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Abstract. In empirical studies of Evolutionary Algorithms, it is usually 
desirable to evaluate and compare algorithms using as many different parameter 
settings and test problems as possible, in order to have a clear and detailed 
picture of their performance. Unfortunately, the total number of experiments 
required may be very large, which often makes such research work 
computationally prohibitive. In this paper, the application of a statistical method 
called racing is proposed as a general-purpose tool to reduce the computational 
requirements of large-scale experimental studies in evolutionary algorithms.  
Experimental results are presented that show that racing typically requires only 
a small fraction of the cost of an exhaustive experimental study. 

1 Introduction 

Metaheuristic optimization methods such as Evolutionary Algorithms (EAs) are 
commonly evaluated and compared using empirical methods, due to the complexity 
of the dynamics and the problems to which they are applied. Due to many constraints, 
researchers often perform limited empirical studies where candidate algorithms with 
hand-tuned parameters are tested on a small set of benchmark problems. The 
shortcomings of this kind of methodology have been pointed out[1-3]. For example, 
parameter settings may often have significant influence on the performance of EAs 
and finding good parameter values can itself be a difficult optimization problem. 
Also, benchmark problems are often selected arbitrarily, and since there is typically 
no relationship between these problems, it is dangerous to make general conclusions 
about performance on the basis of such results. 

A more principled way to evaluate EAs empirically is to systematically explore a 
well-defined experimental space over algorithm parameter values and problems of 
interest. Unfortunately, an exhaustive or brute force approach quickly becomes 
computationally prohibitive, typically as the result of an explosion in the size of the 
space when experiments are scaled up. In this paper, a statistical technique called 
racing [4, 5] is proposed as one tool that can be applied to allow researchers to expand 
their empirical studies, by significantly reducing the computational requirements over 
a large experimental space. 

The content of this paper is structured as follows. The next section presents the 
framework of racing and some details of the statistical tests. Section 3 specifies 



      

algorithms and problems that create the experimental space to be investigated. A set 
of racing experiments are conducted in Section 4 to justify the usefulness of racing. 
Section 5 concludes our work and points out some directions of further work. 

2 Racing 

2.1 An Overview 
 

Racing algorithms[4, 5] have recently been proposed to solve the model selection 
problem in Machine Learning: given a set of data points and a number of candidate 
lazy learning algorithms (which could include multiple versions of some algorithm 
with different, specified parameter values), which algorithm yields the minimum 
prediction error based on leave-one-out cross validation? In contrast to a brute force 
method, which is to sequentially evaluate all algorithms on all available data points 
and choose the best performing algorithm, the racing method investigates all 
algorithms in parallel. In each step, all algorithms are tested on a single independently 
selected data point and their prediction errors on that point are calculated. The mean 
predication error of each algorithm on data points that have already been seen is also 
maintained. This error,  Eest, is an estimation of the true prediction error Etrue over the 
entire data set. As the algorithms are tested on more and more data points, Eest 
approaches Etrue. The fundamental mechanism of racing attempts to identify and 
eliminate weak candidates on the basis of Eest as early as possible to minimize the 
number of unnecessary predication queries. Candidates compete with each other for 
computational resources and only promising candidates survive to undertake further 
testing. There are several possible ways of deciding if and when a candidate should be 
eliminated, based on statistical tests. 

2.2 Statistical Tests in Racing 

In Hoeffding races[4], the upper and lower boundaries of Etrue, called the worst 
possible error and the best possible error respectively, which specify the confidence 
intervals of Etrue, are estimated at each step based on Eest, the number of data points 
that have been seen, the confidence level and the greatest possible error[6]. If at some 
stage, the best possible error of any algorithm is worse than the worst possible error of 
the current best algorithm, this algorithm will be eliminated. The advantage of 
Hoeffding races is that no assumptions are made about the distribution of the data, 
which makes it applicable to a wide range of situations.  

Candidate algorithms can be eliminated more quickly and/or more reliably if the 
data is approximately normally distributed[5]. In this case, each candidate has a 
population of errors and statistical methods such as ANOVA (Analysis of Variance) 
can be utilized to determine if the means of these populations are significantly 
different. In the meantime, since there is often some kind of correspondence 
relationship among different groups of data, it is also possible to use methods like the 
Friedman test[7], which employs a block design[8] to eliminate unwanted sources of 
variability. The data set in the Friedman test is a b × k matrix where b is the number 



       

of blocks and k is the number of candidates. Each block contains the experimental 
results of all candidates on a single test instance and each column contains the 
experimental results of a single candidate on all test instances. The framework of 
racing algorithms based on ANOVA or the Friedman test is given in Table 1. 

Table 1. The framework of racing algorithms based on ANOVA or the Friedman test 

 

2.3 Racing Evolutionary Algorithms 

There is a similarity between the model selection problem in Machine Learning and 
the task of parameter tuning in EAs.  In each case, the user is faced with a meta-
optimization problem: to find values for all of the adjustable parameters of the model 
(algorithm) in order to produce the best results when the algorithm is applied to the 
original problem. Since racing methods only utilize the statistics of the results 
generated by sets of algorithms, they should also be applicable to parameter tuning in 
EAs. In fact the set of algorithms to be raced need not to be different instances of the 
same algorithm.  Racing can be used in quite a general sense in an attempt to reduce 
the experimental effort required, when a comparison is required over a range of 
experimental configurations. 

We are aware of only one application of racing to the experimental evaluation of 
EAs[9].  Birattari et al employ a racing algorithm to find a parameter configuration of 
an Ant Colony Optimization (ACO) algorithm that performs as well as possible on a 
set of instances of the Traveling Salesman Problem (TSP). The TSP instances were 
randomly generated, which can be regarded as a set of test points drawn from a 
specific problem space. The parameters of the algorithm were systematically varied to 
create a set of fully-specified candidate algorithm instances. A racing algorithm called 
F-race based on the Friedman test was employed to find an as good as possible 
algorithm instance within a limited amount of time. The experimental results show 
that F-race outperformed two other racing algorithms based on the paired t-test. Also, 
there was no significant difference between the results produced by F-race and results 
produced by a limited brute-force method.  

In this paper we aim to clarify the use of racing algorithms in a more general 
experimental scenario, and to show some different ways in which racing can be 
applied (e.g., across random restarts of algorithms, or to select for problems instead of 
algorithms).  We also provide a comparison between the racing algorithms and an 
exhaustive method in each case, and examine the influence of various experimental 
factors on the effectiveness of racing. 

Repeat following steps until only one candidate left or no more unseen instance 
• Randomly select an unseen instance and test all remaining candidates on it 
• Store results in corresponding performance populations 
• If no difference in the means of performance populations is detected by 

ANOVA or the Friedman test, continue 
• Conduct multiple comparison of means and delete candidates if they are 

significantly worse than others at predefined significance level 



      

3 Algorithms and Problems 

3.1 Algorithm Framework 
 

The algorithm presented below is within the framework of Estimation of Distribution 
Algorithms (EDAs)[10]. The basic idea of EDAs is to estimate the probability 
distribution of a few selected individuals in each generation and all new individuals 
are generated by sampling from this probability distribution.  

 
A Gaussian Kernel EDA 

 
Step 1: Initialize population P by randomly generating N individuals 
Step 2: Evaluate all individuals 
Step 3: Chose M best individuals as kernels 
Step 4: Create P’ by sampling N individuals from the kernel density estimator 
Step 5: Evaluate all new individuals in P’ 
Step 6: Combine P and P’ to create a new population 
Step 7: Go to Step 3 until Stop 
 

The general form of the kernel density estimator is given by Eq. 1: 
 

                                   ∑
=

=
M

i
iM xxKxp

1

1 ),()(                                                      (1) 

 
In this paper, we use a spherical Gaussian kernel function K and the probability 

distribution is estimated by a Gaussian kernel density estimator, with kernels placed 
over the selected individuals themselves (i.e., xi). In this model, the value of the 
standard deviation σ, which is a smoothing parameter, plays an important role in the 
model’s performance [11]. If the value is too small, the model may tend to overfit the 
data and a very smooth estimation may be generated with a very large value, which 
may not be able to reveal some structure details. The value of M is another important 
parameter to determine, which controls the trade off between exploration and 
exploitation and is usually set based on some kind of rule of thumb. In fact, this 
algorithm can be regarded as an ES with truncation selection and when M is equal to 
N, it will work as a standard (µ+λ) ES(See[12]  for an analysis of the connection 
between EDAs and ESs). 

3.2 Landscape Generator 

For some of the experiments in the following section we use a continuous 
problem/fitness landscape generator as a source of test problems[13]. The landscape 
generator provides a source from which a large number of (randomized) problem 
instances (i.e., to be maximized) can be produced.  It is based on a sum of Gaussian 
functions and is parameterized by a small number of parameters such as the number 
of Gaussians, their locations and covariance structure.  These parameters have a direct 



       

influence on the structure of the fitness landscapes generated, and several interesting 
properties of the landscapes (e.g., the values of local and global optima, the number 
and distribution of optima) can be controlled and smoothly varied via the parameters.   

For results presented below, the parameters of the landscape generator are set to 
the fixed values specified, to produce a set of multimodal functions.  

4 Experiments 

4.1 Racing Multiple Algorithms on a Single Problem 
 

In this section we apply racing to the task of running a set of specified algorithms on a 
single test problem. The performance of most EAs is stochastic and depends on their 
initialization. In empirical studies, this is normally accounted for by running an 
algorithm repeatedly from different initial conditions. Racing can be applied to reduce 
the total number of algorithms in this scenario.  For this purpose, we chose a well-
known benchmark problem: Rastrigin’s Function, which is a minimization problem. 
 

    ]5,5[,)2cos2(cos1020),( 22 −∈⋅+⋅⋅−++= yxyxyxyxF ππ              (2) 

 
Fifty instances of the Gaussian kernel algorithm were tested with varying values 

for two of the algorithm parameters: δ from 0.2 to 2.0 with step size 0.2 and the value 
of M from 10 to 50 with step size 10. To evaluate the performance of the racing 
algorithms, an exhaustive set of experiments was conducted.  Each algorithm was run 
on the problem for 50 trials (i.e., population size=50, maximum number of 
generations=100) and the best solution found in each trial was recorded. The 
performance of all algorithms (in terms of this best solution fitness value) is 
summarized using boxplots with the horizontal axis nominally representing 
algorithms and the vertical axis representing performance distributions among restarts 
(Fig.1).  It is possible to inspect these results visually and determine, for example 
which algorithms were able to reliably find a good solution value. 

Using racing, we aim to make a similar observation at a fraction of the 
computational effort required for the above exhaustive experiment.  The procedure 
operates here by eliminating poor performing algorithms on the basis of a smaller 
number of random restarts.  Two racing algorithms called F-races and A-races based 
on the Friedman test and ANOVA respectively were applied at the significance level 
α=0.05. Since the sequence of test instances may have more or less influence on the 
performance of racing, in this paper, each racing algorithm was run for 10 trials with 
random sequences. The average number of remaining algorithms during racing is 
shown in Fig. 2 from which it is clear that both methods eliminated a large number of 
algorithms after around 15 restarts. The efficiency of racing corresponds to the ratio 
between the area below the curve and the area of the whole rectangular area in the 
figure. From a quantitative point of view, the average costs of F-races and A-races 
were 13.98% and 20.43% of the cost of the brute force method. Note that the single 
best algorithm in terms of mean performance from the exhaustive experiment (No.2) 
was always among the remaining algorithms at the end of racing. 



      

 

Fig. 1. Performance distributions of 50 algorithms on Rastrigin’s Function 

 
 
 
 
 

 
 
 
 
 
 
 

Fig. 2. Number of remaining algorithms vs. restarts:  F-races (left) and A-races (right) 

4.2 Racing a Single Algorithm on Multiple Problems 

Researchers are often interested in qualifying the performance of a single algorithm 
on a variety of test problems. In this section we demonstrate how racing algorithms 
can be used to efficiently identify (for example) which problems from a given set are 
more difficult for a single algorithm. We selected arbitrarily a Gaussian kernel-based 
algorithm from above with δ=0.2 and M=20.  The landscape generator described in 
Section 3.2 was used to generate fifty 5-D random landscapes. Each landscape 
contained 10 Gaussians, which generally corresponds to 10 optima (though this may 
vary due to overlaps in the random locations of the components of the landscape). The 
global optimum in each landscape had fitness value 1.0 and the fitness values of other 
local optima were randomly generated between 0 and 0.8. The algorithm was first run 
exhaustively on each landscape for 50 trials (population size=50, maximum number 
of generations=50) and the best solution found in each trial was recorded (Fig. 3).  



       

The racing algorithms (F-races and A-races) were again applied to this task 
(attempting to remove problems from experimentation iterating over restarts of the 
algorithm) and the results are shown in Fig. 4.  Note that at the end of the experiment, 
the problems that have not been eliminated during racing correspond to a much 
smaller set of problems that are seemingly difficult for this algorithm to perform well 
on. The average costs of F-races and A-races were 30.63% and 36.00% respectively 
compared to the brute force method (Fig. 4). The most difficult problem(No.1) was 
among the remaining problems by the end of racing in 9 out of 10 trials. 

 

Fig. 3. Difficulty distributions of 50 problems on one algorithm (sorted based on mean values) 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Number of remaining problems vs. restarts: F-races (left) and. A-races (right) 

4.3 Racing Multiple Algorithms on Multiple Problems 

Finally, racing was applied to identifying the best performing algorithms for a set of 
problems and to identifying the most difficult problems for a set of algorithms.  Note 
that in the experiments in Sections 4.1 and 4.2 racing was carried out with respect to 
restarts of an algorithm on a problem. In order to carry out racing with respect to 
different algorithms or problems, the performance of the algorithm across restarts 



      

must be summarized. Birattari et. al appear to conduct racing by running each 
algorithm only once on a problem – this may lead to sensitive or unrepresentative 
results in general. In the following experiments, each algorithm was run on each 
problem for 10 trials and the average value was recorded (population size=200, 
number of generations=100). One hundred algorithm instances were generated by 
systematically varying the two parameters of the algorithm (δ from 0.2 to 4.0 with 
step size 0.2 and M from 20 to 100 with step size 20). Fifty problems were generated 
in the same way as in Section 4.2.  

The results of the exhaustive experiments are shown in Figs. 5&6 over algorithms 
and problems respectively. The average costs of F-races and A-races in finding the 
best algorithm were 13.68% and 45.76% respectively (Fig. 7) and the average costs in 
finding the most difficult problem were 3.58% and 3.05% respectively (Fig. 8), 
compared to the brute force method. Again, the best algorithm (No. 86) and the most 
difficult problem (No.1) were never eliminated.   

 

Fig. 5. Performance distributions of 100 algorithms on 50 landscapes 

 
 

 

 

 

 
 
 
 
 

Fig. 6. Difficulty distributions of 50 problems on 100 algorithms (sorted based on mean values) 
 



       

 
 
 
 
 
 
 
 

 
 
 

Fig. 7. Number of remaining algorithms vs. problems: F-races (left) and A-races (right) 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Number of remaining problems vs. algorithms: F-races (left) and A-races (right) 

5 Conclusion 

It is clear that for each of our experiments, racing provides significant computational 
benefit over an exhaustive set of experiments.  The F-races algorithm was observed to 
be more effective at eliminating candidates from experimentation than A-races. Note 
however that the F-races method is based on ranks instead of raw fitness values, 
which means that it actually works on a different performance measure. 

The effectiveness of racing in some sense needs to be evaluated according to the 
aims of the experimenter.  In the above, racing almost never incorrectly eliminated the 
single best candidate (as verified by the exhaustive experiments). The number of 
candidates remaining at the end of the racing procedure is dependent on the 
significance level (α), the statistics of the experiments and the stopping time.  In some 
of the experiments above, racing could only eliminate a relatively small number of 
candidates (e.g., Fig. 4) while in other cases most of candidates could be eliminated 
after a few test instances (e.g., Fig. 8). The worst performance of both racing 
algorithms occurred where the experimental data had large variance (Fig. 3), which 
means that the performance of many candidates varied greatly from test instance to 
test instance. Also, when the performance of the candidates was very similar to each 



      

other (Fig. 5), A-races could not distinguish them because they had very close mean 
values (Fig. 7 right). However, F-races (based on the block design and ranks) showed 
much better performance in the same situation (Fig. 7 left). As a contrast, in the final 
set of experiments (Fig. 8) both racing algorithms worked extremely well. 
Examination of the experimental data set (Fig. 6) shows that the most difficult 
problem was significantly more difficult than others and the variance of each group of 
data was relatively small.  

In summary, this paper has shown that racing algorithms represent a promising tool 
for increasing the capacity and efficiency of empirical research in EAs. We expect 
that the use of statistical methods will play an important role in the improvement of 
standard and practice in the empirical evaluation of EAs and other metaheuristics. 
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