
Michail G. Lagoudakis*
Department of Computer Science

Duke University
Durham, NC 27708

mgl@cs, duke. edu

Selecting the Right Algorithm

Michael L. Littman
Shannon Laboratory

AT&T Labs - Research
Florham Park, NJ 07932

mlit tman@research, att. com

Ronald E. Parr
Department of Computer Science

Duke University
Durham, NC 27708

parr@cs, duke. edu

Computer scientists always strive to find better and faster
algorithms for any computational problem. It is usually true
that programmers and/or users come across a plethora of dif-
ferent algorithms when looking to solve a particular problem
efficiently. Each one of these algorithms might offer differ-
ent guarantees and properties, but it is unlikely that a sin-
gle one of them is the best (fastest) in all possible cases.
So, the question that the programmer/user typically faces is:
"Which algorithm should I select?"

This question is largely due to the uncertainty in the input
space, the inner workings of the algorithm (especially true
for randomized algorithms), and the hardware characteris-
tics. It’s hard to know in advance what kind of inputs will
be provided, how exactly the computation will proceed, or
even how efficiently the underlying hardware will support
the needs of the different algorithms. Sometimes, a careful
study can reveal that committing to a particular algorithm is
better than committing to any of the other algorithms, but
is this the best we can do? What if uncertainty is explicitly
taken into account and the right decision is made dynami-
cally on an instance-by-instance basis?

To make the discussion more concrete, consider, for ex-
ample, the problem of sorting. Why would you ever choose
MergeSort or InsertionSort when you know that QuickSort
is in general the fastest algorithm for sorting? That might be
true to some extent, but it seems that if you allow for col-
laboration of these three "competitors", the outcome can be
beneficial.

Think of this algorithm selection problem (Rice 1976)
a decision problem: "Which algorithm should I run when-
evera new instance is presented?" The fact that two of these
algorithms are recursive makes the problem even more in-
teresting. Every time a recursive call is made, you can ask
the same question: "Which algorithm should I choose for
the current subproblem?". Nothing really dictates that you
have to use the same algorithm again and again throughout
the recursion. How, then, can you optimize this sequence (or
better, tree) of decisions? On what ground is each decision
based?

Say that your decision is based only on the size of the in-
put and that you have no other information about the input.

Copyright © 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.
*Partially supportedby the Lilian-Boudouri Foundation, Greece.

You may assume that the elements in the input are not ar-
ranged in any particular order, but are uniformly distributed.
Even if this is not the case, we can always force this by ran-
dom scrambling. It seems that what we need then is a policy,
that points out which algorithm to use for each possible in-
put size.

It’s not that hard to formulate this problem as a kind of
Markov Decision Process (MDP). The state is the size
the input and the actions are the three algorithms. Choosing
an action in a certain state results in a time cost that is paid
for that choice, and a transition to one or two new states
(recursive subproblems). It’s easy to derive the transition
model of the MDP. Action InsertionSort (/) takes you to the
terminal state (sorted input) from any state with probability
1. Action MergeSort (M), if chosen in state s, takes you
two new states,/s/2J and Is/2], with probability 1. Finally,
action QuickSort (Q), if taken in state s, will take you to
pair of states p, s - p, where p is 1 with probability 2/s and
any value between 2 and s- 1 with probability 1/s (Cormen,
Leiserson, & Rivest 1990). Therefore, all transitions are to
states of smaller size.

What is missing from our MDP is the cost function. How-
ever, we can estimate this function experimentally by run-
ning all algorithms on several inputs on the target machine
and measuring the real execution time consumed for each
transition.

By now, we have all the information we need to solve our
problem using Dynamic Programming. Let’s define Opt(s)
to be the minimum expected cost we can pay for sorting an
input of size s. By definition, Opt(l) = 0 since an input of
size 1 is already sorted. Now, suppose that we have Opt(.)
up to size s - 1, then we can determine Opt(s) recursively
as follows:

Opt(s) = min{optQ(s), optI(s), optM

where optX(s), X = {I, Q, M}, is the total expected cost
of taking action X in state s and following the optimal policy
thereafter, optX (s) can be determined as follows:

optX(s) = x(8)

optM(s) = M(s) + Opt(Is~2]) + Opt([s/2J)

74

From: AAAI Technical Report FS-01-04. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

0~

O~

2"

0.o4

I O.OCl

J

Figure 1: Average Performance of Sorting Algorithms on
the Sun Spapc/Solapis Architecture

lS--1

+tQ(s) =Q(s) + ;E (Opt(p)+Opt(s-p))

+ }(Opt(l) + opt(s-
where X(s) is the immediate cost function we experimen-
tally determined for each action X. Obviously, the optimal
action for state (size) s would be the action that yields the
minimum Opt(s) in the equation above.

This algorithm was implemented and all calculations were
performed up to size 100, since it is known that this is the
critical area. Above that size QuickSort is definitely the op-
timal choice. The resulting optimal policies on two different
machines ape as follows:

Spare (Solaris) Pentium (Linux)
Size Algorithm Size Algorithm

2 - 21 InsertionSort 2- 17 InsertionSort
22 - 32 MergcSort 18 - 30 MergeSort
33 - ... QuickSort 31 - ... QuickSort

As expected, the resulting hybrid algorithm performs much
better than any of the individual three algorithms. Figure
1 demonstrates savings of 43% over QuickSort, 50% over
Merge, Son and 69% over InsertionSort for inputs of size
100. The graph represents the average running time of each
algorithm over 100 random instances (same for all algo-
rithms) for sizes 1, 2 100.

Looking at the running time curves of InsertionSort and
QuickSort and particularly at the point they cross each other
(~ 48), you might be tempted to create yet another algo-
rithm with the following policy:

Size Algorithm
2 - 48 InsertionSort
49 -... QuickSort

The performance of this algorithm is shown with a dashed
line and it is clearly not as good as the policy derived using
the MDP. This is because interactions between the two al-
gorithms are not taken into account (Lagoudakis & Littman
2000). Note also the discontinuity of the curve at the cut-
off point. Such cut-off point algorithms are popular among

the algorithmics community, but as shown with the example
above a more formal approach can yield even better results.

There are some issues that arise in the context of recur-
sive algorithm selection. We can assume random distribu-
tion for elements in the original input, but is this maintained
for the subproblems during the recursion? Perhaps, subin-
stances become more and more sorted as we go, therefore
the cost function is not valid anymore. If this is true, given
that the distribution of the elements is hidden state, the result
is a violation of the Markov property. Enhancing the state
description with more information might reveal the hidden
information, but it will make the derivation of a model prac-
tically impossible; a learning method will be necessary.

The resulting hybrid algorithm is somewhat fixed. What
if some change in the underlying hardware or a different set
of data results in a different cost function? Can we recom-
pute the optimal policy dynamically? That is, can we con-
tinually update the individual cost function to be closer to
reality, and solve the dynamic programming problem on the
fly? This might be possible to some extent using a function
approximator to represent the cost functions. The cost func-
tion is known to be linear for QuickSort and MergeSort, and
somewhere between linear and quadratic in the average case
for InsertionSort. The approximator should be able to adapt
with only a few example points. The use of such function ap-
proximators has been investigated in (Lagoudakis & Littman
2000) for representing the value function in a model-free
learning setting.

We focused on the problem of sorting in this paper. How-
ever, it is possible to extend these ideas to several other do-
mains that enjoy portfolios of algorithms and recursive al-
gorithms in particular. Promising results have been obtained
on the problem of order statistic selection (Lagoudakis
Littman 2000) and on the problem of propositional satisfia-
bility (Lagoudakis & Littman 2001).

This work demonstrates that learning and optimization
methods can be effectively used to cope with uncertainty in
computation. It is plausible that, in the future, problems will
be solved by adaptive systems that encapsulate several algo-
rithms and improve their performance using past experience.

References

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990. In-
troduction to Algorithms. Cambridge, MA: The MIT Press.

Lagoudakis, M. G., and Littman, M. L. 2000. Algorithm
selection using reinforcement learning. In Langley, P., ed.,
Proceedings of the Seventeenth International Conference
on Machine Learning, 511-518. Morgan Kaufmann, San
Francisco, CA.
Lagoudakis, M. G., and Littman, M. L. 2001. Learning to
select branching rules in the dpll procedure for satisfiabil-
ity. In Kautz, H., and Selman, B., eds., Electronic Notes in
Discrete Mathematics (ENDM), Vol. 9, LICS 2001 Work-
shop on Theory and Applications of Satisfiability Testing
(SAT 2001). Elsevier Science.
Rice, J.R. 1976. The algorithm selection problem. Ad-
vances in Computers 15:65-118.

75

