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Abstract

We address the problem of finding the pa-
rameter settings that will result in optimal
performance of a given learning algorithm
using a particular dataset as training data.
We describe a “wrapper” method, consid-
ering determination of the best parameters
as a discrete function optimization problem.
The method uses best-first search and cross-
validation to wrap around the basic induc-
tion algorithm: the search explores the space
of parameter values, running the basic algo-
rithm many times on training and holdout
sets produced by cross-validation to get an
estimate of the expected error of each pa-
rameter setting. Thus, the final selected pa-
rameter settings are tuned for the specific
induction algorithm and dataset being stud-
ied. We report experiments with this method
on 33 datasets selected from the UCI and
StatLog collections using C4.5 as the basic
induction algorithm. At a 90% confidence
level, our method improves the performance
of C4.5 on nine domains, degrades perfor-
mance on one, and is statistically indistin-
guishable from C4.5 on the rest. On the
sample of datasets used for comparison, our
method yields an average 13% relative de-
crease in error rate. We expect to see sim-
ilar performance improvements when using
our method with other machine learning al-
gorithms.

1 Introduction

A user of machine learning algorithms must decide not
only which algorithm to use on a particular dataset,
but also what parameter values to use for the chosen
algorithm. The user wants to choose the algorithm
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and parameters that result in the best future perfor-
mance. Although the former problem of selecting a
learning algorithm for a particular task is recognized
as an important issue in machine learning (Brazdil,
Gama & Henery 1994, Schaffer 1993), the latter prob-
lem of finding the best parameter values has not been
systematically studied. Nearly all machine learning al-
gorithms have parameters to be set by a user, and the
setting of these parameters can have a large effect on
the accuracy of the induced models.

Selecting an algorithm and finding the best parame-
ters for a particular algorithm are equivalent in the
abstract, but the latter involves optimization over a
much larger (possibly continuous) space, one that can-
not be completely explored within reasonable time lim-
its. Thus, issues of heuristic search arise that are not
present 1n the algorithm selection problem.

Authors of machine learning algorithms typically give
some rules of thumb regarding the setting of their al-
gorithm’s parameters or supply default parameter set-
tings that they expect to work well on the problems
of interest to the user. Although such heuristics may
apply reasonably well to a variety of datasets, a better
strategy would be to arrive at parameter values that
work well for the particular dataset under analysis.

To determine the parameter setting, the selection
method must take into account the interaction be-
tween the biases of the induction algorithm (Mitchell
1982) and the particular training set available. Intu-
itively, an algorithm should be able to make use of
the information in the training data to guide it in a
search for the best parameters. This 1dea motivated
us to consider the wrapper method of John, Kohavi
& Pfleger (1994), which does employ such informa-
tion. In the wrapper method, the parameter selection
algorithm exists as a wrapper around the induction al-
gorithm (see Figure 1), conducting a search for a good
parameter setting using the induction algorithm itself
as part of the evaluation function.

For any induction algorithm A4, we may define an al-
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Figure 1: The Wrapper method for learning algorithm parameter selection. The algorithm itself is used to select

the parameters.

Table 1: Notation used in the rest of the paper.

Symbol Meaning

re X An instance. A vector of attribute (or feature) values.

yey The label or output value of an instance.

(Z,y) € X x Y A training instance.

fer A target function mapping instances to output values. f : X' — ). f may be probabilistic, in
which case we will be concerned with E(f|Z) instead of f(z) when we discuss expected error.

heH A hypothesis function mapping instances to output values. h: X — Y.

TCT A training set. 7 = {(#,y)|7 € X,y = f(¥)}.

6o A vector of parameters for a machine learning algorithm.

A(T, 8) A machine learning algorithm. Input: a training set and parameter vector. Output: a function.
A (T x0)—H.

L(y1,y2) A loss function. L : Y x Y — TR. For the classification problems considered here, L(y,y') =
0if y =9, 1 otherwise.

err(h, f) The error of a function h with respect to f. Given some probability distribution Px over X,

err(h) = [, L(h(Z), }(&)) Px (%) d&.

gorithm A-AP that, when given a set of training data,
uses the wrapper to choose parameters and then runs
A on the training data using the chosen parameters.
The bias of the learning algorithm A is thus carried
into the A-AP algorithm but modified by the wrap-
per’s choice of parameters.

In Section 2, we formally define the problem we wish
to solve: finding the paramters that minimize expected
loss. Section 3 discusses cross-validation and best-first
search, the two components of our wrapper. Section
4 gives an example of our approach, describing how
the C4.5-AP algorithm uses a wrapper around C4.5.
Section 5 discusses our experimental methodology and
results comparing C4.5 to C4.5-AP. We also discuss
lessons about C4.5 learned from C4.5-AP’s choices of
parameters. Section 6 discusses related work in ma-
chine learning and statistics. Finally, Section 7 gives
our conclusions and suggested directions for further
work.

2 The Parameter Selection Problem

The task of the induction algorithm A4 is to take a
training set 7' and induce a function & (e.g., a decision
tree or neural network) which minimizes err(h, f) (see
Table 1). The output of A is determined by both T and
the parameter vector . We wish to find the parameter
vector #* that will result in minimal expected loss,
given a distribution over X, a learning algorithm A,
and training set 7. Formally, the optimal parameter
setting 6* satisfies

0" = BN err (A(T.0), f) | (1)

that is, #* is the element in © which results in minimal
error.

Finding 6* satisfying Equation 1 is impossible because
we do not know Px(Z) or f, which are required to
calculate err. The only information we have about
the distribution of X is the training set 7. Thus, we
must somehow estimate err using 7. Even if we did
know Px (Z), as a practical problem © may be too big
to search exhaustively. When some elements of 6 are
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Figure 2: Cross-validation methodology (3-fold CV
shown).

real-valued, or when ¢ has many discrete-valued ele-
ments of high cardinality, it is impractical to search
the entire space ©. Since both obstacles prevent us
from finding 6%, we must instead be content to find

some f approximating #* which also results in low ex-
pected loss.

In the next section we discuss error estimation method
for estimating err, and a heuristic search method for
exploring only a subset of ©.

3 The Wrapper Method

Figure 1 depicts the wrapper method, which requires
two components: a search component and an evalu-
ation component. The search component repeatedly
suggests parameter settings. The evaluation compo-
nent evaluates these settings by running the induc-
tion algorithm several times and getting an estimate
of the resulting accuracy. (In some domains, users may
also be concerned about the interpretability of the in-
duced models. In such cases some interpretability met-
ric should be included in the evaluation component.)
In this section we describe the error estimation and
search algorithms used.

3.1 Error Estimation by Cross-Validation

Given a learning algorithm .4 with parameters § and
a training set 7', we need to estimate err (A(T,6), f)).
Error estimation methods give approximations to err
without requiring knowledge of Px. We use cross-
validation (Stone 1974, Breiman, Friedman, Olshen &
Stone 1984, Weiss & Kulikowski 1991, Kohavi 1995b6)

to estimate err and denote the estimate by errcy.

Figure 2 depicts how 3-fold cross-validation calculates
errey (A, 6, T). In k-fold CV, one partitions the orig-
inal training set 7T into k subsets 7j, such that each
instance (Z;,y;) in T appears in exactly one subset
and all subsets have cardinality approximately |T'|/k.

errcy 1s defined as
E
1
errev(A,0,T) = + Z; erm (AT = T;,0),T;) , (2)
where erry, (b, T) = ﬁ El.zll L(h(z;),y;), the error on
an independent holdout set of instances. The appeal
of the cross-validation approach is that all instances

are used k£ — 1 times as training instances and once as
test instances, so that no data are wasted.

One problem with using cross-validation as an error
estimate for parameter selection is that it has high
variance. Thus, we must use some care in using errcy
to select a parameter setting. We should not select one
parameter setting over another without being reason-
ably confident that we are making the correct choice.
Letting ¢; = ern, (A(T — T;,0),T;), then errcy = ¢
The variance of errcy is %klj Zle(ci —¢)?. Since
the variance of the mean of a sample is inversely pro-
portional to the number of samples, we may achieve
lower variance of the mean of errcy, by repeating the
entire cross-validation procedure ¢ times. Let ¢; ; be
the holdout error on the ith fold of the jth run of cross-
validation. Then errcy = ¢ = 2;21 Zle ¢ ;. ,and
the variance of errcy is iﬁ Z;Il Zle(ci,j —e)%
(Since the kt samples of C' are not independent, this
variance is likely to be optimistic.) Thus, at a com-
putational cost (running CV ¢ times) we can increase
the chance (by reducing the variance of our estimate
by 1/t) that the final selected parameters will result
in low expected error.

3.2 Optimization using Best-First Search

The problem of finding the best value for each param-
eter of a given learning algorithm is a function opti-
mization problem. We chose to view the problem as
state-space search (Kohavi 1994). We chose the best-
first search algorithm (Ginsberg 1993, Nilsson 1980),
which works by repeatedly expanding the most promis-
ing unexpanded state (Table 2). (Note that this is not
simply hill-climbing.) Search problems can be charac-
terized by five distinct components. We describe these
components below, describing how each is involved in
our wrapper method.

e State Space S The set of states explored by the
search. The goal of the search is to find the s* € §
satisfying some set of desired properties. Here,
S C 0O, so we either search the entire space of
parameters or some subset.

e Heuristic Function f : § — IR A function
mapping a state to the real numbers. We use
f(s) as both the cost of the state s, which is to be
minimized, and as the heuristic function. Here,

f = errcy.



Table 2: The Best-First Search algorithm, modified for function optimization

Best-First-Search

1. Put the initial state on the OPEN list, CLOSED list <- empty, BEST <- initial state

. Let v = the state in OPEN with minimal f(v).

2
3. if f(v) + epsilon < f(BEST), BEST <- v
4. Expand v: Apply all operators to v.

o ;

. Goto 2

Remove v from OPEN, add v to CLOSED.

Evaluate all resulting states, add each
to OPEN list unless already in CLOSED list
If no change in f(BEST) during the last k expansions, exit and return BEST

e Operators op : § — 8 A function mapping
states into states. States and operators form a
graph with states represented by nodes and op-
erators labeling the directed arcs between nodes.
Here, the operators transform one parameter set-
ting to another.

e Initial State s, The initial state, or starting
point of the search.

e Termination Condition The criterion for stop-
ping the search. In our wrapper method, the de-
sired property is that s = argmingerrcv (A, s, T),
but this condition cannot be efficiently evaluated.
Instead we stop and accept s as the best state if
some reasonably thorough further search in the
space does not uncover a better state: when k&
consecutive expansions fail to yield a state s’ that
is at least ¢ better than the current best state
s. All function optimization methods must spec-
ify some stopping criterion, and ours is similar
to those used in numerical optimization methods
(Press, Teukolsky, Vetterling & Flannery 1992).

4 Automatic Parameter Selection for
C4.5

To make our ideas more concrete, we describe the ap-
plication of our method to the C4.5 decision tree al-
gorithm (Quinlan 1993). C4.5 is an extremely robust
algorithm that performs well on a wide variety of do-
mains. It is very difficult to consistently outperform
C4.5 on a variety of datasets. Thus, improving C4.5
should yield an interesting learning algorithm. Our
C4.5-AP algorithm is a “wrapper” around Quinlan’s
C4.5 algorithm (Figure 1).

Up to this point we have specified the wrapper as much
as possible independent of any learning algorithm. The
rest of this section details choices we made that were
specific to the C4.5 algorithm.

e State Space We chose to automatically set all of
the C4.5 tree-building parameters (m,c,g, and s)
shown in Table 3.

For example, a parameter vector 6 might be

(10,25, off, on), indicating m = 10,¢ = 25,9 =
off (use gain-ratio), s = on (use subset tests).
m controls when tree-building is stopped, ¢ is
a pruning parameter, ¢ specifies the use of
information-gain or gain-ratio during tree con-
struction, and s specifies subset tests on multi-
valued nominal attributes. For the m and ¢ pa-
rameters we only considered integer values 1 —
5,10, 15,20,25,30,40,...,100. This decision was
based on our observations that fine granularity
was not important for large values of the param-
eters. There are a total of 1156 states.

e Heuristic Function We used 10-fold cross-
validation as the estimate of the expected error
for each state. When the estimated standard de-
viation of errcy is larger than 1%, we run cross-
validation again, up to a maximum of three times.
We used a 10% trimmed mean (John 1994); that
18, if we run 10-fold CV three times, then out of
the 30 resulting estimates we remove the lowest
and highest 3 and take the average of the rest.

e Operators For the binary parameters, we try the
opposite values. For each of the numeric param-
eters, we consider moving up or down circularly
either one or five positions in the array of possible
values. (E.g., from a current state where m = 3
we might try m =2, m =4, m =80,m = 20.) In
our first version we only moved up or down one
position, but found the algorithm getting trapped
in local minima. We added the option of moving 5
steps and moving circularly to allow escape from
local minima. (No other step sizes were tried.)

e Initial State We used the default setting for
C4.5: (2,25, off, off).
e Termination Condition We use the condition

described in Section 3.2, setting k£ to 5 and € to
0.1%.

5 Experiments with C4.5-AP

Our hypothesis is that, given some learning algo-
rithm A that has parameters, we can use our wrap-
per method to create an A-AP algorithm which per-
forms better than A on real-world domains. However,



Table 3: Parameters to the C4.5 algorithm.

Stopping parameter in tree construction. Halts the recursive partitioning
process when no partition of the current node results in children all having
weight > m. (Weight is equal to the number of instances unless there are

Confidence level parameter in tree pruning. Small values of ¢ cause much

Splitting criterion: information gain or gain ratio. When -g is specified,
information gain is used as the splitting criterion in tree construction. When

Possible  Default
Name  Values Value  Description
-mm 1...00 2
missing values.)
-cc [0, 100] 25
pruning, large values cause little pruning.
-g on,off off
not specified, gain ratio is used.
-s on,off off

Subset splits. When -s is specified, subset splits are considered during tree
construction. When unspecified, all splits on k-valued nominal variables

result in & children.

as noted by Schaffer (1994) and Wolpert (1994), we
cannot hope to improve A over all domains. We first
describe our methodology for testing this hypothesis
and then present the results and our analysis.

5.1 Methodology

To test our hypothesis, we compared the performance
of the C4.5 and C4.5-AP algorithms on 33 datasets
gathered from the UCI (Murphy & Aha 1994) and
StatLog (Michie, Spiegelhalter & Taylor 1994) col-
lections. The datasets represent all of the available
StatLog datasets except the Shuttle database (which
was too large), all of the UCI datasets used by Holte
(1993), all of the Monks datasets (Thrun et al. 1991),
and Corral which is an artificial dataset presented in

John et al. (1994).

For some datasets, a single test set was specified by
the contributors of the dataset (which includes the en-
tire space for the artificial datasets). In such cases we
used the holdout method (defined in Section 3.1) to
evaluate C4.5 and C4.5-AP so that results would be
comparable to those reported in the literature. For
all other datasets, 10-fold cross-validation was used
to evaluate C4.5 and C4.5-AP. The exact same folds
were used for both algorithms so that the ten result-
ing performance numbers for C4.5 and C4.5-AP are
pairwise comparable. At this point it is best to con-
sider the C4.5-AP algorithm as a black box; although
it uses cross-validation itself to set its own parameters,
the outer cross-validation estimates we report in this
section are completely separate from the inner cross-
validation. We are now interested only in comparing
the performance of the two algorithms.

5.2 Experimental Results

Table 4 gives 10-fold CV estimates of the accuracies
for the C4.5 and C4.5-AP algorithms on the natural

domains. Table 5 gives results for those datasets with
a specified test set. Both tables also give performance
for C4.5* “algorithm.” These are lower bounds on the
performance of C4.5 with optimal parameter settings.
(C4.5* results were obtained by modifying the C4.5-
AP algorithm: instead of using cross-validation as the
evaluation method, it uses holdout error on the same
test set that we later use to evaluate 1ts performance.
The C4.5* results might never be achieved in practice.
The point is to show the limits of our approach—even
if we were to use the world’s greatest error estima-
tion method instead of cross-validation, we could never
surpass the C4.5* results. We believe that best first
search conducts a reasonably thorough search of the
space, and therefore we conjecture that the results of
(C4.5* cannot be significantly improved upon for any
settings of C4.5 parameters.

For each dataset in Table 4, we used a one-tailed paired
t-test (Casella & Berger 1990) to test the hypothesis
that the accuracy of the C4.5-AP algorithm is higher
than the C4.5 algorithm (versus the null hypothesis
that the algorithms perform equally). When we run
10-fold cross-validation, we get ten accuracy estimates
that we average to give the final estimated accuracy.
In our experiments we treated each of the ten accuracy
estimates as samples from a population, and used these
as the estimates to be paired in the #-test. The P(%)
values in the table should be interpreted as supporting
our hypothesis at the P(¢) confidence level (e.g., when
P(t) > .95 we may state with 95% confidence that
C4.5-AP has higher accuracy than C4.5).

From these tests we conclude with 90% confidence
that the C4.5-AP algorithm outperforms the C4.5 al-
gorithm on nine of the 33 datasets, and is outper-
formed by C4.5 on a single dataset. At a 95% confi-
dence level, C4.5-AP outperforms C4.5 on six datasets,
and 1s never outperformed by C4.5. In the one case
where C4.5-AP loses at a 90% confidence level, the



Table 4: Experimental results: Accuracies for the C4.5 and C4.5-AP algorithms and the C4.5* upper bounds,
all using 10-fold cross-validation. P(¢) gives the probability of the paired ¢-statistic that C4.5-AP has higher

accuracy than C4.5 on each dataset.

Dataset Size Accuracy P(t) C4.5-AP
Default C4.5 C4.5-AP C4.5% Better (90% CI)

australian 690 85.36+1.13  85.07£1.47  88.70£1.58 | .372

breast 699 95.4240.70  96.2940.77  96.98+0.74 | .961 v
breast-cancer 286 73.87+£2.76  73.87+2.76  T7.68+1.90 | .500

chess 3196 99.504+0.13  99.62+0.10  99.75+0.08 | .800

cleve 303 72.30+£2.17  75.61+£2.43  84.82+1.42 | .931 v
crx 690 85.944+1.37  85.07£1.26  88.84+0.87 | .186

diabetes 768 71.754+1.02  75.26+£1.26  82.03x1.42 | .984 v
german 1000 72.504+1.41  72.70£1.65  79.42+1.45 | .553

glass 214 65.484+3.22  68.20£2.92  76.17+2.69 | .847

glass2 163 70.554+2.00  74.85+3.94  87.61£2.96 | .789

heart 270 80.004+2.77  82.2242.19  86.11£1.90 | .703

hepatitis 155 80.04+3.65  84.50+2.47  89.67+2.98 | .924 v
horse-colic 368 85.060+1.16  84.244+0.78  88.86+0.85 | .139
hypothyroid 3163 99.114+0.18  99.27+£0.08  99.40+0.21 | .894

iris 150 95.33+£1.42  95.33£1.42  95.33£1.42 | .500

labor-neg 57 85.67+3.48  80.67£3.87  89.00+3.02 | .097 X
lymphography 148 78.38+1.65  T4.144+3.19  86.48+1.41 | .103

mushroom 8124 | 100.00£0.00 100.00£0.00 100.0040.00 | .500

pima 768 71.604+1.93  76.67£2.05  79.55+1.55 | .999 v
segment 2310 96.364+0.33  96.80+0.37  97.75+0.36 | .846
sick-euthyroid 3163 97.694+0.25  97.63+£0.46  98.20%0.19 | .444

soybean 47 | 100.004+0.00 100.00£0.00 100.00+£0.00 | .500

tic-tac-toe 958 85.594+1.08  93.73£0.52  96.34+0.65 | 1.00 v
vehicle 846 69.844+1.77  T72.4441.73  78.18+0.94 | .973 v
vote 435 95.644+0.52  95.414£0.47  97.71£0.68 | .172

votel 435 88.02+1.77  87.58+1.52  92.40£1.20 | .342

labor-negotiation dataset, note that the entire dataset
is very small with only 57 instances. Because of the
small size, the state evaluations in C4.5-AP had high
variance, and the search did not find good parameter
values.

With a significance of 0.90 in the t-test, if the al-
gorithms were equivalent in their prediction perfor-
mance, one would expect three or four significant re-
sults, about two for each algorithm. Tables 4 and 5
show ten significant results, nine indicating the per-
formance of C4.5-AP is superior and and only one in-
dicating inferior performance. We therefore conclude
that C4.5-AP is indeed significantly superior.

(C4.5-AP is often significantly outperformed by C4.5*
so 1t 1s important to consider the factors that play a
role here. Fortunately, there is only one: the heuristic
evaluation function. C4.5-AP and C4.5* are both in-
stantiations of the wrapper method (Figure 1). They
share the same search method and induction algo-
rithm, only differing on the evaluation function. C4.5*
“cheats” and uses the test set for evaluation and thus
its parameters are tuned to fit that single test set later

used for evaluation. Since the test sets are small and
do not provide a good estimate of the true accuracy of
the induction algorithm, the C4.5* accuracy estimates
are strongly optimistically biased.

We analyzed the parameters chosen by C4.5*. For the
¢ parameter, in almost all cases a wide range of val-
ues yielded the same accuracy. The 15%—35% range
was most common (10 datasets). Significantly, the
value 25% (the default value in C4.5) was chosen for
all datasets except tic-tac-toe (where C4.5-AP halved
the error rate of C4.5) and glass2 (where C4.5-AP im-
proved absolute accuracy by over 4%). For the m
parameter, 1 was often the best choice, or a tie for
best choice among 1-5. Although this tends to cre-
ate a larger tree that then just gets pruned back, C4.5
sometimes prunes by replacing a node’s test with the
test at one of its children, so perhaps m=1 gives more
latitude in the pruning phase. Information-gain (turn-
ing the g parameter on) was a big winner on several
datasets: vehicle, segment, hypothyroid, heart, and
cleve. Turning on the s parameter helped in tic-tac-
toe and monk].



Table 5: Experimental results: Accuracies for C4.5, C4.5-AP, and C4.5* from running on the specified test set.
P(t) gives the probability of the paired t-statistic that C4.5-AP has higher accuracy than C4.5 on each dataset.

Dataset Train/Test Accuracy P(1) C4.5-AP
Size | Default C4.5 C4.5-AP C4.5* Better (90% CI)

corral 32/129 81.2+3.44 100.04+0.00 100.040.00 | 1.0 v

dna 2000/1186 92.3+0.77  93.240.73  93.24+0.73 | .80

letter 15000/5000 86.8+0.48  87.0+0.48  87.1+0.48 | .62

monk1 124/432 75.7+2.06 100.04+0.00 100.0+0.00 | 1.0 v
monk2 169/432 65.0+£2.29 62.5+2.33  82.4+1.83 .22

monk3 122/432 97.240.79  97.240.79 100.040.00 | .50

satimage  4435/2000 85.2+0.79  86.1+0.77  85.24+0.79 | .79

This suggests the possibility that perhaps m = 1 is a
better default value than m = 2, and begs the question
as to whether C4.5 with this new default parameter
setting would be a more worthy competitor to C4.5-
AP. We ran C4.5 with the m parameter set to 1 on the
same datasets used above and have gotten worse per-
formance on average as compared with m = 2 (83.8%
accuracy for m = 1 vs. 84.4% for m = 2); thus, while
m = 1 yields significant improvements in some cases,
it hurts on others and the improvement cannot be at-
tributed to this single parameter.

The time penalty for C4.5-AP can be large: letting
O(A) be the running time of A, the time required to
run k-fold cross-validation ¢ times is O(tkA). We must
do this for each state investigated by our search algo-
rithm, so if we evaluate n nodes in the search, the total
time is O(ntkA). In our experiments, ¢ was limited to
three, k& was 10, and the number of nodes expanded
was about 60. For example, on the dna dataset (which
took the most time) C4.5 took just under 2 minutes,

while C4.5-AP took 6.8 hours.

6 Related Work

In statistics, model selection refers to the general prob-
lem of selecting a learning algorithm A for a particular
task (Linhart & Zucchini 1986). Though the problems
are equivalent in the abstract, model selection typi-
cally refers to the choice of one from a small set of
algorithms, while different issues arise in parameter
selection because of the large space to be searched.
Nevertheless, because of the parallels between model
selection and parameter selection, we might expect to
observe some of the same phenomena encountered in
model selection. Schaffer (1993) explored the use of
cross-validation for learning algorithm selection, and
concluded that the selected algorithm was sometimes
much better and sometimes worse than any given al-
gorithm, but never much worse.

Selecting values for important parameters i1s a widely-
studied problem in statistics. Breiman et al. (1984)

describe the CART program, which is probably the
prime example of the automatic setting of a param-
eter (the cost-complexity parameter) in decision tree
induction. CART uses 10-fold cross-validation to set
this parameter. There are still many parameters left
to be set by the user, however, and it would be in-
teresting to compare a fully automated CART to the
standard CART. Nearly all statistical methods of re-
gression contain a single smoothing parameter A (sim-
ilar to the cost-complexity parameter in CART, and
the m and ¢ parameters in C4.5), which attempts to
address the bias-variance dilemma: how to trade off
fit to the training data with some measure of “com-
plexity” of the model. Wahba (1990, Chapter 4)
discusses cross-validation, generalized cross-validation,
maximum-likelihood, and Bayesian methods of choos-
ing X in the context of smoothing splines. Quinlan
(1993) discusses the importance of the C4.5 parame-
ters, and suggests that the user manually perform a
search through the space of parameter values using
cross-validation to evaluate each parameter. Craven
& Shavlik (1993) used this method in their work, but
did not report the accuracy improvement over the de-
fault parameters nor the specifics of how the search
was conducted. John (1994) reports preliminary re-
sults on using cross-validation and exhaustive search
to set the m parameter in C4.5. Feature subset selec-
tion can also be viewed as a special case of parameter
selection where a bit-vector-valued parameter specifies
which features to use. Recent work in machine learn-
ing has focused on the use of cross-validation for set-
ting the feature subset parameter vector (John et al.
1994, Kohavi 1995a, Kohavi 1994, Caruana & Freitag
1994, Langley & Sage 1994).

Moore, Hill & Johnson (1992) discuss a method for
using leave-one-out cross-validation to select many pa-
rameters in a nearest-neighbor setting. In the same
scenario Moore & Lee (1994) give efficient algorithms
for approximating the leave-one-out estimates, evalu-
ating each model only partially until it becomes clear
that either it is or is not the best model. Our heuristic
of re-running cross-validation when the standard devi-



ation of the estimate of the mean accuracy is above 1%
is a rough rule of thumb along the same lines. Variance
in errcy is also discussed in Gasser, Kneip & Kohler
(1991), who discuss the use of “plug-in” estimators in
kernel regression, giving better bandwidth parameter
selection than cross-validation.

In the neural network community, issues of model se-
lection and parameter selection also arise. Since neural
nets generally take much longer to train than deci-
sion trees, 1t 1s not feasible to perform a 10-fold cross
validation-directed search through the space of param-
eters of the kind we report here. Utans & Moody
(1991) give a lucid description of the model and pa-
rameter selection problem in neural networks. They
also present experiments using cross-validation to se-
lect the number of hidden units to use in the network
and the number of weights to prune after training.
Lang, Waibel & Hinton (1990) use a holdout set to
decide when to stop training. Weigend (1994) and
Finnoff, Hergert & Zimmerman (1993) present meth-
ods for indirectly selecting a model parameter (the ef-
fective network complexity) using a holdout set.

7 Conclusion

We have presented a general method for setting the pa-
rameters of a learning algorithm: the wrapper method.
Using best-first search and cross-validation, we have
applied the wrapper method to the C4.5 algorithm
yielding a version of C4.5 we call C4.5-AP that selects
its own tree-building parameters automatically. We
ran experiments on 33 datasets from the UCI and Stat-
Log collections and concluded that at a 95% confidence
level, our method improved C4.5 in six domains and
had no significant effect in the remainder. At a 90%
confidence level, our method improved C4.5 in nine do-
mains, degraded the performance of C4.5 on one very
small dataset, and had no effect on the rest. On the
large sample of datasets we used to compare C4.5 and
C4.5-AP, C4.5-AP’s error rate improved C4.5’s by a
relative factor of 13%.

Our results support our earlier claims that tuning
the parameters of a learning algorithm for a specific
dataset is better than just using the default parameters
for all datasets. We believe that fielded applications
of machine learning should use the wrapper method to
tune the behavior of the algorithm used.
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