounded by

Ny/_]s,(T, k) < #LCsp max{k, nmin}(#l + #J)

Proof.

Now (T, k) P2 SO Nes(#r,#s) + Y Nes(#r #s,k)

rxse¥(T) rxs€ L (T)
Rem.1.2
<) el ds) + Y k) (24)
rxse~(T) rxs€LT(T)
< Y max{kmmn}#r + > max{k, nmin s
rxse(T) rxseZ(T)
Def.2.1
< Z Z Cop max{k, nmin }#r + Z Z Csp max{k, nmin } #s
iel reTl([) iel SET]“)
Rem.1.10
< Z Csp maX{k, nmin}#] + Z Csp max{k, nmin}#J
iel iel

= #LCyp max{k, nmin}(#I + #J).

O

In line (2.4), the maximum in Ng s (#7, #s) < nmin * max{#r, #s} is estimated by
#r + #s. Under the assumption #r & #s, this is an overestimation by the factor 2.
Therefore, #LC, max{k, %nmin}(#l + #J) is supposed to be closer to Ny s,(T, k).

The aim will be to construct 7 such that depth(7) = O(logn), where n is the size of
I and J.

2.1.3 Matrix-Vector Multiplication

Lemma 2.5 (matrix-vector product) Let T be a block #-tree. The complexity
Noyo(T, k) of the matrix-vector product in the set of # -matrices can be bounded
from above and below by

Ny (T, k) < Ny.o(T,k) < 2Ny (T, k).

Proof. According to Remark 1.2 the storage requirements in a block » x s in full
matrix representation are #r+#s. The cost to multiply the submatrix with a vector
x and add the result to the target vector y are 2#r#s — #r for the multiplication
and #r for the addition:

Nr s < Np.y < 2Npg;.

Construction and Arithmetics of #-Matrices 303

For a block » x s in R(k)-matrix representation the storage requirements are
k(#r + #£s). The cost to multiply the submatrix with a vector x and add the result
to the target vector y are (due to Remark 1.2) 2k(#r + #s) — #r — k for the
multiplication and #r for the addition:

Nrsi < Ngy < 2Np s

Since an # -matrix consists blockwise of either full matrices or R(k)-matrices, this
concludes the proof. O

Algorithm 2.6 (matrix-vector product) Let M € #(T,k) be an #-matrix. To
compute the matrix-vector product y := y + Mx with x € R’y € R!, we call MVM
(M, I xJ, x,y), where MVM is the following procedure:

procedure MVM(M,r X s,x,var y);

begin
if S(rxs)#0 then {subdivide block}
for each ¥/ x s € S(rxs) do MVM(M, ¥ x s',x,y)
else y|, :=y|, + M|, x|, {full or R(k) — matrix}
end;

2.1.4 Truncation

In (1.3), we have defined the truncation 775, of R(k)-matrices. The extension to

J-matrices is given below.

Definition 2.7 (truncation of #-matrices) Let T be a block #H-tree and let
k, k' € Ng. We define the truncation operator

TL A (T k) — H(T,K)

by M' =7 (M) with M|
M|,.s = M]|

s = T b (M,ys) for all rxseL™(T) and
forallrxse L (T).

rXxs rXs

Remark 2.8 3‘%_,(maps a matrix M € H(T,k) to a best approximation
M' € #(T, k') of M with respect to the Frobenius norm. Since there is possibly more
than one best approximation we choose an arbitrary representative.

Note that #.%(T) appearing in the next estimate can be bounded by means of
Lemma 2.2c.

Lemma 2.9 (complexity of the #-matrix truncation) Let T be a block #-tree
based on the H-trees T; and Tj. A truncation T (M) of an #-matrix

M € H#(T,k) can be computed with complexity

Ny i(T) < 6kNy 5i(T, k) + 230> #.2(T).

304 L. Grasedyck and W. Hackbusch

Proof. Lemma 1.3b and Remark 1.2 show

Lemmal.3b
Nuwi(T)= Y Nesvo(#r,#sk) < D Ok (#r+#hs) +23K°

rxs€e L (T) rxs€ LT (T)

- 6k[> k(#r+ #s)] + 2313 #.2H(T) “é) OkN v 5:(k, T) +23k3# 2 (T).

rxse L (T)

O

A sum M of ¢ R(k)-matrices 4; (1 <i <gq) is an R(gk)-matrix. Instead of the
optimal truncation M’ = 7 ,fiqk(ZA,-), we can apply the cheaper 77 ,,-trunca-
tion to sums of only two terms: M, := 3’,‘?:_%(141 +43), M; .= 9-;]:_%(%71 +4;)
(i=3,...,q) resulting in M" := M, (in general, M" # M’).

Lemma 2.10 (fast truncation of J/-matrices) Let T be a block #-tree. An
approximate truncation of an # -matrix from # (T, qk) to # (T, k) (not necessarily
a best approximation) can be computed with complexity

N g (1) < (0 = 1)4KN0 (T, K) + 1846 4-2(T))

by successive use of the truncation I ,’fi%: let M € #(T,qk) be decomposed into
M =31 | M; with matrices M; € A (T, k). Then we define

M, := M, and M/'Z:=7}£2k(1‘~4j_l+M/’) for j=2,...,q.

The matrix M, is the desired approximation in # (T, k).

The truncation procedure from Lemma 2.9 is useful for theoretical purposes
because it computes a best approximation. The fast truncation procedure from
Lemma 2.10 can yield arbitrarily poor results (because of cancellation of the
singular values), but in practice this is not likely to occur.

If we want to approximate an # (7T, k)-matrix by an R(k)-matrix then we can
exploit the hierarchical structure of the #-matrix format to do this with almost
linear complexity. This is by itself an important result, but we will also use this
(fast) conversion in the multiplication procedure for #-matrices in Section 2.2.2.

Algorithm 2.11 (hierarchical conversion) Let T be a block #-tree of depth
p := depth(T) where each vertex v € T has at most Csoys successors. For a matrix
M e #(T, k) we compute an approximation Ry € R(k) in p+ 1 steps:

1. We convert the matrix blocks of M corresponding to “small” leaves
rxs€ X (T) to R(k)-format and retain the “large” leaves r x s € £~ (T):

T (M) ifrxse 2 (T),
Rp‘rxs = o

M, otherwise.

Construction and Arithmetics of #-Matrices 305

2. Foreach ¢ =p—1,...,0 we define the matrix R, blockwise for all r x s € T"YU
L(T,t—1)U---UZL(T,0) (cf. Remark 1.10) by

Ril. = { T coRenl) il rxs € T,
e R |I xS otherwise.

The last matrix Ry € R(k) is the desired approximation Ry to M.

Lemma 2.12 (accuracy and complexity of the hierarchical conversion) We use the
notation from Algorithm 2.11. If Ryes denotes an R(k)-best approximation to M
(with respect to the Frobenius norm) and Ry the above defined hierarchical
approximation, then the error is bounded by

IRy = M| < (277! + 1) || Roest — M
while the complexity for the conversion (we assume nmin < k and Cgops > 2) is
Ny < 6CsyCa I (p+ 1) (F + #J) + 23Co JO#T.

Proof. a) (Complexity) The conversion of the full matrix blocks » x s € £~ (T) to
R(k) -format is done by a singular value decomposition which has a complexity of
21n3. . For all vertices 7 x s € T\ Z(T) we have to truncate the sum over all sons

of rxs, which due to Remark 1.3a is of complexity 6C2 k*(#r + #s)+

23C3 k3. For all vertices this sums up to

NR(/‘)H” < Z 21n, Mnin + Z (6C520nsk2(#r + #S) + 23Cs30nsk3)

rxse%(T) rxseT\L(T
<D 6Cimk2#r+-#s>+2sc;mkﬁ
rxseT

< (p+ 1)Csp6CE JP(FH +) +23C3 K3#T.
b) (Error) We define the sets

R(T,0,k):={MeR™ |VrxseTOUL(T{—1)U---UL(T,0):rank(M|,,) <k}.

I‘><S) —

By R, we denote the matrix appearing in the /th step of the algorithm. Obviously Ry
is contained in the set (T, ¢, k). The matrix Ry is the resulting approximant R .
From one level /¢ to the next level ¢ — 1, the algorithm determines a best approx-
imation (with respect to the Frobenius norm) of the matrix Ry in the set (T, ¢, k):

VR € AT, 0K): (IR~ Roilly < IR — R (2.5a)
In the first step (conversion of the full matrix blocks) this reads

VR A(T.pk): M —Ryllp < M — Rl (2.5b)

306 L. Grasedyck and W. Hackbusch

By induction we prove ||R; — Rpest||p < 277 Y||R, — Ruest|| as follows. The start
¢ = p of the induction is trivial. The induction step ¢—¥¢ — 1 follows from

(2.5a)
Hlel _RbestHF S HRIFI _REHF + HRZ _Rbest”F S 2||Rg,1 _Rbest||F~

Using this inequality, we can conclude that

p—1 p—1

1M = Rollp = 1M = (Re = Rest) = Rpllp < M —Ryllp+_ IR = Recall
=0 =0
b) p-l
<M~ Rossll + 3 [Roest — Rl
=0

p—1
< ||M_RbestHF"‘Z:ZFF1 HRp _RbestHF < 2p”Rp _RbestHF + HM—Rbest”F

(2.5b)
< 2p(||Rp_M||F+ ||M_RbestHF)+ ||M_Rbest||F < (2p+1 + I)HM_RbestHF-

O
2.1.5 Addition

Definition 2.13 (formatted J7-matrix addition) The formatted addition
@:H (T, k) x #(T, k) — A (T,k) is deﬁned as a truncation of the (exact) sum to
the set of #-matrices, i.e., A® B =T (A +B).

Remark 2.14 According to Lemma 2.9 the complexity of the formatted A -matrix
addition is bounded by

Ny oo(T, k) < 28kN yp (T, k) + 184k3#.2(T).

In the later inversion procedure (see Table 1) we have to add three s#’-matrices
A, B, C and to truncate the sum to rank k& and to overwrite C by the result. This is
done by the following algorithm.

Algorithm 2.15 (formatted J#-matrix addition) Let A4,B,C € # (T, k) be H-
matrices over the index set IxJ. To compute the (formatted) sum
C:= T 3, (4+ B+ C) we use the following procedure (called by Add(C, I x J, A,
B)):

procedure Add(var C,r x s,4,B);

begin
if S(rxs)#0 then {subdivide block}
for each /¥ x s € S(r xs) do Add(C,r x s',4,B)
else Cl. =T f 3 (Clyy + Alpus + Blrys) {full or R(k) — matrix}

end;

Construction and Arithmetics of #-Matrices 307

2.1.6 Matrix-Matrix Multiplication

We consider the multiplication of two (rectangular) matrices 4 € R™/ and

B € R”*K (a particular case is I = J = K). To elucidate the difficulty of the mul-
tiplication, we recall that the addition is a structure-preserving operation in the
sense that the sum of two s#-matrices based on the J#-tree T can be represented
using the same #-tree T and the sum of the blockwise ranks. In contrast to the
addition, the product of two s -matrices is much more complicated: even if
I =J =K and if 4 and B belong to the same set # (T, k), the tree T is in general
not suitable for the representation of the (exact) product. A suitable tree is the
product tree T - T, which is defined next.

Definition 2.16 (product of block #-trees) Let T'= T;,; be a block #-tree based
on T7,T; and let T' = T;.x be a block #-tree based on T, Tx. We define the
product tree Tjxx (denoted by T - T”) by means of root(7 - 7") := 1 x K and the
description of the set of sons of each node. For each level /=0,...,p— 1 and
each vertex r x t € (T - T’)w, the set of sons of r x ¢ is defined by

S(rxt):= {r’ x 1

s e TJ([)HS' € TJ(HI) 7 x5 €Sr(rxs), s xt eSp(sx t)}

We remark that depth (7 - T’) < min{depth(7T), depth(7")}.

Lemma 2.17 (a) Let T be a block #-tree based on Ty, Ty and let T' be a block A -
tree based on Ty, Ty. Then the tree T - T' is a block A -tree based on Ty, T.

(b) Let Csp(T) and Cs,(T") denote the corresponding sparsity constant. Then the
sparsity of T - T' can be estimated by
Cop(T - T") < Cop(T)Cp(T").

Proof. Let r € T;. Due to the symmetry of the sparsity we only give a bound for
#{teTx|rxtelT - T}

Def.2.16
{teTx|rxteT -T'} e {teTx|IseTy:rxseT,sxteT},

#relc|rxteT - ThY< Y #ltelk|sxtel} < Cy(T)Cy(T).

seTy rxseT

O

Definition 2.18 (predecessors) Let T be an # -tree, i € [0,depth(T)], t € TV, We
define the predecessor of t on level j € {0, ... i} as the uniquely determined vertex
FI(t) € TY) with t € S*(F/(1)).

Due to the #-tree property, the condition ¢ € S*(F/(t)) can equivalently be de-
fined by t C 7/ (¢).

308 L. Grasedyck and W. Hackbusch

In the following, we describe the exact multiplication of two # -matrices. In § 2.2
we consider the truncation to a given format and rank, which leads to the for-
matted multiplication ® analogously to the formatted addition & from § 2.1.5.

Lemma 2.19 (representation of the #-matrix product) Let T be a block # -tree

based on T;,T; and let T' be a block A -tree based on Ty, Tx. For each leaf
rxte L(T-T'i) we define

U(r x t,j) = {s € TJU)

FI(r) xs €T and s x F/(t) € T' and N
. . . jeN.
(F () xse LT orsx FyeeT) [- °

Then for two matrices M € H# (T, k) and M' € #(T',K') and each
rxte L(T-Ti) there holds

i

(M ’M,)|r><t = Z Z M|r><sM/|s><t (26)

J=0 sel (rxt.j)

and

Proof. a) Assuming that (2.7) is true, we conclude the representation formula
(2.6) from (2.7). The proof of (2.7) is given in the following parts b—d.

b) (Disjointness of %(r x t,j)) According to Remark 1.10b, the elements of
U(r x t,j) are disjoint.

¢) (Disjointness w.r.t. j) Let s € %(r x t,j), s € U(r x t,j'), j < j and s Ns" # 0.
Since 5,5’ € T; and T, is an #-tree we get s’ C s, #/(s') = s. It follows

FI(r)xs cF(r)xs, §xF()CsxF). (2.8)

Due to the definition of %(r x t,i) either #/(r) x s or s x F/(t) is a leaf. Hence,
one inclusion in (2.8) becomes an equality which implies ;' = j.

d) (Covering) Let j € J. Itholds g := Z W (r) x J € T, 8 :=J x ZV(¢) € T" and
J € J. If neither ¢ nor £ is a leaf, then there exists J' € S(J) such that j € J' and
=7V xJerl, ¢:=JxFY¢) eTl. By induction we define
ti=F(r)x s, . =5 x Z9(t) with j € 5. Let i be the first index for which either
i =F0(r) xsort=sx Z(t) is a leaf. Then j € s € U(r x t,i). O

Theorem 2.20 (structure of the s#-matrix product) Let T be a block H# -tree based
on T;, Ty and let T' be a block #-tree based on Ty, Tx. Let Cyp(T) and Csp(T") denote
the sparsity constant of T and T' and set p := min{depth(T),depth(7")}. The exact

Construction and Arithmetics of #-Matrices 309

multiplication is a mapping - : H (T, k) x H(T',K') — #(T-T',k) for some k
which can be bounded by

k < (p+ 1) min{Cs,(T), Cop(T") } max{k, &, nmin}. (2.9)
The exact multiplication can be performed with complexity

Ny (T, T,) <2(p+ I)CSP(T)CSP(T,) (max{k/v”min}N”:St(T’ k)
+ max{k, nmin }Nw s:(T", k,))-

Proof. a) (Rank) Let M € #(T, k), M' € #(T", k'), and r x t € Z(T - T"). Due to
(2.6), we can express the product by (p + 1) max’ i—o #U(r x t, j) addends, each of
which is a product of two matrices. From the deﬁmtlon of % (r x t,) we get that
for each addend one of the factors corresponds to a leaf and so its rank is
bounded by max{k,k’ nnin}. Hence, each addend has a rank bounded by
max{k, k', nyin}. It follows that & < (p+ 1) maxi_ #U(r x t, j) max{k, k', nmin }.
The cardinality of %(r X t, j) is bounded by

HU(rx 1,)) < #{s € T | F/(r) x s € T} < Cop(T),
#U(rx t,)) < #{s € TV | s x FI(1) € T'} < Cy(T"),

which yields #% (r x s,j) < min{C(T), Csp(T")}.

b) (Complexity) Using the representation formula (2.6), we have to compute the
products M|, M'|,, that consist (due to the definition of #(rxt,j)) of
max{k, k', nmin} matrix-vector products. In the following, the expressions
Ny si(Trxs k) and Ny (T, ,, k') appear which denote the storage requirements
for a submatrix to the index set » xJ and J x ¢ of a matrix in J#(7,k) and
H(T',k'). We use the abbreviations x := max{k, nmin} and &’ := max{k’, nmin }
and conclude that

Lem.2.5 P
Ny (T, T") < Z Z Z max{2«'Ny s(Trxs, k), 2Ny 51(Thy 1 k') }

rxt€L(T-T") j=0 s€U(rxt,j)

o
INA 3
2

Z 2max{x'Ny si(Trxs, k), kN si(Ty k) }
rxteL(T-T")

p
22 Z KNy si(Trss k) + Z KNy se(Tyo s k')
i=0 \ rxteZ(T-T',i) rxte L (T-T'i)
Lem2.17 L , .

< 2 T"i'Ny st(T, k) + Cop(T) Cop (T)N 51 (T', K'))

< 2(p+ I)Csp()Csp()(K,N.VK,St(Ta k) + KN.V/,St(T,ak,))v

proving the last estimate. O

310 L. Grasedyck and W. Hackbusch

The factor p + 1 in (2.9) can be replaced by #L with L corresponding to £ (T - T")
(cf. (2.3)).

Remark 2.21 Lemma 2.17 shows that the product of two sparse H-matrices
will always yield a sparse #-matrix. Theorem 2.20 bounds the blockwise rank
of the product. However, the product tree T-T' may change drastically
evenif T =T

o e "

mii
e o a

1
T

2.2 Idempotency Based Estimates
221 Case I =J =K

Next, we consider the case I =J = K. Given matrices 4,B € # (T, k), where T is
the block #-tree based on T;, we would like to get a product AB in (T, k). Due
to § 2.1.6, the result is a matrix in (T - T, IE) with the product tree T - T instead
of T. The necessary conversion from # (T - T, k) into #'(T, k") is discussed in the
following.

An #-tree T may be called idempotent if 7-7 =T holds for the multi-
plication of Definition 2.16. In that case, we immediately get the desired
representation formula (2.6) of the product of two s#-matrices from (T, k)
in the same set. In general, however, the tree 7 will not be idempotent but
almost idempotent, which will be measured by the idempotency constant
introduced below.

Definition 2.22 (idempotency) Let T be a block # -tree based on T;. We define the
elementwise idempotency Ciq(r x t) and idempotency constant Ciq(T) by

Ciq(r x 1) #{W x| ¥ eS*(r),f eS*(t)and IS € T} : ¥ xs' € T,s' xt €T},
G (T) = MaX,xe (1) Cid(r X l‘).

If the tree T is fixed, the short notation Cyy is used instead of Ciy(T).

If the tree T is idempotent, then for any » x ¢t € #(T) and s € T; there holds
rxse P(T)orsxte L(T) (see Definition 2.16) so that Cig = 1. The reverse
statement is not true: if Cijg = 1 then T is not necessarily idempotent, because the
tree T - T can be coarser than 7

. [(H

Construction and Arithmetics of #-Matrices 311

Example 2.23 To illustrate Definition 2.22 we consider the block #-tree

and the leaf r X t in the top left corner:

t t s’ t

The vertex s connects the two vertices v',t' in the sense that v xs' € T and
s'xt €T, while ¥' x { & T. The number of vertices v',t that are contained in r,t
and connected by a vertex s' is 5, which is the elementwise idempotency Cig(r X t) of
the vertex r X t:

t t t t t

The following theorem provides a matrix product such that the result lies in
H(T,k") (same tree T as for the factors).

Theorem 2.24 (multiplication of J#-matrices) Let T be a block # -tree of the index

set I x I with idempotency constant Ciq, sparsity constant Cs, and depth p. We

assume (for simplicity) ngin < k,k'. The exact multiplication is a mapping
c H (T, k) x A (T, k') — A(T, k) with some k bounded by

k < CiqCyp(p + 1) max{k, k'}.

The formatted multiplication ©**: A (T k) x A# (T, k') — A (T, k") for any
K' < k is defined as the exact multiplication followed by the truncation 7 k,; ;of
Lemma 2.9 and can be computed with complexity

N opest(T, ke, k) < 43C3,C3 k3(p+ 1)} max{#I1, #2(T)}

by truncating the exact product. Using the fast truncation algorithm of Lemma 2.10,
the complexity can be reduced to

Ny (T k,K') < 56C2 max{Ciq, Csp} max{k,k'}*(p + 1)*#1
+ 184Cy, Cia max{k, K’} (p +)#L(T).

312 L. Grasedyck and W. Hackbusch

We call this mapping ® or @™ in contrast to ®**' from above.

Proof. a) (Rank) Due to (2.9), in each leaf of 77T the rank is bounded by
(p+ 1)Csp max{k,&'}. If a leaf from T is contained in a leaf from 7 - T, then the
restriction to the leaf from 7 does not increase the rank. If a leaf from 7' contains
leaves from T - T then their number is bounded by Cjq and therefore the rank
bounded by k.

b) (Complexity) We split the cost estimate into three parts: Npy for calculating the
exact product in 7 -7, N_ for converting the R(k)-blocks corresponding to
“small” leaves ¥~ (T) in full matrix format and N, , N for the (fast) truncation

of the R(k)-blocks to “large” leaves ¥ (T) of rank k”.

bl) (Nmu) According to Theorem 2.20 and Lemma 2.4, the exact product using
the R(k)-representation in each leaf can be computed with complexity

AC3 (p+ 1) ki #1.

b2) (N-) In the “small” leaves » x s € £~ (T) we have to change the representa-
tion to full matrix format which has a cost of 2k#r+ts:

No< Y0 2k#rs <) 2kmun(#r+#s) <

P
rxse L (T) rxseZ(T) i=0

Z 2l€nmin(#r + #s)

rxseL(T,i)

Rem.1.10b ~
< A(p+1)Copknmin#tl < 4(p+1)°CL Camax{k, k' }nmin#.

b3) (NV,) For each “large” leaf in ¥ (T) we truncate the R(k)-block to rank k
using Lemma 2.9 for the truncation or Lemma 2.10 for the fast truncation:

Lem.29 . ~ ~3
Ny < 6kNysi(T k) +23(k)"#2(T)

Lem.2.4 30 N2 3 3 3 "3 3

<1203 Chmax{k, K'Y (p+ 1) #1 +23C3 Y max {k, '} (p+ 1)’ #.2/(T)
< 35C3 Cymax{k,K'} (p+ 1)’ max{#l,#2(T)},

.. Lem.2.10

N C Cia(p + 1) (24 max{k, K YN 5, (T, max{k,k'})
+184max{k,k’}3#5f(T))

Lem.2.4
<482 Gamax{k, K'Y (p+ 1) 4] + 184C,, Ciamax{k, K} (p+ D#2(T).

2.2.2 General Case
Now we consider the general case of possibly different index sets 7,J, K.

In Theorem 2.20 the cost for the exact multiplication 4 - B of two matrices from
H (T, k) and A (T', k') is estimated and it turns out that the product lies in the set
of #-matrices based on the product tree T - T’ (with increased rank). In practice,
the structure in which the product has to be stored (after some kind of conversion)

Construction and Arithmetics of #-Matrices 313

is given. If T is based on T}, T; and T’ is based on T}, Tx, then we assume that the
target tree 7" is based on 7}, Tx. Consequently, each leaf of 7" is either

e contained in a leaf of T - T’ or
eavertex of 7-T'.

The following algorithm deals with the second case where the product of two
structured matrices has to be computed and converted to R(k”)-format. To do this
as fast as possible, we simultaneously compute the product of the two structured
matrices and apply the hierarchical conversion of Algorithm 2.11.

Algorithm 2.25 (simultaneous multiplication and conversion to R(k") -format) Let T
be a block A -tree based on Ty, Ty, let T' be a block # -tree based on Ty, Ty and let
T" be a block #-tree based on T;,Tx. Let A€ #(T,k),B e # (T k') be #-
matrices.

First, we sketch the idea for a 2 x 2 partitioning of the index set: assume we want to
convert the product

A A || B Bi| _ [AnBiu + 4By A11Bi2 + A12Bx»
Ay Axn | |Ba Bxn A2 B + AnBy) A2 B2 + AnBx»

to R(k")-format. By induction, we have already computed R(k")-approximations to
AijBjo for i,j,0 € {1,2}. The sum AjyBy + AinBo is then converted to an R(k")-
matrix Ry. Therefore, we have to approximate the matrix consisting of the four
R(K")-submatrices Ry1, R12, Ra1, Rap by an R(k")-matrix. This can be accomplished if

R11 RIZ _ R11 0 0 RIZ 0 0 0 0
we treat |:R21 Rzz}_{o 0]—1—[0 0}4—{]32] 0}4—[0 Rzz} as an

R(4k")-matrix and use the truncation TX,_ ., from Lemma 1.3. To compute the
(formatted) product C :== A © B we use the following procedure called by “C := 0;
MulAddRK(C,1,J,K,A,B)":
procedure MulAddRk(var C,r,s,t,A,B);
begin
C':=0eR™. if S(rxs)=0orS(sxt)=0 then
begin C' :=4|. B|,.;{ full or R(k) — or R(k'") — matrix}

rXs sXt)

C:= jﬁ’ek’%max{k,k’,nmm}(c +C')
end else
begin for each ¥ € S(r),s’ € S(s),7 € S(¢) do
MulAddRk(C'|,.,, 7,5, 1, A, B);

C .= yﬁH#S(r)#So)k//(C‘i’ CI)

end end;

314 L. Grasedyck and W. Hackbusch

At last we are able to present the algorithm for the fast #-matrix multiplication
©.

Algorithm 2.26 (fast »#-matrix multiplication) Let T be a block #-tree based on
17, Ty, let T' be a block # -tree based on Ty, Ty and let T" be a block # -tree based
on T;, Tx. Let A € A (T, k) and B € H (T, k') be # -matrices. The following pro-
cedure computes a matrix C € #(T" k") such that C approximates A - B by the fast
truncation of Lemma 2.10 and Algorithm 2.25.

C = A ® B is obtained by the call “*C := 0; MulAdd(C,1,J,K,A,B)” of
procedure Mulddd(var C,r,s,t,A,B);
begin
ifS(rxs)#bandS(sxt)#0and S(rxt)#0 then {all matrices subdivided }
forr €S(r),s’ €S(s),f €S(t) do Mulddd (C,¥ s',¢' ,A,B)

elseifS(rxit)#0 then { target matrix subdivided }
begin C' :=A|,, Bl { full or R(k) — or R(k") — matrix }
C:= g'};/ﬁék”ﬂnax{k,k’,nmi“} (C + Cl)
end else MulAddRk (C,r,s,t,A,B) { target matrix not subdivided }
end;

2.3 Inversion of #-matrices

In order to explain the inversion procedure for J#-matrices, we will shortly
recapitulate the idea of [8] for a quad tree T based on a binary tree 7;. Afterwards
we introduce the (slightly more general) s#-matrix inversion algorithm and bound
the complexity by the complexity of the matrix multiplication.

Example 2.27 (Inversion of a 2X2 block matrix) Let M =
My M

positive definite matrix. The inverse M~ to M can be written in the form

M) (LM S~ Moy (M) 1) — (M) My
w0 f) , §:=Myn—Mn(Mi)” M.
—S_IMZI(M11)7 S_l

My, M12:| be a

(2.10)

The invertibility of My, and S is ensured by the positive definiteness of M (the
supposed positive definiteness can be replaced by regularity of all principal subma-
trices).

In (2.10) we use the multiplication and addition of matrices as well as the inverses
(Mn)_] and S~'. The idea now is to replace the exact addition and multiplication
by the formatted #-matrix counterparts and define the two inverses in the sub-
blocks recursively. This is done by the following algorithm.

Construction and Arithmetics of .#-Matrices 315

Algorithm 2.28 (7 -matrix inversion) The procedure Invert from Table 1 for the
inversion of an S -matrix M is to be called by “H := 0; R := 0; Invert(M, 1, H,R);”
where the inverse is returned in the matrix R, H is needed as auxiliary storage and
the original matrix M is overwritten.

Theorem 2.29 (complexity of the formatted inversion) Let T be a block # -tree. We
assume that for the ‘small' matrix blocks r x s € L~ (T) the complexity of the
inversion is bounded by the complexity of the multiplication (in the case nyy, = 1
both are one elementary operation). Then the complexity Ny (T, k) of the for-
matted inversion (Algorithm 2.28) in the set # (T, k) is bounded by Ny (T, k, k).

Proof. We prove the statement by induction over the depth p of the tree 7. For
p =0, we have assumed that the inversion is of the same complexity as the
multiplication. Now let p > 0. For the inversion of the matrix we call the
multiplication MulAdd for all combinations of blocks #;,r,r;, where the com-
bination i = ¢ = j stands for the inversion which is by induction at most of the
same complexity as the multiplication. This is exactly what is done for the
computation of the product of two #-matrices. Additionally, we have to call
n — 1 times the formatted addition Add in the block r; x r;, again the same for
the product. O

Table 1. Procedure for the #-matrix inversion

procedure Invert(var M, r,var H,var R);

begin if S(rxr) =0 thenR|,,, := (M|,,,) " else {full submatrix}
begin determine the sons S(r) = {r,...,r:}; {elimination of the lower triangular blocks}
forl=1,...,0 do
begin Invert(M,r,, H,R);
forj=1,...,0—1do
begin Hl,,,, = 0;MulAdd(H|,.,,, 76,707}, Rl srs Rl)i Rl 7= Hl, i,y €05
forj=/¢+1,...,0 do
begin H|r,><r, =0 MulAdd(H|n><r,vrfvrhrj:RLyxn7M|r/><r,);M‘r;xr] = H‘nxr/ end;
fori={4+1,...,0do
begin
forj=1,...,0 do
begin Hl,,,, = 0;MulAdd(H|, ., . 7i,70,77, M|, 1> Ry,)i
FiXFj = _le,xr/;Add(R‘r,xr/’r”r/?er,><r,’ I',Xr/)
end;
forj=4¢+1,...,0 do
begin Hl,,, = 0;MulAdd(H|, ., . 7i,7¢,77, M|, s Rl i,)i
H rixry T 7H|r,><r,; Add(ML_’Xr/,V,', rj7R r1><r,7H|r,><r,)
end end end;
forl=ga,...,1do {elimination of the upper triangular blocks}
fori={(—-1,...,1do
forj=1,...,0 do
begin Hl,,, = 0;MulAdd(#|, ., . 1i,7e,77, M|, s Rl)i
H‘r,xrj = _le,xr/;Add(R‘r,xrjvrh rjﬁle,xr/vH‘r,xr/)

end end end;

316 L. Grasedyck and W. Hackbusch

3 Approximation of Matrices by #-Matrices

In this section we first give an algebraic result concerning the structure of the
inverse to an J-matrix where the underlying tree 7 is the one from the right of
the picture in Remark 2.21. Afterwards, we introduce the admissibility condition
that is needed (in the applications that we aim for) to construct the tree 7 in such a
way that the ‘large’ leaves r x s € £ (T) allow for a low rank approximation of
the matrix under consideration. In the context of partial differential equations it is
the inverse to the stiffness or mass matrix that has to be stored (and computed), in
the boundary element context it is the discrete operator that has to be stored (and
computed).

For later purpose, we mention a result the proof of which is an easy exercise.

Lemma 3.1 Let M; € # (T, k) converge to M as i — oco. Then also M € # (T, k),
i.e., H(T,k) is closed.

3.1 Algebraic Approximation

In the practical applications, it is essential that although the inverse M~! has a
rather large local rank, we are able to approximate M~! by a matrix from (T, k)
with modest rank . In this subsection, however, we apply no truncation and show
instead what the local rank of the exact inverse is.

Theorem 3.2 Let M € # (T, k) be an A -matrix with minimal block size nuyin = k
and blockwise rank k. The block # -tree T is based on a binary # -tree T; and for all
rxs e T we define

S(rxs)= { {r xs'|resw),seSks)} ifr=s,

otherwise

(similar to the block partitioning B, from [8, Section 2.2.2]). Let M be invertible and
p := depth(T). Then the exact inverse M~" to M fulfils

M~ e #(T,kp). (3.1)
Proof. We prove the statement by induction over the depth p.

a) Start of induction (p = 0). The block #-tree T consists only of the root 7 x 1.
Since M was assumed to be of full rank it follows from Definition 1.14 that
#I < nmin. Furthermore, Z(T)= %" (T)={I xI}, £%"(T)=0. Therefore
M~ € #(T,0).

b) Induction step: let the statement be true for trees with depth < p. Let S(I) =
{Ii,1,}. The matrices M,M~! are partitioned into 2 x 2 submatrices corre-
sponding to the index sets /;, l:

Construction and Arithmetics of #-Matrices 317

o aanl [Gzl =1o 7] a2)

By induction we have (M) ' € #(Tjp,, k(p—1)) and (M) ' € H#(Tpp,
k(p—1)). Let us assume for a moment that M;; and M,, are invertible. Then
equation (3.2) consists of four identities:

1

(M) = (M)~ = (M) MM,
(M1)yy = (May) ™" = (M) ' My (M),
(M), = —(My) "My,
(M) = —(M) ™' M.

The matrices Mj,, M>; are of rank at most k. The last two equations reveal that
rank((M~1),,) <k < kp and rank((M~1),,) <k < kp, the first two ones show
(M71)11 € ,}/f(]—}lxll,k(p— 1) +k) and (M71)22 € %(lexbvk(p_ l) +k>

c) If My, or My, is not invertible, then for any small enough & > 0 the matrices
M1 + el and My, + ¢l are invertible, so that (M +¢&l)~' € #(T, kp). Application
of Lemma 3.1 to the limit ¢ — 0 yields (3.1). O

Example 3.3 (inversion of a special sparse matrix) We consider a regular triangu-
lation of [0, 1] with n® = 2%, p € N, degrees of freedom: the vertices of the grid are

i—1 j—1
P A— . j=1,...,n.
Yij (n—l’n—l)7 hJ rrealt

Two vertices vj,vyy are neighboured if [i —i'| +|j —j| < 1lorifi—i =j—j and
li — | = 1. The index set is I := {(i,j) | i,j=1,...,n}. The index set I is divided
successively as follows:

Ly L I,

In the first step we divide the index set I into two equally sized subsets
L={G)li=1,....n/2,j=1,....n} and L, :={(i,j) |i=n/2+1,...,n,j=
1,...,n} which are the two sons of the root I. In the second step we divide the index
set Iy into two equally sized subsets Iy :={(i,j) |i=1,...,n/2,j=1,...,n/2}
and Iy :={(i,j) |i=1,...,n/2,j=n/2+1,...,n} which are the two sons of I,

318 L. Grasedyck and W. Hackbusch
analogously I, is divided into two sons Is,Is. We repeat steps one and two until the
index subsets contain only one element: they are the leaves of the binary J# -tree T;.

The root of the block # -tree T'is I x I. The sons of a vertex r x s € T are defined as
required in Theorem 3.2.

Let the matrix M € R be sparse in the sense that M jy gy =0 if the
corresponding vertices vi;, vyy of the grid are not neighboured (This arises typically
for finite element or finite difference discretisations of partial differential operators).

The vertices of the #-tree T; were chosen such that at most n elements of two
disjoint index subsets I;,1; of I are neighboured. Therefore the rank k of M restricted
to I; x I; is at most n. If M is invertible, then Theorem 3.2 yields

M€ H(T,n) =M € #(T,np).

From [8] we can estimate the storage requirements for the H# -matrix representation
of M~" by 2n’p? which (for p > 6) is less than n* for the full matrix representation.

3.2 Analytic Approximation: Model Problem

We consider an integral operator of the form
A [ul(x) = /Q g(x, y)u(y)dy

on a subdomain or submanifold Q ¢ R? with a kernel function ¢ : R? x R — R.
The operator £ is discretised by a Galerkin finite element (boundary element)
scheme for a basis % := {¢;,...,,}, ¢, : Q@ — R, and yields a matrix

Kij :=/Q/Q¢,-(X)g(x,y)¢j(y)dxdy, i,j€{l,...,n}.

We denote the supports of the basis functions by
Q; :=supp ¢, C Q and Q. :=U;c,Q;, CcQfortCl.

Our aim is to approximate the matrix K by a matrix K € # (T, k) for a ‘suitable’
block #-tree T and rank k. If one assumes that the kernel g is asymptotically
smooth (cf. [2]) then it can locally be approximated by a degenerate kernel

§(x,y) = S, 91:(x)g24(y) such that

,) =gy = o(CE
i) =] =€)

for a block t x ¢ € T;4;, where the constant C;, < 1 depends on the ratio of their
distance (dist(z, o) := dist(Q,,Q,)) with respect to the Euclidean distance and
their Chebyshev diameter (diam) defined by

Construction and Arithmetics of #-Matrices 319

diam(7) :=inf{p e R | Ix € RIVye Q. : |x—y|, < p/2}. (3.3)
Typically, one requires the standard admissibility condition
min{diam(t), diam(o)} < 25 dist(z, o) (3.4)

to ensure C;, <1 (exponential convergence with respect to the rank k).
However, the statements in this article also hold for the stronger admissibility
condition

max{diam(t), diam(o)} < 27 dist(z, o) (3.5)

(min replaced by max), which is needed for the (more refined) #>-matrix
approach.

It is essential that the basis functions ¢; have a small support as usual in FEM or
BEM. In the extreme opposite case of global support (Q; = Q), there exists not
even a single block 7 x ¢ that fulfils the admissibility condition (3.4). Therefore,
we assume that the supports are locally separated in the sense that there exist two
constants Cye, and npmi, such that

max #{j €1 dist(Q;,Q;) < C. diam(Q;)} < npin. (3.6)

sep

The left-hand side is the maximal number of ‘rather close’ supports. Note that the
bound ny;, is the same as in Definition 2.3, i.e., the choice of ny,;, should satisfy
(3.6). The constant Cy, is needed in the next section. The following example
illustrates that Cyp is very small, even if the grid is strongly graded (note that the
smaller C, is the weaker is the condition (3.6)).

Example 3.4 (geometrically graded mesh) Let Q = [0,1] be an interval that is
subdivided into n disjoint sub-intervals €;:

Q,:=100,2"", Q=272

The mesh is geometrically graded to the left corner and fulfils condition (3.6) for the
constants Nuin := 3 and Cyp := 3 for any n € N (the ratio of the diameters between
two adjacent sub-intervals is 2 < Cyp). A stronger grading would result in a larger
Coep-

One should notice that an extremely refined mesh like in Example 3.4 is rarely
used in practice.

Example 3.5 (algebraically graded mesh) Usually, adaptive grids refined towards a
point use an algebraically graded mesh like Q, := [0,n79], Q; :== ((51), (£)?] for a
suitable exponent g > 1 (see [6]).

320 L. Grasedyck and W. Hackbusch

In our model problem we only consider the discretisation of an integral
operator with sufficiently smooth kernel. However, the same admissibility
condition (3.5) is also required to construct block #-trees T that are suitable
to approximate the inverse to a finite element stiffness matrix in the set
H (T, k), where the underlying differential operator is uniformly elliptic with
L*>-coefficients (cf. [1]). Note that the integral kernel (the corresponding
Green’s function) has very poor smoothness, since the coefficients may be
extremely nonsmooth.

4 Construction of the #-Tree and Block s -Tree
4.1 Construction of the #-Tree T;

Let 7 be any fixed (finite) index set. Let d € N. For each i € /] we denote the
Chebyshev centre x that yields the infimum in (3.3) for the support 7 := Q; of the
basis function ¢; by m;.

Construction 4.1 (cardinality balanced clustering) Let {ey, ... ,e;} € R? denote the
unit vectors. We construct the tree T; by defining root(T;) := I and for each vertex
t € T the set S(t) of successors as follows. We define the minimal and maximal
coordinates

o= min{(m;,e;) | i € t}, ;= max{(m;e;)|i€t} for j=1,...,d.

Let jmax := argmax{f; —o; [j € {1,...,d}}. We sort the set {(m;, e;,..) |i €t} in
non-descending order m;, .. .,m;,, (or determine the median). The set of sons of t is
then defined as

S(t) = {Sl,Sz}, N {il, ce 7”#[/2}}7 §7 1= {i[#t/2]+l7 e 7l'#t}.

The above defined cardinality balanced construction has shown to be practically
useful. Later we will see that for some model problems we can prove that the
cardinality balanced construction is well suited. In general however, we are not
able to prove much for the resulting tree 7;, and therefore we give another easier
to analyse procedure. In the numerical test of the last chapter we compare both
approaches.

Construction 4.2 (geometrically balanced clustering) Without loss of generality we
assume that the domain Q is contained in the cube [O,hmax)d. The regular sub-
division of this cube into 24,2 ... 27" subcubes can be used to define an H-tree
T; with Zﬁ:o 24 vertices corresponding to ome of the subcubes. We construct
the tree T; by defining root(Ty) :=1 and for each vertex t € T the set S(t)
of successors as follows. The cubes C} on level | for a multiindex j e N? are
defined as

Construction and Arithmetics of #-Matrices 321

())
C, C,

=S xex gl with I = (= 1)27 haax, 127 hinax).-

The sons (successors) S(Cl) are defined as the 2¢ cubes on level 1+ 1 that are
contained in C/l Each mdex subset t € T, © corresponds to a cube Cl starting with
the root I and the cube C0 . The sons of a vertex t with correspondlng cube C} are

defined as

S(t):={sc|Ce S(le)} \ {0}, where sc:={ie€t|m; € C}for Ce S(le-).

4.2 Construction of the Block #-Tree T

Based on the #-tree T; from Construction 4.1 or Construction 4.2 and the
admissibility condition (3.4) we can define the block #-tree T as follows. For
an index subset » C I we define the corresponding domain as Q, := U;,Q;. A
product index set r x s with corresponding cubes C, and Cj is called admis-
sible, if

min{diam(r), diam(s)} < dist(r,s), (4.1)
where the modified distance and diameter are

diam(7) :=diam(C,) + max diam (),

ict

dist(r, s) :=dist(C,, C;) — max diam(;).

icrUs
If a product r x s is admissible with respect to (4.1) then (see Lemma 4.5) the

corresponding domain Q, x Q; is admissible with respect to the standard
admissibility condition (3.5).

Construction 4.3 (canonical block J7-tree) Let the # -tree T; be given. We define the
block #-tree T by root(T) :=1 x I and for each vertex r x s € T the set of suc-
cessors

322 L. Grasedyck and W. Hackbusch

{¥ x5l eSr),s €S(s)} if #r > nmin and #s > nin
S(rxs):= and 7 x s is in admissible,
0 otherwise.

Lemma 4.4 Let T be the block A -tree of depth p > 1 built from the # -tree T; by
Construction 4.3. We denote the maximal number of sons of a vertex s € Ty by Cyons.
Then the sparsity constant (cf. Definition 2.1) Cs, of T is bounded by

Cop < Coons max #{seT|rxseT\ L(T)and r x s is inadmissible}.
rely

Proof. Let rx s € T Then r x s is either the root of T or the father element
F (r) x Z (s) is inadmissible due to Construction 4.3. O

Lemma 4.5 (geometrically balanced cluster tree) Let hy, := min,e; diam(Q;). We
use the same notation as in Construction 4.2 and assume that (3.6) holds for some
constants Cgep, imin € N. Then Constructions 4.2 and 4.3 yield a block A -tree T
where each r x s € X" (T) fulfils

min{diam(Q,), diam(Q;)} < 27 dist(Q,, Q)
and the depth as well as the sparsity and idempotency constant of T is bounded by
Csp < (8(17 (1 + Cep) + Ciep)Vd + 4)°,
Cia < (4 +4m) (1 + Ciep))™,

depth(T) < 1+ 10gy (1 + Coep) Valhmar il).

Proof. a) Admissibility. Let rxse £"(T) be admissible. Since
diam(Q,) < diam(r) and dist(r,s) < dist(€,, Q) we have

diam(r) < 2ndist (r,s) = diam(Q,) < 2ndist(Q,, Q).

b) Sparsity. For all t € sz with #t > ny;, there holds

' (3.6) ' »
n}éatxdlam(Qi) < Cyepdiam(C,) = Csep\/c_l2 Pimaxs (4.2a)

diam(s) = diam(C,) + max diam(€,) < (1 + Caep) VA2 By, (4.2b)

diam(t) > Vd2 hyax. (4.2¢)

Construction and Arithmetics of #’-Matrices 323
Our aim is to apply Lemma 4.4 where we have to bound the number of inad-
missible vertices. Let r € T; with #r > npyin. The distance from C, to the clusters
belonging to the same level £ is considered in layers (see Fig. 1) as follows:
Ly :={C; | dist(Cs,C,) =0}, L= {Cs | dist(Cy, Li1) =0} \ Ly fori=2,3,...
The distance of a cluster Qg to Q, with C; € L;;; is bounded by

— (4.2a)
dist(s,) > (i — CsepVd)2 hmay. (4.2d)

For a cluster Q; with C; € L;;; there holds

iz(n_l+77_lcsep+csep)\/g = W(i_csep\/a) > (1+Csep)\/g
= ’7(i - Csep \/E)zilhmax Z (1 + Csep)\/‘_iziehmax
(4.2b,d)

=" min{diam(s),diam(r)} < ndist(s,)

and it follows that all products sx¢ with Cy€ Ly and 2> dayer :=
(1 + Csep)™ " + Cyep)V/d are admissible. The number of inadmissible clusters is
therefore bounded by #Li + -+ #L;,,, < (2ftayer + l)d. According to Lem-
ma 4.4, the sparsity of T is bounded by Cs, < 49 (2ijayer + l)d.

¢) Depth. From (4.2b) the diameter of a (non-leaf) cluster on level £ is bounded by
(1+ Csep)\/c_ﬁ*“'hmax. According to the definition of /min we get [(1+ Cyp)
VA2 hiax > hiin and therefore £ < 10g,((1 + Csep) Vd (hmax /himin))-

d) Idempotency. Let r x t € L(T,£). If #I, < npin o1 #I; < Nin, then the ele-
mentwise idempotency is Cig(r x t) = 1. Now let » x ¢ be admissible. Define
g :=[(logr(2(1 +1)(1 + Csp))]. We want to prove that for all vertices
¥t € T, ¥ x5’ € §(rxs) and s’ x ' € §*(s x t) one of the vertices ' x s’
and s’ x ¢ is a leaf. Let #/,s',¢ be given as above and min{#+, #s', #t'} > nmin.

L,
m ™~ -
\(\ I R S B R L]
® \
yd Cr ~
Q; -G
Q;

Fig 1. Left: the cluster Q, contains the whole set Q; while the corresponding cube C, contains only m;.
Right: the cube C, and the first two layers L; and L,

324 L. Grasedyck and W. Hackbusch
For u € {r,s',¢} it holds

— (4 2b) 1
diam(u) < (1 + Caep) VA2 T hpax < 5\/21(;7 + 1) 72 . (4.2¢)

Then we can estimate

— 426 B 1 1 B
diam(s') < \F d(1=n(+ 12 ey = Eﬂﬂhmax—niﬁﬂhmax(nﬂ) !

(4.2c,e) 1

< mm{dlam(), diam()} y max dlam()
2 ue{r s' ('}

I — .
<—ndist(r,t)—n max diam(u)
2 ue{r' s’ t'}

maxdlam(Q) n max diam(u)

1
— ~pdist(C,,C
27] 1S (t) 217 ierlt ue{r s’ t'}

< ymax{dist(Cy, Cy),dist(Cy, Cy)} + n diam(Cy) — 5 max dlam()

ue{r' s '}

< nmax{&i\s/t(r’,s) dist(s',)} +n max diam(;) + 5 diam(Cy)

ier'Us'ut

— 1 max dﬁ?n(u)
ue{r' s' ('}

< nmax{dist(r,s'), dist(s’, #)},

i.e., either ¥ x s’ or s’ x ¢’ is admissible (and has no sons). It follows that there are
no vertices 7/ x s € T4t and " x ' € T+4+D) with " € S*(r), 1" € S*(¢).
Since the number of sons of a vertex is limited by 227, there are at most 2°%
vertices in T - T that are contained in 7 X ¢. O

Remark 4.6 Lemma 4.5 proves that Construction 4.2 (— # -tree) combined with
Construction 4.3 (— block #-tree) yields an # -tree T that is sparse and idempotent
with Csp and Cig independent of the cardinality of the index set 1. The depth of the
tree is estimated by the logarithm of the ratio of the smallest element to the diameter
of the whole domain (which can be large). Construction 4.1 does not necessarily lead
to sparsity (idempotency) independent of #I1. This is not to say that the resulting
A -matrices are not data-sparse, but the block-structure is less homogenous and
more difficult to analyse. The trees from Construction 4.1 fulfil the condition
#S(t) # 1 for all vertices t € T.

Remark 4.7 (admissibility for #*-matrices) The results of Lemma 4.5 depend on
the admissibility condition (3.4). In the context of #*-matrices [11] the stronger
admissibility condition

Construction and Arithmetics of #-Matrices 325

max{diam(z),diam(o)} < 2 dist(z, o) (4.3)

is required. The bounds for the sparsity constant Cyy, the idempotency constant Cig
and the depth p of the tree also hold for the admissibility condition (4.3), because the
reference cubes C,,Cs on the same level are all of equal size.

4.3 A Special Vertex Concentrated Grid

In Lemma 4.2 we were able to prove that the block #-tree constructed by geo-
metrically balanced clustering is sparse and almost idempotent with constants
independent of the number of basis functions #/. However, the depth p of the tree
depends on the ratio of the diameter A4, of the smallest support to the diameter
hmax of the whole domain. For a uniformly refined grid with n¢ vertices in R we
would expect Apin = O(n~"), while Anax = O(1). If the grid is concentrated along
one edge using an algebraically graded mesh, we would expect hpyin = O(n~?) (see
Example 3.5). In both cases the depth p is proportional to log(n). Therefore, for
practically relevant grid constructions, the depth of the tree causes no problems.

However, there are pathological cases of geometrically graded meshes. In
Example 3.4 the grid is exponentially concentrated towards the origin. The
diameter of the leftmost interval is 2!~” and the diameter of the domain is 1. Here,
the depth of the (geometrically balanced) tree would be p = @(n) (implying that
the s#-matrix technique is as costly of the naive approach, e.g., the storage is
Nys < depth(T>Csp#1 = 6(’72))

In the following we consider a similar example in R> where we can prove that the
(almost) cardinality balanced # -tree of the index set has sparsity and idempotency
constants independent of n. In the next example, the elements (panels) may be
considered as the supports of piecewise constant basis functions in a boundary
element method.

Example 4.8 We consider the grid from Fig. 2 withn = 3p + 1 panels (Q;),., that is
constructed by p times regularly refining the panel at the origin into four parts and
starting with the unit square [0, 1]2. We define the layers Ly, . .., L, that contain panels
of equal size (see Fig. 2) where the size is decreasing with increasing layer number.

Let J :={1,...,p} denote the layer numbers and let T; be a cardinality balanced
binary H# -tree of J as depicted in Fig. 2. Analogously, the tree Tj is the same as Ty
but the layer numbers are replaced by the numbers of the domains that belong to it.
The tree T is built as in Construction 4.3 with the admissibility condition

rx s admissible < min{diam(Q,), diam(Q)} < 2# dist(Q,, Q)
and ngmin = 2[3/2 +log,(n™")]. In the following we bound the sparsity Cs, and
idempotency Ciq of T.

The diameter of a single layer L; is 23/*~/ which is also the diameter of L; U - - - U L,
Two vertices r,s € T; are admissible, if there are at least [3/2 +log,(n7')] layers

326 L. Grasedyck and W. Hackbusch

1
{1,....,p}
{L,....p/2} {p/2+1,p}
.) L
ol v A A A 1

Fig. 2. Left: the grid consists of # = 3p + 1 panels. The diameter of the smallest panel is 277+/2. The
grid is partitioned into layers Ly, ..., L, that contain panels of equal size. Right: a balanced #-tree for
the index set J = {1,...,p}, where p is a power of two. If p is not a power of two, then there appear

also leaves on the last but one level

between them: the smaller one is of the size 23/>~/ and the distance between the two is
at least 23/2Hlox(") =7 = y=123/2-j,

(Sparsity) Let r € T;. According to the prior statement the only inadmissible nodes
to r are the ones containing at least one of the 2[3/2 +logy(n=')] + 1 layers closest
to r. From Lemma 4.4 we get Cy, < 8+ 4[log,(n~1)].

(Idempotency) Let r x t € T be admissible and let r x s, s xt be inadmissible,
especially #s > nyin. Then s contains at least 2[3/2 + log,(n~")] layers so that the
two sons of s have at least a distance of [3/2 +log,(n™')] to one of the clusters r,t.
Therefore, Ciq < #S(r)#S(¢) + 1 < 5.

In the previous example we were able to define the #-tree 7; such that the
canonical block #-tree T from Construction 4.3 is sparse and idempotent with
depth(7T) = O(log(n)). This example illustrates that in the case where the geo-
metrically balanced approach of Construction 4.2 fails, we can use Construction
4.1 which will yield an #-tree T; of depth at most log,(n). In practice however, we
do not expect the grids to be strongly refined only towards a few single vertices
and therefore Construction 4.2 should be appropriate.

5 Numerical Results

The numerical tests in this section serve two purposes: first, we want to compare
the theoretical results with the numerical ones in order to see if there is some gap
between theoretical asymptotic bounds and actual complexity. Second, for the
cardinality balanced clustering we were not able to sufficiently analyse the arising

Construction and Arithmetics of #-Matrices 327

A -trees and therefore we want to observe the complexity of the s -matrix ar-
ithmetics for some model problems. It will turn out that the complexity is geometry
independend in the sense that it is worse for a uniform grid than for irregular grids.

It should be noted that the operator to be inverted has no influence on the
complexity of the formatted arithmetics for a fixed rank % (only the approxima-
tion quality may differ). For the sake of simplicity, we consider Poisson’s equation
in the next subsections. Numerical results for other operators are presented in the
last Subsection 5, see also [12].

All computations in this chapter were performed on a SUN ULTRASPARC Il with
900 MHz CPU clock rate and 150 MHz memory clock rate.

5.1 Model Problem

We consider Poisson’s equation
—Au=f

in Q C R* with Dirichlet boundary conditions u|r =0 on I':=0Q. A Ritz-
Galerkin discretisation with basis functions (¢;);_, leads to the problem of solving
a linear system of equations

Ax=0b

for the right hand side b € R" with entries b; := [, f(x)¢;(x)dx and the stiffness

matrix 4 € R™" with entries 4;; := [, [o(V,(x))" V;(y)dxdy. We choose the
nodal basis for the piecewise linear functions on a triangulation of the domain Q.

Our goal is to compute and store an approximation 4~ to 47! in the #-matrix
format. For the domain and triangulation we consider the three cases of a regular
refinement of the unit square, a boundary concentrated grid and an edge con-
centrated grid. The variety of triangulations is used to compare the clustering
algorithms. It turns out that the uniform grid is the worst case with respect to the
complexity of the (formatted) arithmetics per degree of freedom. Therefore, the
numerical results for the uniform triangulation can be regarded as a benchmark
result for arbitrary triangulations.

uniform grid boundary concentrated edge concentrated

328 L. Grasedyck and W. Hackbusch

5.2 Uniform Grid

The # -tree T built by Construction 4.1 (cardinality balanced) and the #-tree
TF°° built by Construction 4.2 (geometrically balanced) for the index set
I:={l1,...,n} coincide in the uniform case. Construction 4.3 yields the block
A -tree T whose leaves partition the product index set / x I. The parameter # in
the admissibility condition is # := 1.0 and the minimal blocksize is nyi, := 32. For
n = 1024 and n = 4096 degrees of freedom the partitioning is depicted in Fig. 3.
The sparsity Cs, and the idempotency Cig of the tree T are given in Table 2. We
observe that the sparsity is bounded by 23 and the idempotency is bounded by 18.
The complexity of the (formatted) arithmetics can be seen in Tables 3-5. The
estimated complexity for the (formatted) multiplication and the (formatted) in-
version is due to Theorem 2.24 and 2.29 @(nlog(n)*k?). For a fixed rank k and an
increase of the number of degrees of freedom from n = 65536=2'° to
4n = 262144 = 2'® we expect an increase in the complexity by a factor of

% = 81/16 ~ 5. This happens for the (formatted) multiplication in Table 4

for £ = 1 and the (formatted) inversion in Table 3 for k € {1,2}. The (formatted)
inversion is by a factor of 2 — 3 faster than the (formatted) multiplication, because
the sparsity of the stiffness matrix is exploited in the computational scheme.

5.3 Boundary Concentrated Grid

The #-tree TF*¢ built by Construction 4.1 (cardinality balanced) and the #-tree
TE° built by Construction 4.2 (geometrically balanced) for the index set

:7:: ‘
. .;:H i i
shiE st e mgasen
EEEEE S S
e
i CoE o
ih -
| B i Hnl
i s .;!uﬂ
#11:"‘ e

Fig. 3. The partitioning of the product index set / x I in the uniform case for n = 1024 and n = 4096
degrees of freedom. R(k)-blocks are light grey and full matrix blocks are dark grey

Table 2. The sparsity C, and the idempotency Ciq of the tree T is bounded for increasing n

n = 4096 n = 16384 n = 65536 n = 262144

Cyp 23 23 23 23
G; 18 18 18 18

Construction and Arithmetics of .#-Matrices

329

Table 3. Left: time (in seconds) for the (formatted) inversion on a uniform grid. Right: relative error

|l — A4 Inv(4)| in the spectral norm for the (formatted) inverse on a uniform grid

n= 4096 16384 65536 2062144
k=1 24 8.9 26+1 4.7+1
k=2 57-1 32 1.2+1 2.7+1
k=3 92-2 52-1 24 1.0+1
k=4 20-2 99-2 44-1 1.91
k=5 23-3 92-3 40-2 1.7-1
k=6 64-4 37-3 18-2 8.4-2
k=7 14-4 69-4 29-3 12-2
k=8 78-5 39-4 183 7.7-3
k=9 85-6 4.6-5 21-4 9.4-4
k=15 68-9 33-8 13-7 52-7
k=20 1.7-12 13-10 53-10 2.5-9

time (in seconds) for the (formatted) addition on a uniform grid. Right: time (in
seconds) for the (formatted) multiplication on a uniform grid

n= 4096 16384 65536 262144
k=1 10.59 6.7+1 3.5+2 1.6+3
k=2 1185 80+1 44+2 22+3
k=3 13.73 1.0+2 56+2 3.0+3
k=4 1619 12+2 68+2 3.6+3
k=5 19.33 1.5+2 8.6+2 48+3
k=6 2241 1.7+2 1.0+3 6.0+3
k=7 2580 20+2 13+3 7.4+3
k=8 2787 22+2 13+3 7.8+3
k=9 30.19 24+2 15+3 9.1+3
k=15 3977 34+2 23+3 15+4
k=20 4215 37+2 26+3 1.6+4

Table 4. Left:

n= 4096 16384 65536 262144
k=1 1.5-1 0.81 4.1 2.0+1
k=2 24-1 144 7.8 4.0+1
k=3 3.4-1 209 1241 62+1
k=4 49-1 287 1.6+1 8.0+1
k=5 6.7-1 4.03 22+1 1.1+2
k=6 8.9-1 527 28+1 1.5+2
k=7 1.12 6.82 3.7+1 19+2
k=8 133 8.02 43+1 22+2
k=9 1.66 10.19 55+1 29+2
k=15 394 2421 13+2 69+2
k=20 5.08 3404 19+2 1.0+3

n= 4096 16384 65536 262144
k=1 2059 13+2 6.6+2 33+3
k=2 2495 1.7+2 94+2 52+3
k=3 3036 21+2 13+3 7.6+3
k=4 3782 27+2 16+3 93+3
k=5 4691 35+2 22+3 13+4
k=6 5702 43+2 28+3 1.7+4
k=7 6875 53+2 35+3 22+4
k=8 7728 6.0+2 38+3 23+4
k=9 9355 73+2 48+3 29+4
k=15 1.7+2 14+3 97+3 62+4
k=20 20+2 18+3 12+4 8.0+4

Table 5. Left: time (in seconds) for the matrix vector multiplication on a uniform grid. Right: storage
requirements (in 1024 Byte) for an #-matrix corresponding to a uniform grid

n= 4096 16384 65536 262144 n= 4096 16384 65536 262144
k=1 2.0-2 0.16 0.76 33 k=1 15+4 74+4 33+5 14+6
k=2 34-2 0.18 0.88 3.9 k=2 17+4 86+4 40+5 18+6
k=3 372 0.20 0.99 4.6 k=3 19+4 98+4 47+5 21+6
k=4 4.0-2 0.22 1.11 5.2 k=4 21+4 1.1+5 54+5 25+6
k=5 43-2 0.24 1.23 59 k=5 22+4 12+5 6.1+5 29+6
k=6 4.6-2 0.26 1.35 6.5 k=6 24+4 13+5 68+5 33+6
k=7 49-2 0.28 1.46 7.1 k=7 26+4 15+5 75+5 3.6+6
k=8 51-2 0.30 1.58 7.7 k=8 27+4 1.6+5 82+5 4.0+6
k=9 54-2 0.31 1.69 8.4 k=9 29+4 1.7+5 88+5 44+6
k=15 7.1-2 0.43 2.39 12.1 k=15 39+4 24+5 13+6 6.7+6
k=20 7.1-2 0.44 2.54 13.4 k=20 48+4 3.0+5 1.7+6 85+6

I:={l1,...,n} differ in the boundary concentrated case. Construction 4.3 yields

the block #-tree T4 or T2, respectively, whose leaves partition the product
index set / x I. The parameter 7 in the admissibility condition is # := 1.0 and the
minimal blocksize is ny;, := 32. For n = 3058 degrees of freedom the partitioning
(geometrically and cardinality balanced) is depicted in Fig. 4. The sparsity Cs, and

330 L. Grasedyck and W. Hackbusch

the idempotency Ciq of the trees T4 and T€° are given in Table 6. As we
expected the sparsity and idempotency constants of the tree 7%°° are bounded
while these values seem to increase for the tree 7°'¢. The complexity and accuracy
of the (formatted) inversion is given in Table 7. The complexity of the inversion is
reduced as compared to the uniform case while the accuracy is enhanced. This
resembles the fact that the grid degenerates to a lower dimensional structure (the
boundary). The cardinality balanced tree 7™ is also suitable for the (formatted)
arithmetics, although it is of an irregular structure and does not possess a
bounded sparsity or idempotency. From Table 8 we observe that the complexity
of the corresponding arithmetic operations exceeds that of the geometrically ba-
lanced tree by a factor of 2 — 3. Since we were able to provide estimates for the
complexity with respect to the geometrically balanced tree and this tree yields a
better performance in practice, we propose to use the tree 7 over the tree 7™,

5.4 Edge Concentrated Grid

The # -tree T built by Construction 4.1 (cardinality balanced) and the #-tree
TF°° built by Construction 4.2 (geometrically balanced) for the index set

1] i]

1
&=
i

=
=
BEE

=
HH
it
BT

i

RRIGEE::

[CHH

Fig. 4. The partitioning of the product index set / x / in the boundary concentrated case for n = 3216
degrees of freedom; to the left the geometrically balanced and to the right the cardinality balanced case.
R(k)-blocks are light grey and full matrix blocks are dark grey

Table 6. The sparsity Cy, and the idempotency Ciq of the tree 7#°° are bounded for increasing n while
this is not true for 7°'¢ in the boundary concentrated case

n= 6664 13568 27384 55024 110312
depth(72°) 11 13 15 17 19
Cop(TE°) 26 28 34 36 26
Cia(T) 18 20 24 22 20
depth(7ead) 9 10 11 12 13
Cop(T) 32 38 56 80 131

Cia(T1) 24 28 34 39 53

Construction and Arithmetics of .#-Matrices 331

Table 7. Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid for
the geometrically balanced tree 7%°°. Right: relative error |7 — 4 Inv(4)|| in the spectral norm for the
(formatted) inverse on the boundary concentrated grid

6664 13568 27384 55024 110312 n= 6664 13568 27384 55024 110312

3
|

2642 47.88 1.2+2 3.0+2 7.0+2
2571 4781 12+2 29+2 69+2
2572 4794 12+2 3.0+2 7.0+2

3.1-10 5.0-7 1.9-10 5.8-7 5.9-7
1.4-12 4.2-10 2.1-11 2.5-10 2.8-10
1.0-14 2.4-13 2.1-14 2.7-13 2.8-13

k=1 1783 3023 75+1 1.84+2 4.0+2 k=1 9.6-2 99-2 79-2 I1.1-1 94-2
k=2 1924 3372 8.6+1 2.1+2 4.7+2 k=2 13-2 1.1-2 1.7-2 19-2 1.6-2
k=3 2127 3826 9.6+1 24+2 55+2 k=3 39-3 44-3 17-3 45-3 47-3
k=4 2279 43.09 1.0+2 2.5+2 57+2 k=4 8.6-5 47-4 17-4 50-4 5.1-4
k=5 2453 4447 1.1+2 27+2 63+2 k=5 89-6 3.6-5 7.6-6 49-5 5.0-5
k=6 2503 46.66 12+2 29+2 6.7+2 k=6 21-8 98-7 12-6 13-6 14-6
k=17 k=17
k=38 k=8
k=9 k=9

Table 8. Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid for
the cardinality balanced tree 7. Right: relative error ||/ — 4 Inv(4)| in the spectral norm for the
(formatted) inverse on the boundary concentrated grid

n= 6664 13568 27384 55024 110312 n= 6664 13568 27384 55024 110312
k=1 2569 6826 19+2 41+2 8.2+2 k=1 38-2 78-2 7.8-2 1.0-1 I1.1-1
k=2 2708 73.67 21+2 4.6+2 9.7+2 k=2 48-3 22-2 22-2 27-2 28-2
k=3 2929 8022 23+2 54+2 1.2+3 k=3 12-3 63-3 63-3 85-3 8.6-3
k=4 3107 8748 25+2 59+2 1.3+3 k=4 12-4 39-4 39-4 1.1-3 12-3

Table 9. The sparsity C, and the idempotency Ciq of the tree 7°° are bounded for increasing n while
this is not true for 74 in the edge concentrated case

n= 6129 12272 24559 49134 98285

depth(7e°) 13 15 17 19 21
Cop (T5) 21 21 21 21 21
Ciq(T2) 16 16 16 16 16

depth(7crd) 10 11 12 13 14
Csp(T9) 204 204 320 320 640
Cig(Terd) 40 48 56 64 72

I:={1,...,n} differ in the edge concentrated case. Construction 4.3 yields the
block # -trees T or T#°, respectively, whose leaves partition the product index
set / x I. The parameter # in the admissibility condition is 7 := 1.0 and the minimal
blocksize is nmi, := 32. For n = 3058 degrees of freedom the partitioning (geo-
metrically and cardinality balanced) is depicted in Fig. 5. We should mention that
the left picture in Fig. 5 is slightly misleading because the structure of the parti-
tioning is not as regular as it seems: blocks r x s with #r < npin or #s < npin and
#r > npin O #5 > nyiy are not visible but they appear frequently. The sparsity
Csp and the idempotency Cig of the trees T card and 7% are given in Table 9. Again
we observe that the sparsity and idempotency is bounded for the geometrically
balanced tree 7¢° while the sparsity of the cardinality balanced tree 7¢'d seems to
be Cyp(T4"4) = @(1/n). In Fig. 5 we find that the maximal sparsity appears only in a
few rows or columns of the matrix and indeed the numerical results in Table 11
indicate that the (formatted) inversion is of complexity ¢(nlog(n)?). Since the

332

L. Grasedyck and W. Hackbusch

Figure 5. The partitioning of the product index set / x I in the edge concentrated case for n = 3058
degrees of freedom; to the left the geometrically balanced and to the right cardinality balanced case.
R(k)-blocks are light grey and full matrix blocks are dark grey

Table 10. Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid.
Right: relative error |7 — 4 Inv(4)|| in the spectral norm for the (formatted) inverse on the edge

concentrated grid

n= 6129 12272 98285 n= 12272 24559 49134 98285
k=1 1501 36.01 48+2 k=1 39-2 44-2 47-2 49-2
k=2 1576 38.74 54+2 k=2 43-3 4.6-3 4.7-3 49-3
k=3 1683 41.79 6.1+2 k=3 4.6-5 4.7-5 49-5 49-5
k=4 1793 44.80 6.4+2 k=4 6.2-6 6.4-6 68-6 6.9-6
k=5 1894 47.34 6.9+2 k=5 1.3-8 1.3-8 13-8 1.3-8
k=6 19.56 49.50 7.4+2 k=6 5.0-11 5.8-11 5.8-11 5.9-11 6.2-11
k=7 19.78 50.55 7.7+2 k=7 19-14 2.8-14 3.5-14 4.5-14 5.2-14

Table 11. Left: time (in seconds) for the (formatted) inversion on the edge concentrated grid for the
cardinality balanced tree T, Right: relative error ||/ — A Inv(4)|| in the spectral norm for the

(formatted) inverse on the edge concentrated grid

n= 6129 12272 24559 49134 98285 n 12272 24559 49134 98285
k=1 4221 1.1+2 2.5+2 55+2 1.3+3 k=1 5.5-2 55-2 6.5-2 7.0-2
k=2 50.69 12+2 3.0+2 6.6+2 1.6+3 k=2 6.3-3 64-3 6.7-3 6.9-3
k=3 5724 15+2 3.6+2 82+2 2.1+3 k=3 1.5-3 1.6-3 1.7-3 1.7-3
k=4 67.15 1.7+2 43+2 98+2 2.5+3 k=4 3.2-5 3.5-5 3.7-5 3.7-5

(formatted) inversion with the cardinality balanced tree is by a factor of 2 — 3
slower than with the geometrically balanced tree, it is advisable to use the latter one
for which we have proven the desired estimates of the complexity.

5.5 A Differential Operator with “Jumping Coefficients”

In this section we replace the Laplacian —A = —divV by the operator —A.,

Construction and Arithmetics of #-Matrices 333

—AJu)(x) := —(div a(c,x)V)[u](x),

where the function o(c,x) : R x [0,1]* — R is defined by

c=1
’ 1 otherwise. i o
<— o=1

The construction of the s -tree T; and the block J#-tree T is the same as
in Section 5.2. Consequently, the sparsity and idempotency constants are the
same. Moreover, the complexity for the formatted inversion is the same in
the sense that the numbers coincide exactly with those of Tables 3—5. In Table 12
we present the approximation error ||/ — A Inv(4)|| in the spectral norm for the
formatted inverse Inv(4). In this first example the coefficient o(c,x) is chosen
in a structured way as it may occur, e.g., for technical devices. As a second
example we choose the coefficient ¢(c,x) in a stochastic way: for each element
7 in our triangulation we define a random real number ¢; € [1,¢] and let

a(c,x) == ¢, for x € 1,
i.e., a(c,x) is piecewise constant. Table 13 presents the approximation error

I — A Inv(4)|| in the spectral norm for the formatted inverse Inv(4). The
approximation error is (roughly) the same as for the Laplace operator (cf. Table 3).

Table 12. The relative error ||/ — 4 Inv(4)| in the spectral norm for the (formatted) inverse on the
uniform grid where the coefficient is ¢ = 10 left and ¢ = 100 right

c=10 n=409 n=16384 n=1065536 c=100 n=4096 n=16384 n=65536
k=1 6.7 26.3 57.3 k=1 111 199.9 179.7
k=5 4.2-3 3.6-2 1.6-1 k=5 3.1-2 1.79 3.19
k=9 3.2-5 2.5-4 9.7-4 k=9 3.9-4 4.2-3 1.7-2
k=13 7.0-7 3.4-6 1.8-5 k=13 1.8-6 1.4-4 1.8-4
k=17 6.1-11 2.5-9 1.4-8 k=17 1.1-10 2.4-8 4.3-7

Table 13. The relative error ||/ — A4 Inv(4)|| in the spectral norm for the (formatted) inverse on the
uniform grid where the bound for the random coefficient is ¢ = 10 left and ¢ = 100 right

c=10 n=409 n=16384 n=1065536 c=100 n=4096 n=16384 n=65536
k=1 2.77 10.15 31.04 k=1 3.00 10.59 32.96
k=5 2.1-3 9.9-3 4.9-2 k=5 2.4-3 1.1-2 5.1-2
k=9 9.7-6 6.5-5 3.1-4 k=9 1.6-5 6.9-5 3.2-4
k=13 38-7 1.3-6 4.9-6 k=13 1.5-7 1.1-6 4.0-6

k=17 9.6-11 3.4-9 1.4-8 k=17 7.8-11 4.8-9 9.5-9

334

(1]

(2]
(3]
4

(5]
o]

(]
(8]

[
[10]

(1]
[12]

L. Grasedyck and W. Hackbusch: Construction and Arithmetics of J#-Matrices

References

Bebendorf, M., Hackbusch, W.: Existence of #-matrix approximants to the inverse FE-matrix of
elliptic operators with L*>-coefficients. Preprint No. 21, Max-Planck-Institut fiir Mathematik in
den Naturwissenschaften, Leipzig, 2002. To appear in Numer. Math.

Borm, S., Grasedyck, L.: Low-rank approximation of integral operators by interpolation.
Preprint No. 72, Leipzig: Max-Planck-Institut fiir Mathematik in den Naturwissenschaften, 2002.
Borm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications.
EABE 27, 403-564 (2003).

Borm, S., Lohndorf, M., Melenk, J.: Approximation of integral operators by variable-order
interpolation. Preprint No. 82, Leipzig: Max-Planck-Institut fiir Mathematik in den Naturwis-
senschaften, 2002.

Golub, G. H., Van Loan, C. F.: Matrix computations. Baltimore, London: Johns Hopkins
University Press, 1996.

Graham, I. G., Hackbusch, W., Sauter, S. A.: Finite elements on degenerated meshes: inverse-
type inequalities and applications. Preprint No. 102, Leipzig: Max-Planck-Institut fiir Mathe-
matik in den Naturwissenschaften, 2002.

Grasedyck, L.: Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis, Universitét
zu Kiel, Germany, 2001.

Hackbusch, W.: A sparse matrix arithmetic based on s -matrices. Part I: Introduction to
A -matrices. Computing 62, 89-108 (1999).

Hackbusch, W.: Iterative solution of large sparse systems. New York: Springer-Verlag, 1994.
Hackbusch, W., Khoromskij, B. N.: A sparse # -matrix arithmetic. Part II: Application to multi-
dimensional problems. Computing 64, 21-47 (2000).

Hackbusch, W., Khoromskij, B. N., Sauter, S. A.: On #*-matrices. In: Bungartz, H.-J., Hoppe,
R.H.W., Zenger, C. (eds.) Lectures on applied mathematics. Berlin: Springer-Verlag, 2000.

Le Borne, S.: #-matrices for convection-diffusion problems with constant convection. Comput-
ing 70, 261-274 (2003)

L. Grasedyck

W. Hackbusch

Max-Planck-Institute for Mathematics in the Sciences
Inselstr. 22-26

D-04103 Leipzig Germany

e-mail: {lgr,wh}@mis.mpg.de

