Combining Meta-EAs and Racing for Difficult
EA Parameter Tuning Tasks

Bo Yuan and Marcus Gallagher

School of Information Technology and Electrical Engineering
University of Queensland, QId. 4072, Australia
boyuan@Qitee.uq.edu.au, marcusg@itee.uq.edu.au

Summary. This chapter presents a novel framework for tuning the parameters of
Evolutionary Algorithms. A hybrid technique combining Meta-EAs and statistical
Racing approaches is developed, which is not only capable of effectively exploring
the search space of numerical parameters but also suitable for tuning symbolic pa-
rameters where it is generally difficult to define any sensible distance metric.

1 Introduction

One of the major issues in applying Evolutionary Algorithms (EAs) is how to
choose an appropriate parameter setting. The importance of parameter tuning
is at least threefold. Firstly, EAs are not completely parameter robust and may
not be able to solve challenging problems effectively with inappropriate values.
Secondly, when two or more EAs are compared, arbitrarily specified parameter
values may make the comparison unfair and conclusions misleading. Finally,
finding the optimal setting may be also helpful for better understanding the
behavior of EAs.

There has been a long history of work on finding the optimal parameter
values of EAs [11]. However, it has shown that this kind of optimal setting
does not exist in general and there are different optimal values for different
problems [17]. To better understand the relationship between parameter set-
ting and performance, for each pair of algorithm and problem, a performance
landscape could be defined with one dimension for each parameter and an
extra dimension for the performance. As a result, the global optimum of this
landscape corresponds to the optimal parameter setting of the EA on that
particular problem. Note that, the structure of such landscapes is unlikely to
be always trivial (e.g., monotonic or separable).

One principled approach to parameter tuning is to exhaustively explore the
performance of an EA with systematically varied parameter values. Statistical
techniques such as ANalysis Of VAriance (ANOVA) could then be applied on

2 Bo Yuan and Marcus Gallagher

the results to formally investigate the influence and contribution of each pa-
rameter towards the algorithm’s performance as well as the interaction among
parameters [4, 5, 16], which may be used as heuristic knowledge in choosing
the appropriate parameter setting. However, a large number of experiments
are usually required to collect enough data for such statistical analysis, which
is inefficient for the purpose of parameter tuning. Alternatively, mathematical
modeling techniques such as Response Surfaces could be employed to search
for the optimum parameter setting by only testing a relatively small number
of parameter combinations [2].

If the performance landscape is suspected to be multimodal and there is no
prior knowledge to come up with a good starting position, global optimization
methods could be applied to conduct parameter tuning. A typical example is
to use an external EA, called a Meta-EA [1, 8] as the high-level optimiza-
tion procedure to conduct searching on the performance landscape. In these
search-based methods, all parameters to be tuned are usually encoded into
a vector and each instantiation of this vector/individual/algorithm instance
corresponds to a fully-specified EA. Consequently, the process of parameter
tuning is to find the individual or algorithm instance that yields the best
performance.

It is worth mentioning that, in typical parameter tuning, algorithm param-
eters are chosen in advance and remain fixed during evolution. Another branch
of research is parameter control in which algorithm parameters are allowed
to vary with time as the solution vectors of the objective function are opti-
mized [7]. The advantage is that different parameter values may be needed in
different stages of evolution in order to achieve optimal performance. However,
there are still some exogenous parameters used to control those self-adaptive
parameters. Furthermore, not all algorithm parameters can be conveniently
adapted in this manner. After all, finding the optimal settings in different sit-
uations may also provide valuable information for designing better parameter
control strategies.

The major contributions of this chapter are listed as follows. Firstly, the
properties of traditional search-based methods are given a critical analysis.
We point out that, in addition to being very time-consuming in evaluating
each candidate, they have inherent difficulty in tuning nominal or symbolic
parameters where it is very hard to define any sensible distance metric over
the parameter space. For these parameters, no search-based methods could
be expected to be better than the exhaustive or random search.

Secondly, a novel statistical technique called Racing [12], which is origi-
nally proposed to solve the model selection problem in Machine Learning, is
introduced to reliably choose the best parameter setting. The advantage of
Racing is that it does not require a well-defined parameter space but is still
much more efficient than the exhaustive search.

Finally, with a good understanding of the properties of the two distinct
classes of tuning techniques, a framework of hybridization is proposed, which
is not only able to handle symbolic parameters but also to search and explore

Combining Meta-EAs and Racing 3

the parameter space efficiently. Two case studies on tuning the parameters of
a Genetic Algorithm (GA) are also conducted to highlight the effectiveness of
the proposed techniques.

2 The Challenge of Symbolic Parameters

As mentioned above, in search-based methods, the EA to be tuned is often
encoded as a vector and each individual/algorithm instance corresponds to
a unique point in the parameter/search space. The major reason that these
search-based methods can be expected to outperform random or exhaustive
search is largely due to the assumption of the existence of some regular struc-
ture in the performance landscape. In other words, there should be some kind
of “path” in the landscape that could be exploited by the search operators to
effectively drive the overall tuning process.

v
9 S ies
= Current Position
£
S
T A
~“ r el
P S
4 i s ~
.
L’ & B
, e
7’ ~
.
' L]
.
4 ~
<
|-
»
Parameter

Fig. 1. An example of the tuning process conducted by a hill-climbing method.

Figure 1 shows the tuning process conducted by a hill-climbing method
working on a single parameter. After evaluating the two neighbors A and B
of the current individual, it turns out that A is better than B as well as the
current individual. As a result, in the next step, the hill-climbing method will
move its current position to A (i.e., towards the optimum).

Although this example is very simple, it does reveal a key factor of all
non-trivial search-based methods: a meaningful distance metric among in-
dividuals, which could create a performance landscape compatible with the
search operators. In general, the distance metric in the search space (i.e., the
spatial relationship among parameter settings) is determined by the way that
parameters are encoded. For example, if the continuous crossover rate and

4 Bo Yuan and Marcus Gallagher

mutation rate parameters are directly encoded using their original data type,
it would be reasonable to say that two algorithm instances similar to each
other in terms of these two parameters are also close to each other in the
search space defined by the Euclidean distance. However, if they are encoded
into binary strings, these two algorithm instances may be quite distant from
each other in terms of the Hamming distance.

The major issue here is that EAs with similar parameter settings should be
represented by individuals that are also close to each other in the search space.
Note that the actual distance between two individuals in terms of searching
is also influenced by the specific search operator in use [10]. If the distance
metric does not match the similarity among algorithm instances, the fitness
values/performance of individuals close to each other in the corresponding
search space may not be closely correlated.

From the landscape point of view, this means that the performance land-
scape may present a significant level of noisy structure, which could reduce
the effectiveness of almost all search-based methods. In fact, finding the ap-
propriate encoding scheme is also a well-known common issue in the field of
Evolutionary Computation.

Unfortunately, unlike those numerical parameters such as population size
and mutation rate, some parameters are nominal and only have symbolic
meanings, which cannot be encoded in a natural way. For instance, an EA
could adopt one of many different selection strategies but it is hard to design
a meaningful encoding scheme for this parameter. The reason is that there
is usually no clear knowledge about the relationship among these selection
strategies and it is difficult to quantify the distance between each pair of
them (e.g., the distance between the Tournament selection and the Truncation
selection). In fact, it is even difficult to say which one is more similar to
which one in some general sense. Certainly, it is always possible to apply any
arbitrary encoding scheme on this parameter but the shape of the performance
landscape could also be arbitrary, which can hardly be guaranteed to be solved
efficiently by a given search-based method.

Suppose that there are 10 candidate selection strategies and the perfor-
mance of the EA with each strategy is shown in Figure 2 (top), labeled ac-
cording to a certain encoding scheme compatible with their inherent simi-
larity. Note that this is an idealized situation and if an arbitrary encoding
scheme is applied, selection strategies that produce similar performance could
be mapped into quite different individuals (i.e., large distances along the hor-
izontal axis). As a result, the original smooth landscape may turn into some-
thing pretty nasty as shown in Figure 2 (bottom).

More specifically, in Figure 2 (top), selection strategies close to each other
usually result in similar algorithm performance and the global optimum could
be easily reached by the hill-climbing method starting from any position. By
contrast, in Figure 2 (bottom), although the algorithm’s performance with
each selection strategy is kept unchanged, the spatial relationship has been

Combining Meta-EAs and Racing 5

e o 9

> o ®» ~
T T T
I I I

Performance

o
N
T
I

.
1 2 3 4 5 6 7 8 9 10
Selection Strategies

o

0.6 T

0.4r b

Performance

0.2r b

0 I I I I I I I I I I
3 1 5 2 8 4 7 10 6 9

Selection Strategies

Fig. 2. The influence of the encoding scheme on the performance landscape: A
smooth landscape defined in consistence with the similarity of selection strategies
(top) and a nasty landscape defined by reordering the sequence (bottom).

altered. As a result, the previous smoothness is broken and the new landscape
contains multiple local optima.

There are further challenges associated with applying search-based meth-
ods to parameter tuning as shown in previous research. Firstly, it is possible
that some parameters only play a role in certain situations. As a result, the
encoding scheme may have to contain some redundancies and the tuning al-
gorithms also need to be specifically customized to handle these parameters.
Secondly, in order to evaluate each individual, the corresponding EA must be
run for several trials in order to get reliable performance. However, in prac-
tice, it would often require an enormous amount of computational time and
may become impractical in many cases.

3 Racing and Model Selection

Racing was originally proposed to efficiently solve the model selection problem
in Machine Learning [12, 13]. Typically, the performance of a group of M
candidate supervised learning models is evaluated on a data set of interest
containing N test points using a validation approach. The general mechanism
of the leave-one-out cross validation (LOOCV) is to use all but a single test
point to train the model. After training, the model is tested on the test point
absent from the training. This process is repeated N times with each time
a unique test point left out and the model with the lowest average error is

6 Bo Yuan and Marcus Gallagher

regarded as the best model. In other words, the performance of each model
is determined by the mean of its performance distribution, which consists of
the outputs from a series of experiments.

The most straightforward approach would be to exhaustively test each
model on all available test points. With this brute force method, after finishing
N experiments, the true performance Fi.o of a certain model could be found
and after totally M x N experiments, it will guarantee to find the best model
according to the LOOCV measure. However, the complexity of this method
is O(M - N), which may become quite time consuming for large M and/or
N values. After all, each experiment may involve quite heavy computation as
the model needs to be trained on N — 1 test points.

By contrast, Racing techniques approach this model selection problem
from a different angle: whether it is necessary to test a model for N times?
Certainly, in principle, each model must undertake all tests to reveal its Eiyye-
However, the ultimate goal here is not to examine FEi.,. but to find the best
model. From a statistical point of view, the errors of a model on all N test
points create a population and it is possible to estimate the population mean
Eirye based on Egap,, which is the mean of a random sample of size N’ (i.e.,
N’ < N). Usually, it is more helpful to estimate the true difference between
two models based on the difference of their sample means.

The basic idea behind Racing (Table 1) is to test all available models in
parallel on a single unseen test point at each step. The errors of each model
on all test points that have been selected are maintained and used in some
statistical test. If there is enough evidence, as indicated by the result of the
statistical test, that model 7 is significantly worse than another model, it will
be removed from the model selection process and undertake no further testing
because it is unlikely to be the best model. By doing so, models are forced to
race against each other and only promising ones could survive through to the
next iteration. As a result, the overall computational cost could be reduced
compared to the brute force approach described above by avoiding running
unnecessary experiments on inferior models. Figure 3 gives an illustration of a

Table 1. The framework of Racing for model selection problems.

Repeat steps 1-4 until there is no more unseen data point or only
one model is remaining:
1. Randomly select a new data point
2. Calculate the LOOCYV error of each remaining model on it
3. Apply some statistical test to conduct pair-wise comparison
4. Remove models that are significantly worse than others
5. Return the remaining model with the lowest average error

virtual Racing experiment with 50 starting models and totally 200 test points
where the length of each bar indicates when a model was removed from the

Combining Meta-EAs and Racing 7

Racing process. It is clear that after being tested on 20 test points quite a
few models had already been removed and only 12 models could pass through
60 iterations. There were only two models (i.e., No. 34 and No. 47) left after
102 iterations and model No. 34 won the competition against No. 47 after
being tested on additional 24 test points and thus the Racing process was
terminated. Note that, in practice, it is also possible that some models are
indistinguishable even at the end of Racing.

50

45

40

35

30

Models
| " r || | | u||Il||' | ” Il | ‘ u

o
)
o
» |
S
(o2}
S

25

20

15

10

i i i i i i
80 100 120 140 160 180 200
Iterations

Fig. 3. An illustration of a virtual Racing experiment with 50 candidate models and
200 test points in the dataset. It shows the number of iterations that each model
has gone through before being removed from the Racing process.

The advantage of Racing is obvious from the above example: there is no
need to test all models thoroughly on 200 test points and most of the models
were actually tested on far less number of test points before being discarded.
The cost of Racing is indicated by the area of the bars (i.e., 2,264 tests),
compared to the cost of the brute force method, which is equal to the entire
box area (i.e., 50 x 200=10,000 tests). The heart of the Racing technique, as
shown in Table 1, is the statistical test used to judge whether one model is
significantly worse than another, which directly determines the efficiency and
reliability of Racing. Depending on the properties of the performance distri-
butions, there are two major tests that have been used in previous work: the
non-parametric Hoeffding’s bounds [9] and the parametric Student-¢ test [14].
For a single model, suppose its errors are bounded within [b,a]. Then, for
a—>b> & > 0, the probability of Eg,, being more than £ away from FEiyue
after n iterations is:

8 Bo Yuan and Marcus Gallagher

727152

P(|Esam - Etrue| 2 5) S 26(‘14’)2 (1)

Based on Eq. 1, it is easy to derive the value of £ for a given significance level

5 _ \/(a — b)z;sg(2/a) (2)

A .
Eliminated
Error
Upper Boundary 26
Egam
Current Threshold
Lower Boundary
0 >
Models

Fig. 4. An example of Hoeffding Racing at a specific iteration with 5 remaining
models left. The current threshold is indicated by the dashed line.

According to Eq. 2, at each step, the upper and lower boundary of Ej; e
is estimated for each remaining model: [Egam — &, Esam + £]. The eliminating
rule is to remove models with lower boundaries (i.e., best possible errors)
still higher than the upper boundary (i.e., worst possible error) of the best
model [12]. Figure 4 shows the competition among five models at a certain
stage of Racing where the dashed line is the threshold above which all models
are to be eliminated (e.g., the second rightmost model).

In addition to Eq. 2, it would also be possible to utilize another Hoeffding’s
bound for the difference of two sample means with regard to the difference of
the true means [9]:

g2
El - Etzrue)| > 5) < 2¢ (=07 (3)

true

P(|Es1am - E2

sam_(

The major advantage of Hoeffding’s bound is that it has no assumption
on the underlying probability distribution and can be applied in a variety
of situations. However, the bounds acquired are typically not very tight and

Combining Meta-EAs and Racing 9

consequently quite a lot of test points may be needed in order to distinguish
models [18].

If it is reasonable to assume that the errors are approximately normally
distributed, the parametric Student-¢ test is usually more powerful. Under
the null hypothesis that there is no difference between the true means and the
assumption of equal variances, the test statistic is given by:

El — E?

— Sam sam (4)

s\v/2/n

In Eq. 4, s is the pooled estimator of the standard deviation o and the test
statistic z follows the Student-¢ distribution with 2n — 2 degrees of freedom.
The null hypothesis is to be rejected if the value of z falls into the critical
region based on the desired significance level.

If there is reason to doubt the assumption of equal variances, the test
statistic is then given by (i.e., s1 and so are the estimators of o1 and o9):

1 2
— Loam = Poam. (5)

(st +53)/n
The corresponding degree of freedom is approximated by:
2 1 2)2
df. ~ B Esa) (6)
S$1+85

n—1

Figure 5 shows an example with five remaining models at a certain stage
of Racing where the performance distributions are approximately normal but
have different variances. In this case, based on the Student-t test, the model
in the middle is likely to be eliminated.

Note that in the Hoeffding Racing and the Student-t Racing with equal
variances, a model only needs to be tested against the currently best model
because if it is not significantly worse than the best model, it cannot be elim-
inated by any other models. However, in the Student-t Racing with unequal
variances, a model that cannot be eliminated by the best model with a large
variance might be eliminated by a good model with a small variance. As a
result, each model needs to be compared against all models that have better
sample errors.

Furthermore, in Table 1, all remaining models are tested on the same data
point in each step. However, both statistical tests above assume that samples
are independently drawn from the populations and take no advantage of this
paired experiment. Nevertheless, for statistical tests with blocking design, this
feature could be explicitly exploited to reduce the variance among test points
and increase the power of statistical tests.

In summary, the major advantage of Racing is that it only works on the
statistics of the experimental results instead of the structure of models and
could be applied in a much wider situation than many other methods.

10 Bo Yuan and Marcus Gallagher

r Eliminated———> T

Models

' N

Error

Fig. 5. An example of Racing based on the Student-t test (5 remaining models).

4 Racing Evolutionary Algorithms

4.1 Overview

There is a clear similarity between the model selection problem in Machine
Learning and the task of parameter tuning in EAs. In each case, there is a
meta-optimization problem: to find values for all of the adjustable parameters
of the model or algorithm in order to produce the best results when applied
to the problem of interest. More importantly, the performance of a model or
an algorithm is often defined as the mean value of the outputs from a series
of random experiments or trials, which provides the basis for applying statis-
tical tests. In fact, the set of EAs to be raced do not necessarily need to be
different instances of the same EA. Hence, Racing can be used in quite a gen-
eral sense in an attempt to reduce the experimental effort required whenever
a comparison is needed over a range of experimental configurations provided
that the evaluation of each configuration involves iterating over a number of
independent trials (restarts).

In addition to some early attempts in applying Racing in the field of
EAs [3, 19], there are a few important differences between model selection
and evaluation of EAs that must be made clear.

Firstly, the number of test points in model selection problems is fixed,
which means that it is always possible to find the true performance of each
model (i.e., assume that its behavior is not stochastic). However, for EAs;
the number of trials that could be conducted for each pair of algorithm and
problem is unlimited, which means that it is impossible to know the true

Combining Meta-EAs and Racing 11

performance of EAs. Since, in practice, 50 to 100 trials are usually believed
to be sufficient to produce trustable results, it is reasonable to put a similar
upper boundary on the maximum number of trials in Racing experiments.
Otherwise, it may need an extremely long period to terminate.

For example, in scientific studies, it is preferable to compare the best model
or algorithm found by the brute force method and that found by Racing to
show its reliability (i.e., whether the best model/algorithm was eliminated
incorrectly at some stage). Although it is very straightforward in model se-
lection as the performance is deterministic, in EAs, the only claim that can
be made is to say whether the top EAs found by the brute force method (i.e.,
certainly it is based on a limited number of trials and the results are still
stochastic) are also available at the end of Racing.

Secondly, in model selection, all models could be tested on the same test
point at each time and the blocking techniques may improve the power of
statistical tests. However, in the experiments of EAs, the output from the
it" trial of one EA typically has nothing to do with that of another EA,
which means that there is no explicit correspondence/relationship between
the results. Consequently, it is not beneficial to use any paired statistical tests
in the comparison of EAs with regard to random trials.

Thirdly, in some model selection problems, the error range is known in
advance. For example, in classification problems, the model’s error at each
test point is either 0 or 1, representing correct or incorrect classification. As
a contrast, it is usually not easy to give a tight estimation of the range of the
performance of EAs on test problems, which may make it difficult to apply
the Hoeffding’s method.

Finally, the number of test points in a typical dataset could easily reach a
few hundreds or even thousands while the number of trials to be conducted in
an EA experiment is usually no more than 100. A major implication is that, in
model selection, it is acceptable to start Racing after a number of, say 30, test
points have been selected and this would not have a significant impact on the
efficiency of Racing methods. The advantage is that, although it is usually not
known in advance whether the errors of those models are normally distributed,
it is still reasonable to apply those statistical tests based on the assumption
of normality such as the Student-¢ test as long as the sample size is relatively
large. However, for EAs, this would make Racing methods require at least
60% cost of the brute force method if the maximum number of trials is 50.

4.2 Statistical Tests

Based on the above analysis, a good statistical test for racing EAs should
be able to work with small sample sizes and not rely on the assumption of
normality. Traditionally, the nonparametric Wilcoxon rank-sum test is used
as the alternative of the Student-t test. However it still assumes that the two
underlying populations follow distributions with similar shapes, which is not
always reasonable.

12 Bo Yuan and Marcus Gallagher

To overcome the difficulty faced by many existing statistical tests, a hy-
pothesis test based on the bootstrap method is explained next. The bootstrap
method is a computationally intensive statistical technique based on the re-
sampling of data [6]. It could be used to calculate many important statistics
such as standard errors, bias and confidence intervals without the need of
using complicated mathematical models. When used in hypothesis testing, it
could avoid the danger of making various assumptions such as normality and
equal variances required by other statistical tests.

The basic procedure of the bootstrap method is described in Figure 6.
Given a sample X containing n data points, B bootstrap samples of the same
size are generated by sampling from X with replacement. This means that
X is regarded as the whole population and each X* is a sample from it (i.e.,
each data point in X has equal probability to be selected). For each bootstrap
sample X*(i), the bootstrap replication of the statistic of interest § denoted
by 6* (i) is calculated from a certain function S such as the mean or the median
of the sample. Finally, all such replications 6* are combined together to, for
example, calculate the standard error of 6 or create a bootstrap table like the
Student-t table for estimating confidence intervals.

Original Sample Bootstrap Samples Bootstrap Statistics
X#(1) — 0X(D=S(X¥(1)
I :
1 1
1 1
1 1
X X(i) _ 0%(1)=S(X*(1))
1 1
1 1
1 1
1 '
. !
X*(B) D —— 0*(B)=S(X*(B))

Fig. 6. The basic procedure of the bootstrap method.

In general, better estimation could be achieved with larger B values such
as B=2000. Obviously, this requires much more computational resource com-
pared to classical statistical tests. As a result, in the following experiments, the
bootstrap test is applied on samples with less than 30 data points combined
with the Student-t test in other situations to try to find a balance between
reliability and computational cost.

Combining Meta-EAs and Racing 13
4.3 Racing Experiments

In this section, Racing is applied to the situation where researchers are inter-
ested in finding out which algorithm out of a set of candidates performs best
on a particular benchmark problem. For this purpose, we chose the well-known
Rastrigin function, which is a multimodal problem (i.e., to be minimized) with
the global optimum at the origin:

F(X)=10n+ i(Xf — 10 cos(2mX;)), X; € [-5,10] (7)

The algorithm to be tuned is a continuous EDA (Estimation of Distri-
bution Algorithm) based on Gaussian distributions, which is similar to RE-
CEDA [15] but with some additional features.

Table 2. The framework of the continuous EDA based on Gaussian distributions.

Initialize and evaluate the starting population P
while stopping criteria not met

1. Select top n individuals Pse (Truncation selection)
2. Fit a multivariate Gaussian G(u, X) to Psel
m = % ?:1 Pscl
Y= %(Psel —,“)T * (Poet — 1)
3. Update p towards the best individual X et
,u’:(l—a)~,u+oz~Xb°St
4. Update X' by an amplification scalar -y
2/ — 72 .y
5. Sample a set of new individuals P’ from G(y', X’)
6. Evaluate individuals in P’
7. Choose the best individuals from the union of P and P’ to form the
new population P
end while

A set of 5 x 4 x 3=60 candidate algorithms were created by systematically
varying the following three parameters described in Table 2 (i.e., each of these
algorithm instances corresponds to a unique parameter setting):

e Selection ratio (step 1): [0.1, 0.3, 0.5, 0.7, 0.9]
e Learning rate (step 3): [0.0, 0.2, 0.5, 1.0]
e Amplification scalar (step 4): [1.0, 1.5, 2.0]

Other experimental configurations were fixed as: dimensionality=>5, popu-
lation size=100, number of generations=100 and maximum number of tri-
als=100. The fitness value of the best individual found in each trial was
recorded as the performance criterion.

14 Bo Yuan and Marcus Gallagher

25

20+ .

Fitness Values
N
(5
T
.

=

o
T
L

0 I | I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60

Algorithms

Fig. 7. The performance distributions of 60 candidates on Rastrigin’s function.

In order to provide a benchmark for the performance of Racing, an ex-
haustive experiment was conducted by running all 60 algorithms for 100 trials
(i.e., 6,000 trials in total) and the overall performance (i.e., sorted based on
the mean values) is summarized in Figure 7 with error bars (i.e., one standard
deviation above and below the mean). It is possible to inspect these results
visually and determine, for example, which algorithms are most likely to find
good solutions. Note that there is clear evidence that the variances tend to be
different, which violates the widely adopted assumption of equal variances.

Using Racing techniques, we aim to make a similar observation at a frac-
tion of the computational effort required for the above exhaustive experiment.
The procedure operates here by eliminating poorly performing algorithms on
the basis of a small number of restarts. The significance level a was 0.05 and
the Racing algorithm was started after 5 trials, taking into account the limited
maximum number of trials (100).

Note that since the brute force search has already been conducted, in the
Racing experiment, the performance of an algorithm instance in each trial
was retrieved as a sample from the corresponding performance population
without actually re-running the EA (i.e., certainly this is only applicable for
comparison purpose). Since the sequence of such samples may have more or
less impact on the performance of Racing, the Racing experiment was repeated
by 10 times with random sequences of samples.

The average number of algorithm instances remaining at each step is shown
in Figure 8 from which it is clear that Racing eliminated a large portion of
algorithms in the early stage and usually there were only around 5 algorithm
instances remaining after 20 restarts. The average number of candidate algo-

Combining Meta-EAs and Racing 15

rithms left after 100 restarts was 1.6 and sometimes Racing was terminated
even without the need of fully testing any candidate for 100 trials. The effi-
ciency of Racing can be visually examined by comparing the area under the
curve and the area of the whole rectangular region.

From a quantitative point of view, the average cost of Racing is 10.89%
of the cost of the brute force method in terms of the number of trials that
have actually been conducted. In other words, Racing reduced the cost by
almost 90%, which could be very significant for expensive experiments. Cer-
tainly, the actual efficiency of Racing depends on the properties of the specific
performance distributions encountered.

60

50

40

30F

Number of Algorithms

10r

I
0 10 20 30 40 50 60 70 80 90 100
Restarts

0 I I I I

Fig. 8. The average number of remaining algorithm instances during Racing. The
cost of Racing is indicated by the area below the curve.

Another important performance metric of Racing is reliability: whether
the top algorithms could be preserved and avoid being removed incorrectly.
In the above Racing experiments, the best algorithm based on the exhaustive
experiment was remaining till the end of Racing in 9 out of 10 times, showing
pretty impressive robustness. After all, for the single Racing experiment in
which the best problem was eliminated, three other top algorithms were still
able to survive through to the end of Racing. If greater reliability is desired,
a higher significance level could be used to make Racing more conservative in
eliminating models. Furthermore, Racing could be allowed to start after more
samples have been collected in order to improve the accuracy of estimation.

16 Bo Yuan and Marcus Gallagher
5 Hybrid Techniques

5.1 Racing vs. Meta-EA

As shown in the last section, Racing does not work on the parameters of EAs
in the way that a search-based method might. Instead, Racing is based on the
statistical comparison of different algorithm instances, which are regarded as
atomic black boxes (i.e., only the performance evaluation of the instances is
required). By doing so, the requirement of defining an appropriate encoding
scheme or distance metric is removed. However, a closer look at Racing reveals
that there is an inherent lack of any mechanism of exploration. In fact, Racing
always starts with a fixed set of candidates and no other candidates can be
reached. If Racing is to be applied to the task of parameter tuning, the optimal
parameter setting must be included in the initial set. Otherwise, there is no
hope to find it by Racing.

Unfortunately, there is usually no such guarantee in practice. One solution
would be to start with an exhaustive set containing all possible combinations
of parameter values. However, for continuous parameters, the candidate set
might be very large assuming certain discretization of these parameters, which
makes this approach impractical. Also, the accuracy of searching may also
suffer accordingly.

In summary, the major challenge faced by all search-based methods is the
difficulty in defining a distance metric over those nominal/symbolic parame-
ters. Without a sensible distance metric, the resulting landscape may present
high level irregularity and no search algorithm is expected to do well on it. For
this reason, these parameters are generally referred as non-searchable param-
eters. Another practical issue is that in search-based methods each individual
is to be evaluated independently of others and need to be tested thoroughly
on the benchmark problem, just like the brute force method. If the size of the
search space is relatively small, the advantage of search-based methods may
not be significant as they still need to evaluate a large portion of all possible
candidates (i.e., this is particularly true for those population-based methods
such as Meta-EAs).

By contrast, the difficulty in Racing is mainly due to the fixed initial set of
algorithm instances. If the number of all possible candidates is not too large,
say a few hundreds, Racing is expected to work reasonably well. If the number
is far beyond this figure, it would be difficult to apply Racing directly on such
a huge set of candidates (e.g., even testing one million candidates for a single
trial would require an enormous amount of time). In this situation, it is only
practical to require Racing to work on a small number of candidates at each
time.

5.2 Hybridization

It is easy to see that the properties of Racing and search-based methods are
complimentary to each other. In order to efficiently handle situations where

Combining Meta-EAs and Racing 17

the search space is potentially very large and /or contains symbolic parameters,
it is useful to consider a hybrid tuning framework combining Racing and
search-based methods. In this section, two examples are given to demonstrate
how this hybrid approach works.

In the first scheme, a relatively simple situation is considered where a
(14+)) ES, which is a special case of EAs, is combined with Racing and it is
assumed that all parameters to be tuned are numerical and thus searchable.
At each step, a set of A\ new individuals/algorithm instances are sampled from
a Gaussian distribution centered at the current solution.

The major computational cost in this method is on finding the best in-
dividual from a set of candidates, which is exactly what Racing is designed
for. In the proposed hybrid approach, instead of sequentially evaluating each
individual, all individuals are brought into Racing to find out the best one
and as shown in previous experiments, it is expected that many of them may
be eliminated after just a few trials, saving a large portion of computational
resource (Figure 9).

Algorithm Instances

| s A
! \
Current Solution B T
]
| e
% oA

rBest Individual J

Fig. 9. The framework of the hybrid (1+)\) ES + Racing scheme.

The second scheme is proposed to handle the more general and compli-
cated situation where parameters to be tuned include symbolic ones, which
are generally not searchable. Also, it is assumed that a more general and
population-based Meta-EA is in use.

The general idea is to treat these two classes of parameters separately:
only searchable parameters are encoded into individuals in the population
of the Meta-EA and each individual no longer corresponds to a fully speci-
fied algorithm instance. Instead, it represents a set of complete EAs sharing
the same searchable parameters and different from each other on those non-
searchable parameters. Note that the size of the set depends on the number of

18 Bo Yuan and Marcus Gallagher

non-searchable parameters and their cardinalities. In order to evaluate each
individual, Racing is applied to find the best algorithm instance from the
corresponding set of EAs and its performance is returned as the fitness of
the individual (Figure 10). An alternative approach would be to apply the
brute force method to evaluate those algorithm instances, which may be very
time-consuming.

Population
Algorithm Instances
1
VZzZzZz // 2
2z
N

g - ancse Valucs

Fig. 10. The framework of the hybrid Meta-EA + Racing scheme.

5.3 Case Studies

In this section, a standard GA with binary representation is used in the ex-
periments to illustrate the hybrid approach. Two parents from the current
population are selected at each time and two offspring are generated through
recombination with probability P. (the crossover rate). Otherwise, these two
parents are kept unchanged and copied to the mating pool. When the mat-
ing pool is full, mutation is applied, which changes the value of each bit by
flipping it from 0 to 1 and vice versa with probability P,,. Finally, new indi-
viduals are evaluated and replace the old population. If elitism is applied, the
best individual found so far in previous generations will be copied to the new
population, replacing a randomly chosen individual.

There are a number of parameters to be specified. The population size (P)
is a discrete parameter of high cardinality (i.e., it should be a positive even
number because individuals are generated in pairs). It is well-known that a
very small population may cause premature convergence while a very large
one may result in a slow convergence rate. The crossover rate P, and mutation
rate P, are both continuous parameters within [0, 1], which are important for
controlling the balance between exploration and exploitation. The selection

Combining Meta-EAs and Racing 19

strategy () is a symbolic parameter, which contains various candidates (e.g.,
Tournament Selection) combined with their corresponding parameters (e.g.,
Tournament size). Also, a symbolic parameter (C) is required to specify the
type of crossover (e.g., one-point or two-point). At last, a binary parameter
(E) is used to indicate whether elitism is used or not. The feasible values of
S, C & E are given in Table 3.

Table 3. Feasible values of S, C & E.

Parameters Values

S ”Truncation” 0.1, 0.2, 0.3, 0.4, 0.5
”Tournament” 2, 4, 6
”Linear Ranking” 1.5, 1.8, 2.0

C ”One-Point”, ” Two-Point”, ” Uniform”

E 70" (without elitism), 71”7 (with elitism)

According to the above discussion, the GA could be fully specified by a
six-element tuple: < P, P, P,,,, S,C, E >. Note that some parameters are con-
tinuous (i.e., the population size could be regarded as a continuous parameter
during optimization due to its high cardinality and then rounded up to the
nearest feasible value) while others are symbolic, which created a mixed-value
optimization problem.

In the first case study, a simple situation was considered in which only
P, P. and P,, were to be tuned while the rest of the parameters were set to
some fixed values. In this experiment, although all parameters were search-
able, evaluating each individual using the brute force method could still be
very time-consuming. As a result, the hybrid (14+)) ES+Racing approach was
applied to help reduce this computational burden.

The (1+X) ES in use was based on a fixed Gaussian distribution with
a diagonal covariance matrix. The boundaries of the search space and the
standard deviations are given in Table 4, which were chosen based on some
general knowledge without any specific tuning. Note that for some values
of the population size, it is possible that, given the fixed number of fitness
evaluations (i.e., 500), the number of generations may not be an integer. The
solution adopted was to increase the population size in the final generation to
accommodate those extra individuals to maintain the same number of fitness
evaluations among all candidates.

The 100-bit One-Max problem was used as the benchmark problem. The
(14+X) ES with A =20 started from the middle of the search space while other
GA parameters were arbitrarily set to (i.e., not necessarily a good choice)
< “Truncation”, 0.5, “One-Point”, 1>. Note that, in addition to identifying the
best candidate, its performance/fitness value is usually needed in search-based

20 Bo Yuan and Marcus Gallagher

Table 4. Definition of search space and standard deviations.

Range Standard Deviation

P [20, 100] 5
P. [0, 1] 0.1
P, [0,0.2] 0.02

methods. As a result, the starting individual was evaluated exhaustively. The
best candidate found by Racing (i.e., significance level 0.10) was also required
to go through all trials (100) to find out its mostly reliable performance for
the comparison against the currently best one even if it was the only one left.

The parameter settings found during evolution in a typical trial (i.e., 20
generations) and the corresponding performance of the GA are shown in Fig-
ure 11. It is clear that this approach could find much better parameter settings
than the initial one and the average performance of the GA increased from
71.51 to 83.97 within 15 generations.

In the meantime, all three parameters under tuning showed a clear pattern.
The population size dropped from 60 to 20 while the crossover rate increased
from 0.5 to 1.0. The mutation rate also quickly settled down to a very small
value around 0.02. Since there is no dependence among the variables of the
One-Max problem and it has a simple structure with only one optimum, it
seems unnecessary to employ a large population to maintain the genetic diver-
sity and a small mutation rate is well justified in this case. As for the crossover
rate, it plays a major role in GAs in combining building blocks and a quite
large value is often recommended.

Obviously, the hybrid approach did a good job in this case study and found
some very good parameter settings for the GA. After all, it only took around
13.4% of the cost of an ordinary (14+A) ES (i.e., individuals are exhaustively
evaluated) in terms of the number of trials conducted. Note that the lower
limit of the cost of Racing in this experiment is around 9.75% as all 20 can-
didates needed to be tested for at least 5 trials and the best one needed to be
fully tested for 100 trials.

Next, we will show how the GA’s performance can be further improved
through the simultaneous tuning of all six parameters.

In the second case study, a (u+\) ES with u=A=20 was employed as the
Meta-EA (i.e., the initial population was randomly generated) in which each
individual consisted of three parameters P, P, and P,, and represented a total
of 66 algorithm instances (i.e., 11 selection strategies x 3 crossover operators
X 2 options of elitism). Note that although E is a binary parameter, it was
still included in the Racing so that the Meta-EA only needed to handle a
continuous optimization problem. As a result, the role of Racing here was to,
for each individual, find out the best algorithm instance out of a set of 66
candidates as efficiently as possible and return its performance as the fitness

Combining Meta-EAs and Racing 21

85 50
45
o
€ 50 % 40
S c
>
2 g 35
g g
£ g3
& 25
20
70
0 5 10 15 20 0 5 10 15 20
Generations Generations
0.1
1
0.08
7
£ o8 4}
S 3
o & 0.06
g 06 S
3 T 0.04
8 e
O 04 0.02
0.2 0
0 5 10 15 20 0 5 10 15 20
Generations Generations

Fig. 11. The evolution process of the hybrid (1+A) ES + Racing scheme.

value of that individual. Also, the best algorithm was to be fully tested even
if it was the only one left.

Figure 12 presents the evolution process of this hybrid scheme in which
all results were averaged over the population. It is clear that much better
parameter settings were found while the superiority of small population sizes,
large crossover rates and small mutation rates was again evident. Furthermore,
the uniform crossover dominated the final population while a strong selection
pressure was created by either the Tournament selection with tournament size
6 or the Truncation selection with selection ratio 0.2. As to Elitism, it was
not shown to be beneficial in this case. The cost of Racing was only around
7.4% of the cost of the brute force method, had it been applied to find the
best algorithm instances.

6 Summary

In this Chapter, the major issue addressed is how to efficiently find the best
parameter settings for EAs through experimental studies, assuming no spe-
cific knowledge on those parameters. Two classes of tuning techniques: search-
based methods and statistical Racing techniques, which are based on distinctly
different mechanism, are given a critical review on their strengths and weak-
nesses.

We point out that the applicability of Racing is inherently restricted by its
lack of exploration capability while it could be very difficult for typical search-
based methods such as Meta-EAs to efficiently handle nominal parameters

22 Bo Yuan and Marcus Gallagher

95
60
90]
g S 50
= 2
o
- 85 S
ﬁ & 40
S 2
B 2 5
75 20
5 10 15 20 5 10 15 20
Generations Generations
1 0.1
0.9 0.08
8 g
S 3
X 038 & 0.06
: 5
207 g 0.04
=} =
S =
0.6 0.02
0.5 0
0 5 10 15 20 0 5 10 15 20
Generations Generations

Fig. 12. The evolution process of the hybrid Meta-EA + Racing scheme.

that only have symbolic meanings. In order to take the advantages of both
methods, two hybrid schemes are proposed in which search-based methods
are responsible for exploring the parameter space while Racing is applied, in
the place of the brute force method, to significantly reduce the cost associated
with finding the best performing algorithm instance from a moderate size of
candidates.

In the case studies, Racing has shown to be able to reduce the cost of the
brute force method by around 90% while maintaining quite high reliability.
The major direction for future work would be to establish some theoretical
framework for Racing in order to conduct principled analysis of the influence of
various experimental factors. It is also an important topic to investigate the
possibility of combining more features into Racing from other tuning tech-
niques.

Finally, some rules of thumb are given as follows to assist in choosing
appropriate parameter tuning techniques:

1. If the size of the parameter space is small (e.g., ten candidates or even
less), it is usually straightforward and reliable to conduct an exhaustive
search to find the best parameter setting.

2. If the size of the parameter space is moderate (e.g., up to a few hundreds
of candidates), Racing could be applied to significantly reduce the com-
putational time required, regardless of whether the parameter space is
searchable or not.

3. If the sizes of the searchable parameter space and non-searchable parame-
ter space are both large, it is worthwhile to consider the proposed scheme
of Meta-EA + Racing.

4.

Combining Meta-EAs and Racing 23

If the size of the searchable parameter space is large while there is no
nominal parameter or the size of the non-searchable parameter space is
small, it is possible to use Meta-EAs only (i.e., apply random/exhaustive
search on nominal parameters if necessary).

. An exception of rule No. 4: if the Meta-EA in use is similar to the (1 + X)

or (1,\) ES, which requires choosing the best individual from a set of
candidates, it is still possible to consider the scheme of Meta-EA + Racing.

References

1.

2.

10.

11.

12.

13.

14.

15.

T. Béck. Ewolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.

T. Bartz-Beielstein. Experimental analysis of evolution strategies - overview
and comprehensive introduction. Technical Report Reihe CI 157/03, SFB 531,
Universitat Dortmund, 2003.

M. Birattari, T. Stutzle, L. Paquete, and K. Varrentrapp. A racing algorithm
for configuring metaheuristics. In Genetic and Evolutionary Computation Con-
ference (GECCO 2002), pages 11-18, 2002.

P. A. Castillo-Valdivieso, J. J. Merelo, and A. Prieto. Statistical analysis of
the parameters of a neuro-genetic algorithm. IFEFE Transactions on Neural
Networks, 13(6):1374-1393, 2002.

. A. Czarn, C. MacNish, K. Vijayan, B. Turlach, and R. Gupta. Statistical ex-

ploratory analysis of genetic algorithms. IFEE Transactions on Evolutionary
Computation, 8(4):405-421, 2004.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman and
Hall, 1993.

A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolution-
ary algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124-141,
1999.

J. J. Grefenstette. Optimization of control parameters for genetic algorithms.
IEEE Transactions on System, Man, And Cybernetics, 16(1):122-128, 1986.
W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13-30, 1963.

T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
University of New Mexico, 1995.

K. De Jong. The Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

O. Maron and A. W. Moore. Hoeffding races: accelerating model selection
search for classification and function approximation. In Advances in Neural
Information Processing Systems 6, pages 59-66, 1994.

O. Maron and A. W. Moore. The racing algorithm: model selection for lazy
learners. Artificial Intelligence Review, 11(1):193-225, 1997.

D. S. Moore. Introduction to the practice of statistics. W. H. Freeman, New
York, 4th edition, 2003.

T. K. Paul and H. Iba. Real-coded estimation of distribution algorithm. In Pro-
ceedings of the 5th Metaheuristics International Conference (MIC2003), pages
61-66, 2003.

24

16

17.

18.

19.

Bo Yuan and Marcus Gallagher

. 1. Rojas, J. Gonzalez, H. Pomares, J. J. Merelo, P. A. Castillo, and G. Romero.
Statistical analysis of the main parameters involved in the design of a genetic
algorithm. [IEFEE Transactions on Systems, Man, And Cybernetics-Part C,
32(1):31-37, 2002.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67-82, 1997.

F. Y-H. Yeh and M. Gallagher. An empirical study of heoffding racing for
model selection in k-nearest neighbor classification. In J. Hogan M. Gallagher
and F. Maire, editors, Sizth International Conference on Intelligent Data Engi-
neering and Automated Learning (IDEAL’05), volume 3578 of Lecture Notes in
Computer Science, pages 220-227. Springer, 2005.

B. Yuan and M. Gallagher. Statistical racing techniques for improved empirical
evaluation of evolutionary algorithms. In X. Yao et al., editor, Proc. Parallel
Problem Solving from Nature (PPSN VIII), volume 3242 of Lecture Notes in
Computer Science, pages 172—181. Springer, 2004.

