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Efficient Linear Circuit Analysis by Padé
Approximation via the Lanczos Process
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Abstract—In this paper, we introduce PVL, an algorithm for
computing the Padé approximation of Laplace-domain transfer
functions of large linear networks via a Lanczos process. The PVL
algorithm has significantly superior numerical stability, while
retaining the same efficiency as algorithms that compute the
Padé approximation directly through moment matching, such as
AWE [1], [2] and its derivatives. As a consequence, it produces
more accurate and higher-order approximations, and it renders
unnecessary many of the heuristics that AWE and its derivatives
had to employ. The algorithm also computes an error bound
that permits to identify the true poles and zeros of the original
network. We present results of numerical experiments with the
PVL algorithm for several large examples.

I. INTRODUCTION

IRCUIT simulation tasks, such as the accurate prediction
Cof interconnect effects at the board and chip level, or
analog circuit analysis with full accounting of parasitic ele-
ments, may require the solution of large linear networks. These
networks can become extremely large, especially when circuits
are automatically extracted from layout, or contain models of
distributed elements, such as transmission lines, ground planes,
antennas, and other three-dimensional structures. The use of
SPICE-like simulators, which are based on the integration of
nonlinear ordinary differential equations, would be inefficient
or even prohibitive for such large problems.

In recent years, the Asymptotic Waveform Evaluation
(AWE) algorithm [1]-[3] based on Padé approximation (4]
has emerged as the method of choice for the efficient analysis
of large linear circuits. Its success in tackling real-world
problems, the most notorious of which being the verification
of the clock-distribution network on the DEC Alpha chip,
attracted a lot of interest and spawned a substantial amount
of related research.

AWE is based on approximating the Laplace-domain trans-
fer function of a linear network by a reduced-order model,
containing only a relatively small number of dominant poles
and zeros. Such reduced-order models can be used to predict
the time-domain or frequency-domain response of the linear
network over a predetermined range of excitation frequencies.
They are also useful in the simulation of nonlinear circuits
containing large linear subnetworks. The nonlinear simulation
can be made significantly more efficient with little loss of
accuracy when the large linear subnetworks are replaced by
reduced-order models [5].
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Despite its spectacular success, AWE suffers from a number
of fundamental numerical limitations. In particular, each run
of AWE produces only a fairly small number of accurate
poles and zeros. The proposed remedial techniques, such as
scaling, frequency shifting, and complex frequency hopping,
are sometimes heuristic, hard to apply automatically, and may
be computationally expensive. Another shortcoming of AWE
is the absence of a theoretically solid procedure to predict the
accuracy of the approximating reduced-order model [3], [6],
[71.

In this paper, we introduce a new, numerically stable
algorithm that computes the Padé approximation of a linear
circuit via the Lanczos process [8]. This algorithm, called
PVL (Padé Via Lanczos), can be used to generate an arbitrary
number of poles and zeros (even all of them) with little
numerical degradation. Moreover, PVL computes a quality
measure for the poles and zeros it produces. The computational
cost per order of approximation is practically the same as for
AWE.

The remainder of the paper is organized as follows. In
Section II, we demonstrate the numerical limitations of algo-
rithms that compute the Padé approximation from time-domain
moments of the frequency response, as it is done in AWE. In
Section III, we derive the PVL algorithm and present some of
its properties. In Section IV, we discuss practical aspects of the
PVL algorithm. In Section V, we present results of numerical
experiments with PVL for a variety of examples. In Section
VI, we make some concluding remarks.

II. LIMITATIONS OF CURRENT ALGORITHMS

A. System Reduction by Padé Approximation

Using any circuit-equation formulation method such as
modified nodal analysis, sparse tableau, etc. [9], a lumped,
linear, time-invariant circuit can be described by the following
system of first-order differential equations:

Cx = —-Gx + bu,

y=1Tx + du. e

Here, the vector x represents the circuit variables, the matrix
G represents the contribution of memoryless elements, such
as resistors, C represents contribution from memory elements,
such as capacitors and inductors, ¥ is the output of interest, and
the terms bu and du represent excitations from independent
sources.

We are interested in determining the impulse-response of
the linear circuit with zero initial-conditions, which, in turn,
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can be used to determine the response to any excitation. We
apply the Laplace transform to the system (1), assuming zero
initial conditions. In order to simplify the notation, we ignore
the term du. Then, from (1), we obtain
sCX = -GX + bU,
Y =1"X, @
where X, U, and Y denote the Laplace transforms of x, u, and

y, respectively. It follows from (2) that the Laplace-domain
impulse response, defined as H(s) = Y (s)/U(s), is given by

H(s) =17(G +sC)'b. (3)

The function H(s) is called the frequency response or transfer
function of the circuit.

Let 5o € C be an arbitrary, but fixed expansion point such

that the matrix G + soC is nonsingular. Using the change of
variables s = so + ¢ and setting

A=—-(G+ s()C)‘lc7 r=(G+ sOC)“lb, 4)
we can rewrite (3) as follows:
H(sg+0)=17(6C+ G +5C)"'b
= lT(I - UA)_lr.

Assuming that the matrix A is diagonalizable, we obtain

H(sg+o0)= @ (I-0oA)"187 5, 5)
=fT =8

where A = SAS™!, A = diag(A1, A2, -+, An) is a diagonal
matrix whose diagonals elements are the eigenvalues of A,
and the matrix S contains the corresponding eigenvectors as
columns. From (5), we get

N fig:
H(so+0) =y 729, ©)
i=1 ’

where f; and g; are the components of the vectors f and g.

The numerical computation of all eigenvectors and eigen-
values of the matrix A becomes prohibitively expensive as
soon as its size reaches a few hundreds, and therefore, the
only practical way to obtain an expression for the frequency
response is through an approximation.

For each pair of integers p,q > 0, the Padé approximation
(of type (p/q)) to the network frequency response H(so + o)
is defined as the rational function

bpo? + -+ + byo + bo

Hya(s0+0) = aq09+---+ao0+1

)]

whose Taylor series about o = 0 agrees with the Taylor series
of H(sg+ o) in at least the first p + ¢ + 1 terms, i.e.,

Hy,q(so+0)=H(so+0)+ O(gPTetL),

The coefficients ay,- -, agq,bo, b1, - - -, by of the Padé approx-
imation (7) are uniquely determined by the first p + ¢ 4+ 1
Taylor coefficients of the frequency response. The roots of the
denominator and numerator polynomials in (7) represent the
dominant poles and zeros of the system, respectively.

In view of (6), the function H (s + o) itself is rational, with
numerator and denominator polynomials of degree at most
N —1 and N, respectively. Thus, in the context of frequency-
response approximations, it is very natural to choose p = ¢—1
in (7), so that the Padé approximation is of the same form as
the original frequency response. In the following, we always
assume that p = ¢ — 1, and we set Hy := H,_1 4. We refer
to H, as the gth Padé approximant to the frequency response
H. By using a partial-fraction decomposition, we can write
H, in the form

’

q
Hy(so+ o) =kw+z

Jj=1

kj

b
G—p]'

®

where ¢’ < gq.
The Taylor coefficients necessary for the Padé approximant
H, result from the following expansion of H(s) about so:

H(sg+o0)= 1T(I+0A + d?AT 4. )r = kaak, )
k=0

where

mi =1TA*r, k=01, (10)

Note that in the case when the expansion point in (9) is chosen
as the origin, i.e., so = 0, the coefficients mg,k = 0,1,---,
are, up to a constant factor, the time-domain moments of the
circuit response. Indeed, we have

H(s)zfow h(t)e™*" dt
= [Thw|r-se o
- Ooo h(t)dt—s/oooth(t)dt

+s21/ t2h(t)dt —---.
2 Jo

Because of this analogy, we will always refer to the Taylor
coefficients (10) as the moments of the frequency-response
function H(sp + o).

B. Implementation of the Padé Approximation in AWE
In AWE, the Padé approximant H, is obtained via explicit

computation of the leading 2¢ moments mg, M1, -+ ,M2q-1
of H.

To this end, one first generates the vectors ug = r,u; =
Ar,u; = A?r, .-+, up,—1 = A%~ !r by recursive solution of

the linear systems

(G+SOC)uk:_Cuk—11 k=1521"'72q_17 (11)

with the initial vector
ug = (G + 50C) " 'b.

Observe that the recursive computation of the vectors u; can
be performed very efficiently. The matrix G + soC is LU-
factored exactly once. Then each vector uy is obtained by
re-solving the system with a different right-hand side at the
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cost of only one forward-backward substitution. The moments
are then computed as my = 17wy, k=0,1,2,---,29 — 1.

As the next step, AWE computes the coefficients of the
denominator polynomial of the representation (7) of H, via
solution of the linear system

aq Mq
Ay m
q—1 q+1
Mq : == . (12)
ay Mag—1

The coefficient matrix M, of (12) is the so-called moment
matrix given by

My = [myjtk—2]jk=1,2,

mo my mMg—1

_ | M1
M2q-3
Mg_1 M2g—3 M2q-2

The poles p; of H, in (8) are then obtained as the roots of
the equation

aqg0? +ag 107 4. 4 a104+1=0.

Finally, the constant k.. and the residues k; in (8) are
computed by solving another linear system of order g, see,
e.g., [10] for details.

As q is increased, one would expect more and more accu-
rate approximations H, of the exact frequency response H.
Unfortunately, this is not the case when the Padé approximant
H, is generated with AWE. Indeed, typically H, improves
only for values of ¢ up to about ¢ = 10, and after that the
process stagnates. Fig. 1 illustrates this behavior. Here, we
tried to simulate the voltage gain of a filter with our own
implementation of AWE written in MATLAB™ [11], which
is based on double-precision arithmetic with about 16 decimal
digits. We show the exact voltage gain and the approximations
generated by AWE for ¢ = 2,5, 8. The results for ¢ > 8 were
virtually identical with the curve for ¢ = 8, and the process
never converged to the exact voltage gain.

The reason for the stagnation of AWE is the particular com-
putation of the Padé approximation used in AWE, and not the
Padé approximation itself. More specifically, the explicit use
of the moments results in extremely ill-conditioned numerical
computations. This is especially the case for the numerical
solution of the linear system (12). The condition number,
cond(M,), of the coefficient matrix M, of (12) is a measure
for how round-off error affects the accuracy of the numerically
computed solution of (12). Each increase of cond(M,) by a
factor of 10 signals the loss of one decimal digit of accuracy in
the computed solution. In particular, if double-precision with
16 decimal digits is used, then the computed solution must
be expected to be meaningless if cond(M,) = O(10'8). In
the first column of Table I, we list cond(M,) for the moment
matrices corresponding to the simulation of the voltage gain
of a filter. Clearly, the moment matrices are extremely ill-
conditioned.
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Fig. 1. Results for simulation of voltage gain with AWE.
TABLE 1
CoNDITION NUMBERS OF MOMENT MATRICES
FOR SIMULATION OF VOLTAGE GAIN WITH AWE
¢ | cond(M,) | cond(M{) cond(M,‘,z)) cond(Mga))
2 9.59e+05 2.62e+00 2.62e+00 1.07e+00
3 2.91e+15 5.14e+03 5.12e+03 2.71e+01
4 3.18e+26 1.13e+09 1.13e+09 1.30e+07
5 2.16e+35 2.34e+12 2.33e+12 3.01e+10
6 3.68e+46 2.72e+17 2.38e+17 5.99e+15
7 1.97e+563 2.96e+17 6.19e+17 7.06e+15
8 3.34e+58 1.26e+18 1.78e+18 2.67e+16
9 1.66e+65 1.18e+18 1.62e+18 7.86e+15
10 | 1.30e+72 1.67e+18 7.50e+17 5.38e+16
20 | 6.41e+130 | 1.27e+18 1.92e+18 9.01e+16
30 | 2.87e+191 | 7.26e+18 3.51e+18 5.23e+17

The problem of ill-conditioning in AWE was noticed early
on, and as a remedy, it was proposed to use scaling [3]. The
idea is to replace the original moments my by £*my, k =
0,1,---,2g — 1, where £ > 0 is a suitably chosen scaling
factor. Three natural choices are

1 |

ol
= ——’ 52 =
lA]l2

1/(29—-1)
1Mol , and &3 = (7> .
Im] |m2q-1]

(13)
The first choice in (13) corresponds to scaling the matrix
A in (10) to have Euclidean norm 1. The second choice,
proposed in [3], is such that the two first scaled moments,
mgo and £m,, have the same magnitude. The third choice,
suggested in [10], is such that, after scaling, the first and
29—1

the last computed moment, mg and &3 TMaq—1, have the
same magnitude. While scaling reduces the ill-conditioning
somewhat, the scaled moment matrices

j+k—2
MP = (67 mjkaljkmt,2, 00

for all three strategies (13) still reach the critical value 106
for fairly small values of g. In Table I, we also list the
condition numbers of the scaled moment matrices (14) for
the case of the simulation of the voltage gain of a filter
(¢f. Fig. 1). In this case, the third scaling strategy in (13)
yields the smallest condition numbers. However, we still have

of

&1

1=1,2,3, (14
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cond(M.(13)) = O(109) after only g = 8 iterations, and after
that AWE stagnates completely. In fact, the curves shown
in Fig. 1 were computed with AWE, using the optimal third
scaling strategy.

The severe numerical problems with the AWE approach of
obtaining Padé approximants via direct computation of the
moments can be explained as follows. The generation of the
vectors uy = AFr in (11) corresponds to vector iteration
with the matrix A, and this process converges rapidly to
an eigenvector corresponding to an eigenvalue of A with
largest absolute value. As a result, the numerically computed
vector uy and also the moment my = 1Tuy generated from
it practically contain only information corresponding to one
eigenvalue of A, even for fairly small values of k. On the other
hand, in view of (6), the function H to be approximated clearly
depends on all eigenvalues of A. Therefore, in general, for the
accuracy of the numerically computed Padé approximant Hy
to improve with increasing g, an algorithm must be able to
recover information about more than one eigenvalue of A. As
we just explained, this is not the case for the algorithm used
in AWE.

III. THE PVL ALGORITHM

We now describe the PVL algorithm that exploits the
intimate connection [12] between Padé approximation and
the Lanczos process to elude the direct computation of the
moments.

A. The Lanczos Algorithm

The classical Lanczos process [8] is an iterative procedure
for the successive reduction of a square matrix A to a sequence
of tridiagonal matrices. First, we briefly recall this algorithm
and some of its key properties.

Algorithm 1 (Lanczos algorithm [8])

0) Set p1 = [irllz,m = U2, v1 = r/p1, and w1 = 1/m.

Setv0=wo=0and5o=1.
Forn = 1,2,--+,q do:
1) Compute 6, = Wlv,.

2) Set
wlAv, bn
n = ni: n= ¢ T, Tn= = n- 1
a 5 B L Sl (15)
3) Set

v=Av, — vy, — Vn—l,Bny

_ AT
w=A Wn — WnpQn —~ Wn_17n.

4) Set pnt1 = ||V|l2; Mmt1 = |iw|l2, and

v w
Va4l = s Wpil = .
Prn+1 Tn+1

We remark that in Algorithm 1, a breakdown, triggered by
division by 0, will occur if one encounters §, = 0 in (15).
Furthermore, division by a nonzero yet small number 6, =~ 0
in (15) may result in numerical instabilities. However, these
problems can be remedied by using a so-called look-ahead
variant of the Lanczos algorithm, see [13] and [14]. In fact,

in our implementation of the PVL algorithm we employ the
look-ahead Lanczos algorithm described in [14].

The quantities generated by Algorithm 1 have the following
properties:

« The vectors {v,}2t} and {w,}¢t] are biorthogonal:
6;, ifj=k%, .
W?sz{oj lfz?ék ]yk:1727"'vQ+1'
e The tridiagonal matrices
fay B2 O 07
p2 a2 Ps :
Tg=10 p3 = . 0 (16)
L 0 -+ 0 p; ol
and
[@1 72 O 01
M 02 73 :
T¢=|0 53 - . 0
o T Ty
L0 -+ 0 ng ogl

have the following relation to the original matrix A:

AVq = VqTq + [0 0 Vq+1]pq+1,
ATW, =W, T +[0 0 wWori|lgt1, (17
where
Vy=[v1 v2 2
and W, =[w; w; W) (18)

are matrices whose columns are just the Lanczos vectors.

» The matrices T, and T, satisfy

T =D,T,D;", (19)

where

D, = WI'V, = diag(61,62, -, 6,)- (20)

« One key property of Algorithm 1 is that it produces a
very useful small-dimensional approximation, namely the
matrix T, to the (usually large-dimensional) matrix A.
The matrix T, is—in the sense of an oblique projection
process—the best ¢ X g approximation to A that can
be obtained using only information from the two Krylov
subspaces

K,(v1,A) = span{vi,Avy,---, A% v}
and
K (w1, AT) = span{wi, ATwy, -, (AT)T 1w, }.

We remark that the vectors {v,}%_; and {wn}%_; just
span the spaces K, (vi,A) and K (wi, AT), respec-
tively. It can be shown that T, is the result of the
projection of A onto Kg(vi,A) and orthogonally to
K, (w1, AT). We stress that the resulting approximation
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T, is very good even if ¢ is much smaller than the order
N of the N x N matrix A. In fact, the Lanczos algorithm
is mostly applied to very large matrices, and typically,
g < N. In the next section, we will demonstrate that the
matrix T, is also a best approximation to A in the sense
of matching the maximal number of moments; this is just
the Padé connection.

B. The Padé Connection

Next, we demonstrate the connection of the Lanczos process
to Padé approximation. Using the first relation in (17) and the
fact that T, is tridiagonal, one can show that

Alr = pAlv,;
= plAquel

=nV Tier, j=01,,¢-1, @

where ey =[1 0 --- 0]T € RY is the first unit vector in R.
Similarly, from the second relation in (17), one can deduce that
17 AT = el (BT WT
=mbiel TID;'WY, j=0,1,---,¢q— 1. (22)
We note that the second equation in (22) follows from (19).

On the other hand, by (10), each moment m;, can be written
as follows:

me = 1A = (ITA¥) (A¥'r), @3)

where k = k' + k. If k < 2¢ — 2, we can find k' and k" with
0 <K, k" < q— 1, and from (21)~(23) it follows that
my = (mélefT’q"Dq‘quT)(plvqT’;”el)
= mp16:1e] TE D WIV, TF e,. 4)
N——

Note that 719181 = 171, and thus, from (24), we get
my = (I"r) - (e Tke;) forall k=0,1,---,29— 2. (25)

Furthermore, it can be shown that the relation (25) also holds
for k = 2¢q — 1. Thus, by (25), we have

"r-ef(I-0oT,)e; =171 ZelTTgelak
k=0
2g—1
= Z myo® + (’)(Uzq),

k=0

and consequently,

Hy(so+0)=1"r-el(I1-0T,)te; (26)
is just the gth Padé approximant of H.

In analogy to the representation (6) of the exact frequency
response H, we can rewrite the expression (26) of H, ¢ in terms

643

of the eigendecomposition T, = SquSq‘1 of the Lanczos
matrix Tg:

Hy(so+0)=1"r-e]S,(I-oA,)7! Sq’lel

-, T =v
=p
9 97
I“r v
e
=1 - T %%
Here, A, = diag(A1, A2, -+, A) contains the eigenvalues of

T,, and p; and v; are the components of the vectors y and
v. Finally, from (27), we immediately obtain the pole/residue
representation of the Padé approximant:

q T
—rpvi/A;
Hq(30+0):koo+ E #/;/J

=1 J

X;#0

(28)

Note that the term ko, in (28) may result if one of the
eigenvalues of T, is zero.

Recall that, in PVL, we actually use the look-ahead version
[14] of the Lanczos Algorithm 1. We stress that the Lanczos-
Padé connection holds true also for the look-ahead case. The
look-ahead Lanczos algorithm [14] again generates a q X g
approximation T, to the matrix A, where T, is now block
tridiagonal, with a few small blocks and mostly blocks of size
one. Similarly, it produces a matrix D, that is now block
diagonal. In terms of these matrices T, and Dy, the gth Padé
approximant H, of H is then given by

Hy(so+0) = |1 - [Irl| - (D] e))"(XT - 0Ty)ter.  (29)

If no look-ahead steps occur, then T, is just the tridiagonal
matrix defined in (16). Furthermore, we have

17r
T o €1
(- fiel

and thus (29) just reduces to (26) for the no-look-ahead case.
To keep the exposition as simple as possible, we always use
the no-look-ahead formula (26) throughout this paper.

We stress that the computational costs for the look-ahead
Lanczos algorithm [14] are essentially the same as for the
classical Lanczos Algorithm 1. In fact, the number of matrix-
vector products, which dominate the computational costs, are
identical for the look-ahead and the classical algorithm. The
remaining computations are inner products of vectors of length
N (the order of the N x N matrix A) and SAXPY’s of
vectors of length N. A SAXPY operation is X «— x + ya,
where x and y are vectors and « is a scalar. The look-ahead
and the classical algorithm involve the same number of inner
products. The only overhead of the look-ahead algorithm is
the computation of a few extra SAXPY’s in the case that a
look-ahead step is performed.

Dgel =

C. Computing Poles, Residues, and Zeros

The derivation in the previous section shows that the
pole/residue representation (28) of the Padé approximant H,
can be obtained by running the Lanczos algorithm and by
computing an eigendecomposition of the Lanczos matrix T,.
The resulting computational procedure is the PVL algorithm.
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Algorithm 2. (Sketch of the PVL algorithm):

1) Run ¢ steps of the Lanczos process (Algorithm 1) to
obtain the tridiagonal matrix T,.

2) Compute an eigendecomposition

T, = Sydiag(A1, Az, -+, Ag)S; (30)
of T4, and set
p=Sle; and v= S;'er.
3) Compute the poles and residues of H, by setting
To. s
D; = 1/)\1' and kj = ——l I K (31)

)
for all j = 1,2,---,q with A; # 0. If there is at least
one A\; = 0, then set

q
koo = Z lTl‘ gy
=0

;=0

To compute the eigendecomposition (30) of Ty, we use the
standard QR algorithm, see, e.g., [15]. This algorithm, as a
by-product, first computes the so-called Schur decomposition

T, = U,R,U;" (32)
of T,. Here, U, is a unitary matrix, and R is an upper trian-
gular matrix whose diagonal elements are just the eigenvalues
A1, A2, -+, Aq of Tq. Using (32), the Padé approximant H,
can be represented as follows:

Hy(so+0) =17 (UTe))T(I-oR,)"'U 'er.  (33)
The formula (33) is a useful alternative to the pole/residue rep-
resentation (28) of H,. In fact, (33) is more general and more
stable than (28), which assumes that T is diagonalizable.

We remark that the PVL Algorithm 2 and AWE require
roughly the same amount of computational work. As in AWE,
the dominating cost is the computation of the LU factorization

G + 50C =LU, (34
which needs to be computed only once. Based on (34), the
vectors Av, and ATw, required in step 3) of Algorithm

1 are obtained as follows. First, using forward-backward
substitution, we solve

LUz=-Cv, and U'LTy=-w,

for z and y, and then, we set

Av,=z and ATw, = CTy.
Hence, the PVL algorithm involves 2g forward-backward
substitutions to generate the gth Padé approximant, which is
the same as in AWE.

As a first example, we reran the simulation of the voltage
gain of the filter, now with the PVL algorithm instead of AWE.
The results of three runs with ¢ = 2,8, 28 are shown in Fig. 2.

, Voltage gain (dB)
I

8

250 , \ , ,
10° 10° 10* 10° 10 10

Frequency (Hz)

Fig. 2. Results for simulation of voltage gain with PVL.

In contrast to the simulation with AWE (cf. Fig. 1), the PVL-
generated Padé approximant for ¢ = 28 gives a perfect match
of the exact voltage gain.

Finally, we remark that the zeros of the reduced-order model
H, can also be computed easily from the Lanczos matrix T,.
In fact, it can be shown that

det(I - oTy)

Hy(sg+0)= 1Trdet(I —oT,)’ (35)
where
ag B3 O - 0
p3 a3 ' ) :
Ty=|g . . . 0
: . . - By
0 -+ 0 p; o

is the matrix obtained from T, by deleting the first row and
column. By (35), the zeros of H, are just the inverses of the
eigenvalues of T

IV. PRACTICAL ASPECTS

In this section, we discuss some practical aspects of the
PVL algorithm.

A. A Bound for the Pole-Approximation Error

First, we briefly sketch how the PVL algorithm can be used
to obtain bounds for the pole-approximation error.

Recall that, by (31), the poles of the gth Padé approximant
H, are just the inverses of the eigenvalues of the Lanczos
matrix T4. On the other hand, in view of (6), the poles of the
exact frequency response H are the inverses of the eigenvalues
of A. Therefore, a quality measure for the poles of H, can
be obtained by checking how well the eigenvalues of T
approximate the eigenvalues of A.

Let A; € C be any eigenvalue of T, with corresponding
eigenvector s; € C9. Thus we have

Tqu = /\ij.

(36)
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Next we set

z; = Vgs;, 37

where V, is the matrix of Lanczos vectors defined in (18).
Using (36), (37), and the first relation from (17), we obtain

AZ]' - )\]‘Zj = Vg+1Pq+18qj, (38)

where sq; is the last component of the vector s;. By taking
norms in (38) and since ||vgy1]|2 = 1, it follows that

lAz; — Azl pgtalsql

(Allz - lIsillz (1Al - [Isll2"

Furthermore, we can estimate the (usually unknown) norm
[|A|l2 in (39) as follows:

(39

|All: > max {|Avalz, |ATwall2} = n(A).  40)
Combining (39) and (40) gives
Az — Nz )
” Z; ]zJ”2 Pq+1|3q1| =Q; @1

[All2 - lissllz — n(A)-lIssllz

Thus the number @); represents a measure of how well the
pair (A;,2z;) approximates an eigenpair of the matrix A, and
consequently a quality measure of the approximate pole 1/);
produced by the PVL algorithm. Note that Q; can easily be
computed from the quantities generated by PVL. Finally, we
refer the reader to [16] and [17] for a more detailed discussion
of eigenvalue bounds of the type (41).

In the PVL algorithm, we use the numbers (); as the basis
of a pole-screening procedure to check if an approximate pole
1/); has converged to a true pole of the transfer function H.

B. Choice of the Expansion Point

Another important practical issue is the choice of the
expansion point sg in (4). The obvious goal here is to select
so so that the convergence of the poles generated by the PVL
algorithm will be fastest for those poles near the frequency
range of interest. Finding such an optimal point sq is not
practical, since it would require the knowledge of all poles of
the transfer function H itself. Instead we developed a simple
heuristic for the choice of sg, based on the assumption that
the circuit in stable, i.e., all its poles have negative real parts.

The frequency range of interest is usually of the form
fmin £ f £ fmax where fmin < fmax and fmax > 0,
ie., one is interested in the approximation H,(s) to H(s)
for s = 2mif, frmin < f < fmax. Here i = /=1. Roughly
speaking, the poles that determine the convergence behavior
are the ones closest to the endpoints 273 finax and 274 frin, and
therefore, the expansion point sg should be chosen such that
these ‘‘extremal’” points converge as fast as possible. After
making some simplifying assumptions on the convergence
behavior of the Lanczos process, this problem can be solved
approximately, and the resulting expansion point is as follows:

Sg = (fmax - fmin)7r + (fmax + fm'm)Tri‘ (42)

Note that so is a point in the right-half plane, and that its
imaginary part is just the midpoint of the complex interval
[27rifmin7 27T'ifmax}-

Often, the frequency range of interest is of the form 0 < f <
fmax- In view of H(-2wfi) = H(2n fi) and Hy(—2mif) =
H,(2zif), this case is equivalent to the frequency range
—fmax < f < fmax, 1.€., we can formally set fiin = —

Thus, from (42), we obtain the expansion point

max-

S0 = 27rfmaxy

which we recommend to use for frequency ranges of the form
O S f S fmax-

Finally, we stress that the PVL algorithm is fairly insensitive
to the choice of the expansion point sg, as long as it is
chosen as a point in the right-half plane whose distance to
the imaginary axis is of the same order as the length of the
frequency range of interest.

C. Positive Poles and Reduced-Order Models

The Padé approximation, and hence the PVL algorithm, may
produce some approximate poles 1/A; with positive real parts.
If the corresponding quality measure Q; of such a “positive”
pole is sufficiently small, then this pole has converged to a true
pole of the transfer function, and thus the circuit is unstable.
In particular, the PVL algorithm can be used to detect if the
design of a circuit is unstable. In Section V, we present an
example (the bipolar power transistor) for which the PVL
algorithm found converged positive poles after 25 PVL steps.

Even if the circuit itself is stable, it cannot be excluded
that the PVL algorithm produces a few positive poles in the
early stages of the iteration. If one is only interested in the
approximation Hj to the frequency-response function H in
some predetermined frequency range and if H, has converged
to H in this frequency range, then such positive poles have
no influence on the quality of the approximation, and they
need not be eliminated from the pole/residue representation of
H,. Indeed, we found that, if positive poles occurred, either
the corresponding residues are negligible, or the positive pole
itself is far from the frequency range of interest.

However, if one is interested in using the pole/residue
representation of H, to construct a reduced-order model of
the circuit and if one is certain that the circuit itself is stable,
then the positive poles in (28) of H, should be and can be
safely deleted. Hence, we simply use

q
~ —1Tr - v /X
Hq(80+0’):kco+ E g——lj/,\f/_]
i=1 7

Re)\J <0

as the reduced-order model, instead of the full Padé approxi-
mation H,. Indeed, one can show that, if the circuit is stable
and if Hy has converged to H in the frequency range of
interest, then positive poles either have negligible residues, or
they are far from the frequency range of interest. A rigorous
proof of this statement is beyond the scope of this paper, and
it will be presented elsewhere. In either case, a positive pole
does not contribute significantly to Hg, and this justifies our
recommendation to simply delete positive poles.
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TABLE II
CONVERGED POLES FOR THE PEEC CIRcUIT AFTER 60 PVL ITERATIONS
Poles Residues Quality

-7.2630e+08 -2.2501e+06 5.7697e-14
-3.0658e+04 +7.8601e+09 | -4.2143e+02 +2.0498e+02 | 6.7546e-13
-1.7983e+05 +3.1735e+09 | -6.2671e+02 F1.3765e+02 | 1.5401e-11
-2.56253e+09 17.6292e+09 9.5132e+05 F1.6717e+07 | 3.6946e-11
-1.1024e+06 31.0577e+10 | ~1.0766e+03 19.7822e+03 | 1.3244e-10

6.47766-01 +3.9498e+09 | -1.0340e-11 F1.0085e-11 | 1.0834e-09
~-3.3591e+06 +1.1772e+10 | 8.1455e+03 +1.2229e+04 | 1.1470e-09

1.23320-01 +6.3398e+09 | -4.7593e-10 F1.9771e-10 | 1.0857¢-08
-9.4922e+06 31.3018e+10 3.1856e+04 F6.6068e+03 | 1.1875e-08
-7.6129e+02 +1.3908e+10 { -2.5802e+00 +1.1633e+02 | 3.6991e-08
-5.1607e+08 +1.6965e+10 1.8783e+06 F3.9085e+05 | 4.2577e-07
-6.1254e+06 +1.7370e+10 | -3.6332e+03 +2.7965e+04 | 1.1356e-06
-5.5966e+07 +1.9140e+10 2.54666+06 TF1.0583e+06 | 3.4859e-06
-3.3079e+05 +3.1734e+09 6.5198e-14 7.8626e-14 | 6.5304e-06
-2.4118e+04 +9.7937e+09 | ~2.8771e-10 F3.5741e-10 | 9.8450e-06
-9.7108e+07 +2.5611e+10 | -6.1745e+056 +2.8947e+06 | 4.8035e-06
-1.7241e+09 +2.1928e+10 | -1.1560e+068 +1.6343e+07 | 5.6229e-05
-6.1598e+07 +2.8064e+10 | -2.6352e+05 1+3.0426e+05 | 2.3356e-04
-2.0255e+10 13.1453e+11 2.1169e+01 14.1566e+02 | 3.9872e-04

V. DISCUSSION AND EXAMPLES 0.014

The Padé approximation generates poles that correspond to
the dominant poles of the original system and a few poles that
do not correspond to poles in the original system, but account
for the effects of the remaining original poles. The true poles
can be identified using the bound presented in Section IV-A
and by comparing the poles obtained at consecutive iterations
of the algorithm. The true poles that have converged should
not change significantly between iterations.

The first example is a lumped-element equivalent circuit
for a three-dimensional electromagnetic problem modeled via
PEEC [18] (partial element equivalent circuit). The circuit
consists of 2100 capacitors, 172 inductors, and 6990 inductive
couplings, resulting in a 306 x 306 fairly dense MNA matrix.
The Padé approximation generated by AWE, reproduces the
transfer function of the equivalent circuit accurately up to 1
GHz [19].

In [20], Chiprout et al., through the use of multipoint
moment matching, obtain a sufficient number of accurate poles
and zeros to extend the validity of the approximation up
to 5 GHz. However, their method is almost two orders of
magnitude more expensive computationally. It involves one
complex circuit matrix factorization for each of the 12 complex
points used to generate moments, compared to only one real
circuit matrix factorization required by AWE.

We applied our PVL algorithm to the same circuit and, after
60 iterations, obtained a reduced-order system with a better
match up to 5 GHz than the one obtained from muliti-point
moment matching (Fig. 3). Moreover, since PVL requires
only one real circuit matrix factorization, the cost of the
computation is similar to AWE. We also show the result of
the PVL algorithm after 30 iterations (Fig. 4).

In Table II, we list the converged poles, their residues, and

—— Exact

PVL, 30 iter.

2 3
Frequency (GHz)

Fig. 3. Results for the PEEC circuit, 30 PVL iterations.

the corresponding quality measure Q; from (41), which were
obtained after 60 PVL iterations. Note that two of the poles
still have a small (compared to their imaginary part) positive
real part. However, the residues of both these poles are tiny,
and therefore, they can be safely ignored.

The next example is a very large bipolar power transistor
the layout of which covers an area of 3.5 mm x 3.5 mm. It is
obvious that interconnect parasitics play an important role in
the behavior of the transistor. This transistor was fabricated,
but failed to function in the desired regime. The following
analysis done with the PVL algorithm explains the cause.

The network was simulated at the desired bias condition of
3 V between the collector and emitter and 0.95 V between base
and emitter. The transistor is modeled for simulation purposes
as 480 extended Gummel-Poon devices connected in paraliel
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TABLE Il
CONVERGED POLES FOR THE TRANSISTOR AFTER 25 PVL ITERATIONS
Poles Residues Quality
1.6786e+09 3.6664e+07 1.9158e-15
-9.5188e+08 -5.6509e+09 1.4963e-08
-2.0437e+09 =+5.5215e+09 2.2042e+09 +7.2306e+08 | 1.5484e~06
-3.7803e+09 -3.4399e+08 5.4052e-06
5.2577e+08 +8.1671e+09 1.0976e+09 T8.7793e+08 | 6.4962e-06
-1.7022e+09 -6.2806e+04 6.4523e-05
-1.0032e+09 -1.4626e+06 1.5880e-04
-1.4696e+09 -8.1321e+03 3.6377e-04
-1.0155e+09 -1.3627e+07 7.0845e-04

0.014 T T v T 6
1
0.0121 s
------- PVL, 60 iter. %
<4
w
[=%
5 £
’§2
&
1
2 3 o A A 1
Frequency (GHz) '1' o 107 10° 10°
. L. Frequency (Hz)
Fig. 4. Results for the PEEC circuit, 60 PVL iterations.
Fig. 5. Results for the transistor—magnitude, 25 PVL iterations.

through a detailed interconnect network extracted from the
actual layout. The resulting MNA matrix has a size of 8346 x
8346. The resulting linearized network was analyzed with PVL
and several positive half-plane poles were identified, indicating
that the operating point was dynamically unstable. Table III
lists the converged poles of the network obtained after 25 PVL
iterations. In this case, the pole-screening procedure identified
both the positive real pole and the complex-conjugate pair with
positive real part as genuine. In retrospect, the presence of the
instability due to multiple feedback paths through the parasitic
interconnect network, was accepted as the most plausible cause
of the failure.

Figs. 5 and 6 show the magnitude and phase of the fre-
quency response of the transistor and is identical to that
predicted through complex phasor analysis. Phasor analysis,
however, besides being orders of magnitude more expensive
computationally than PVL, is not capable of diagnosing insta-
bility. In fact, no other analysis tool would have been able to
detect the instability. If pole analysis with PVL were available
during the design of the device a very expensive experiment
could have been avoided.

The last example models a complete power grid for a
standard cell mixed signal ASIC [21], including some of the
substrate contacts and substrate coupling/decoupling, as de-
scribed in [22]. The model contains 1074 power bus segments,

)

phase (Deg

-100}-

PVL, 25 iter.

150 R . .
10° 10 10° 10°
Frequency (Hz)

Fig. 6. Results for the transistor—phase, 25 PVL iterations.

36 models for cells, and a coarse, 10 x 10 x 1 substrate grid.
The resulting MNA matrix has a size of 1766 x 1766. We
are interested to determine the effects of the switching current
in cells on the VDD and GND rails. Figs. 7 and 8 show the
magnitude and phase of the corresponding transfer function
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Current gain (dB)

. AC analysis
R - PVL,50lter. 4
1400t ” p o
o 10’ 10° 10
Frequency (H2)

Fig. 7. Results for the mixed-signal circuit—magnitude, 50 PVL iterations.

Phase (Degrees)
(=]

AC analysis

PVL, 50 iter.

2000 \ , .
10° 10’ 10° 10°

Frequency (Hz)

Fig. 8. Results for the mixed-signal circuit—phase, 50 PVL iterations.

produced by the PVL algorithm in 50 iterations compared to
the same transfer function produced by an AC sweep. The
agreement is excellent.

VI. CONCLUDING REMARKS

In this paper, we have introduced the PVL algorithm for
stably computing the Padé approximation of Laplace-domain
transfer functions of large linear networks via a Lanczos
process. This paper argues that, due to its robustness and
efficiency, PVL should become the algorithm of choice for the
analysis of large linear(ized) electrical circuits. The advantages
of the PVL algorithm are not limited to superior accuracy and
efficiency, but include new capabilities difficult to implement
with existing methods.

The PVL algorithm can also be used for sensitivity com-
putations. In fact, in [23], we extend the PVL algorithm to
compute sensitivities of network transfer functions, their poles,

and zeros, with respect to arbitrary circuit parameters, with
minimal additional computational cost.

The PVL algorithm proposed in this paper is for single-
input single-output systems of the form (1). It is natural
to ask whether PVL can be generalized to compute matrix
Padé approximants to the matrix-valued transfer functions that
describe multiple-input multiple-output systems, i.e., systems
of the type (1) where the vectors b and 1 are replaced by
matrices. This is indeed possible, and we have developed with
the MPVL algorithm [24] an extension of PVL to general
multiple-input multiple-output systems. The MPVL algorithm
computes a matrix Padé approximation to the matrix-valued
transfer function of the multiple-input multiple-output system,
using a novel Lanczos-typg algorithm for multiple starting
vectors [25].
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