
Statistical Racing Techniques for Improved Empirical
Evaluation of Evolutionary Algorithms

Bo Yuan and Marcus Gallagher

School of Information Technology and Electrical Engineering,
University of Queensland, QLD 4072, Australia

{boyuan, marcusg}@itee.uq.edu.au

Abstract. In empirical studies of Evolutionary Algorithms, it is usually
desirable to evaluate and compare algorithms using as many different parameter
settings and test problems as possible, in order to have a clear and detailed
picture of their performance. Unfortunately, the total number of experiments
required may be very large, which often makes such research work
computationally prohibitive. In this paper, the application of a statistical method
called racing is proposed as a general-purpose tool to reduce the computational
requirements of large-scale experimental studies in evolutionary algorithms.
Experimental results are presented that show that racing typically requires only
a small fraction of the cost of an exhaustive experimental study.

1 Introduction

Metaheuristic optimization methods such as Evolutionary Algorithms (EAs) are
commonly evaluated and compared using empirical methods, due to the complexity
of the dynamics and the problems to which they are applied. Due to many constraints,
researchers often perform limited empirical studies where candidate algorithms with
hand-tuned parameters are tested on a small set of benchmark problems. The
shortcomings of this kind of methodology have been pointed out[1-3]. For example,
parameter settings may often have significant influence on the performance of EAs
and finding good parameter values can itself be a difficult optimization problem.
Also, benchmark problems are often selected arbitrarily, and since there is typically
no relationship between these problems, it is dangerous to make general conclusions
about performance on the basis of such results.

A more principled way to evaluate EAs empirically is to systematically explore a
well-defined experimental space over algorithm parameter values and problems of
interest. Unfortunately, an exhaustive or brute force approach quickly becomes
computationally prohibitive, typically as the result of an explosion in the size of the
space when experiments are scaled up. In this paper, a statistical technique called
racing [4, 5] is proposed as one tool that can be applied to allow researchers to expand
their empirical studies, by significantly reducing the computational requirements over
a large experimental space.

The content of this paper is structured as follows. The next section presents the
framework of racing and some details of the statistical tests. Section 3 specifies

algorithms and problems that create the experimental space to be investigated. A set
of racing experiments are conducted in Section 4 to justify the usefulness of racing.
Section 5 concludes our work and points out some directions of further work.

2 Racing

2.1 An Overview

Racing algorithms[4, 5] have recently been proposed to solve the model selection
problem in Machine Learning: given a set of data points and a number of candidate
lazy learning algorithms (which could include multiple versions of some algorithm
with different, specified parameter values), which algorithm yields the minimum
prediction error based on leave-one-out cross validation? In contrast to a brute force
method, which is to sequentially evaluate all algorithms on all available data points
and choose the best performing algorithm, the racing method investigates all
algorithms in parallel. In each step, all algorithms are tested on a single independently
selected data point and their prediction errors on that point are calculated. The mean
predication error of each algorithm on data points that have already been seen is also
maintained. This error, Eest, is an estimation of the true prediction error Etrue over the
entire data set. As the algorithms are tested on more and more data points, Eest
approaches Etrue. The fundamental mechanism of racing attempts to identify and
eliminate weak candidates on the basis of Eest as early as possible to minimize the
number of unnecessary predication queries. Candidates compete with each other for
computational resources and only promising candidates survive to undertake further
testing. There are several possible ways of deciding if and when a candidate should be
eliminated, based on statistical tests.

2.2 Statistical Tests in Racing

In Hoeffding races[4], the upper and lower boundaries of Etrue, called the worst
possible error and the best possible error respectively, which specify the confidence
intervals of Etrue, are estimated at each step based on Eest, the number of data points
that have been seen, the confidence level and the greatest possible error[6]. If at some
stage, the best possible error of any algorithm is worse than the worst possible error of
the current best algorithm, this algorithm will be eliminated. The advantage of
Hoeffding races is that no assumptions are made about the distribution of the data,
which makes it applicable to a wide range of situations.

Candidate algorithms can be eliminated more quickly and/or more reliably if the
data is approximately normally distributed[5]. In this case, each candidate has a
population of errors and statistical methods such as ANOVA (Analysis of Variance)
can be utilized to determine if the means of these populations are significantly
different. In the meantime, since there is often some kind of correspondence
relationship among different groups of data, it is also possible to use methods like the
Friedman test[7], which employs a block design[8] to eliminate unwanted sources of
variability. The data set in the Friedman test is a b × k matrix where b is the number

of blocks and k is the number of candidates. Each block contains the experimental
results of all candidates on a single test instance and each column contains the
experimental results of a single candidate on all test instances. The framework of
racing algorithms based on ANOVA or the Friedman test is given in Table 1.

Table 1. The framework of racing algorithms based on ANOVA or the Friedman test

2.3 Racing Evolutionary Algorithms

There is a similarity between the model selection problem in Machine Learning and
the task of parameter tuning in EAs. In each case, the user is faced with a meta-
optimization problem: to find values for all of the adjustable parameters of the model
(algorithm) in order to produce the best results when the algorithm is applied to the
original problem. Since racing methods only utilize the statistics of the results
generated by sets of algorithms, they should also be applicable to parameter tuning in
EAs. In fact the set of algorithms to be raced need not to be different instances of the
same algorithm. Racing can be used in quite a general sense in an attempt to reduce
the experimental effort required, when a comparison is required over a range of
experimental configurations.

We are aware of only one application of racing to the experimental evaluation of
EAs[9]. Birattari et al employ a racing algorithm to find a parameter configuration of
an Ant Colony Optimization (ACO) algorithm that performs as well as possible on a
set of instances of the Traveling Salesman Problem (TSP). The TSP instances were
randomly generated, which can be regarded as a set of test points drawn from a
specific problem space. The parameters of the algorithm were systematically varied to
create a set of fully-specified candidate algorithm instances. A racing algorithm called
F-race based on the Friedman test was employed to find an as good as possible
algorithm instance within a limited amount of time. The experimental results show
that F-race outperformed two other racing algorithms based on the paired t-test. Also,
there was no significant difference between the results produced by F-race and results
produced by a limited brute-force method.

In this paper we aim to clarify the use of racing algorithms in a more general
experimental scenario, and to show some different ways in which racing can be
applied (e.g., across random restarts of algorithms, or to select for problems instead of
algorithms). We also provide a comparison between the racing algorithms and an
exhaustive method in each case, and examine the influence of various experimental
factors on the effectiveness of racing.

Repeat following steps until only one candidate left or no more unseen instance
• Randomly select an unseen instance and test all remaining candidates on it
• Store results in corresponding performance populations
• If no difference in the means of performance populations is detected by

ANOVA or the Friedman test, continue
• Conduct multiple comparison of means and delete candidates if they are

significantly worse than others at predefined significance level

3 Algorithms and Problems

3.1 Algorithm Framework

The algorithm presented below is within the framework of Estimation of Distribution
Algorithms (EDAs)[10]. The basic idea of EDAs is to estimate the probability
distribution of a few selected individuals in each generation and all new individuals
are generated by sampling from this probability distribution.

A Gaussian Kernel EDA

Step 1: Initialize population P by randomly generating N individuals
Step 2: Evaluate all individuals
Step 3: Chose M best individuals as kernels
Step 4: Create P’ by sampling N individuals from the kernel density estimator
Step 5: Evaluate all new individuals in P’
Step 6: Combine P and P’ to create a new population
Step 7: Go to Step 3 until Stop

The general form of the kernel density estimator is given by Eq. 1:

 ∑
=

=
M

i
iM xxKxp

1

1),()((1)

In this paper, we use a spherical Gaussian kernel function K and the probability

distribution is estimated by a Gaussian kernel density estimator, with kernels placed
over the selected individuals themselves (i.e., xi). In this model, the value of the
standard deviation σ, which is a smoothing parameter, plays an important role in the
model’s performance [11]. If the value is too small, the model may tend to overfit the
data and a very smooth estimation may be generated with a very large value, which
may not be able to reveal some structure details. The value of M is another important
parameter to determine, which controls the trade off between exploration and
exploitation and is usually set based on some kind of rule of thumb. In fact, this
algorithm can be regarded as an ES with truncation selection and when M is equal to
N, it will work as a standard (µ+λ) ES(See[12] for an analysis of the connection
between EDAs and ESs).

3.2 Landscape Generator

For some of the experiments in the following section we use a continuous
problem/fitness landscape generator as a source of test problems[13]. The landscape
generator provides a source from which a large number of (randomized) problem
instances (i.e., to be maximized) can be produced. It is based on a sum of Gaussian
functions and is parameterized by a small number of parameters such as the number
of Gaussians, their locations and covariance structure. These parameters have a direct

influence on the structure of the fitness landscapes generated, and several interesting
properties of the landscapes (e.g., the values of local and global optima, the number
and distribution of optima) can be controlled and smoothly varied via the parameters.

For results presented below, the parameters of the landscape generator are set to
the fixed values specified, to produce a set of multimodal functions.

4 Experiments

4.1 Racing Multiple Algorithms on a Single Problem

In this section we apply racing to the task of running a set of specified algorithms on a
single test problem. The performance of most EAs is stochastic and depends on their
initialization. In empirical studies, this is normally accounted for by running an
algorithm repeatedly from different initial conditions. Racing can be applied to reduce
the total number of algorithms in this scenario. For this purpose, we chose a well-
known benchmark problem: Rastrigin’s Function, which is a minimization problem.

]5,5[,)2cos2(cos1020),(22 −∈⋅+⋅⋅−++= yxyxyxyxF ππ (2)

Fifty instances of the Gaussian kernel algorithm were tested with varying values

for two of the algorithm parameters: δ from 0.2 to 2.0 with step size 0.2 and the value
of M from 10 to 50 with step size 10. To evaluate the performance of the racing
algorithms, an exhaustive set of experiments was conducted. Each algorithm was run
on the problem for 50 trials (i.e., population size=50, maximum number of
generations=100) and the best solution found in each trial was recorded. The
performance of all algorithms (in terms of this best solution fitness value) is
summarized using boxplots with the horizontal axis nominally representing
algorithms and the vertical axis representing performance distributions among restarts
(Fig.1). It is possible to inspect these results visually and determine, for example
which algorithms were able to reliably find a good solution value.

Using racing, we aim to make a similar observation at a fraction of the
computational effort required for the above exhaustive experiment. The procedure
operates here by eliminating poor performing algorithms on the basis of a smaller
number of random restarts. Two racing algorithms called F-races and A-races based
on the Friedman test and ANOVA respectively were applied at the significance level
α=0.05. Since the sequence of test instances may have more or less influence on the
performance of racing, in this paper, each racing algorithm was run for 10 trials with
random sequences. The average number of remaining algorithms during racing is
shown in Fig. 2 from which it is clear that both methods eliminated a large number of
algorithms after around 15 restarts. The efficiency of racing corresponds to the ratio
between the area below the curve and the area of the whole rectangular area in the
figure. From a quantitative point of view, the average costs of F-races and A-races
were 13.98% and 20.43% of the cost of the brute force method. Note that the single
best algorithm in terms of mean performance from the exhaustive experiment (No.2)
was always among the remaining algorithms at the end of racing.

Fig. 1. Performance distributions of 50 algorithms on Rastrigin’s Function

Fig. 2. Number of remaining algorithms vs. restarts: F-races (left) and A-races (right)

4.2 Racing a Single Algorithm on Multiple Problems

Researchers are often interested in qualifying the performance of a single algorithm
on a variety of test problems. In this section we demonstrate how racing algorithms
can be used to efficiently identify (for example) which problems from a given set are
more difficult for a single algorithm. We selected arbitrarily a Gaussian kernel-based
algorithm from above with δ=0.2 and M=20. The landscape generator described in
Section 3.2 was used to generate fifty 5-D random landscapes. Each landscape
contained 10 Gaussians, which generally corresponds to 10 optima (though this may
vary due to overlaps in the random locations of the components of the landscape). The
global optimum in each landscape had fitness value 1.0 and the fitness values of other
local optima were randomly generated between 0 and 0.8. The algorithm was first run
exhaustively on each landscape for 50 trials (population size=50, maximum number
of generations=50) and the best solution found in each trial was recorded (Fig. 3).

The racing algorithms (F-races and A-races) were again applied to this task
(attempting to remove problems from experimentation iterating over restarts of the
algorithm) and the results are shown in Fig. 4. Note that at the end of the experiment,
the problems that have not been eliminated during racing correspond to a much
smaller set of problems that are seemingly difficult for this algorithm to perform well
on. The average costs of F-races and A-races were 30.63% and 36.00% respectively
compared to the brute force method (Fig. 4). The most difficult problem(No.1) was
among the remaining problems by the end of racing in 9 out of 10 trials.

Fig. 3. Difficulty distributions of 50 problems on one algorithm (sorted based on mean values)

Fig. 4. Number of remaining problems vs. restarts: F-races (left) and. A-races (right)

4.3 Racing Multiple Algorithms on Multiple Problems

Finally, racing was applied to identifying the best performing algorithms for a set of
problems and to identifying the most difficult problems for a set of algorithms. Note
that in the experiments in Sections 4.1 and 4.2 racing was carried out with respect to
restarts of an algorithm on a problem. In order to carry out racing with respect to
different algorithms or problems, the performance of the algorithm across restarts

must be summarized. Birattari et. al appear to conduct racing by running each
algorithm only once on a problem – this may lead to sensitive or unrepresentative
results in general. In the following experiments, each algorithm was run on each
problem for 10 trials and the average value was recorded (population size=200,
number of generations=100). One hundred algorithm instances were generated by
systematically varying the two parameters of the algorithm (δ from 0.2 to 4.0 with
step size 0.2 and M from 20 to 100 with step size 20). Fifty problems were generated
in the same way as in Section 4.2.

The results of the exhaustive experiments are shown in Figs. 5&6 over algorithms
and problems respectively. The average costs of F-races and A-races in finding the
best algorithm were 13.68% and 45.76% respectively (Fig. 7) and the average costs in
finding the most difficult problem were 3.58% and 3.05% respectively (Fig. 8),
compared to the brute force method. Again, the best algorithm (No. 86) and the most
difficult problem (No.1) were never eliminated.

Fig. 5. Performance distributions of 100 algorithms on 50 landscapes

Fig. 6. Difficulty distributions of 50 problems on 100 algorithms (sorted based on mean values)

Fig. 7. Number of remaining algorithms vs. problems: F-races (left) and A-races (right)

Fig. 8. Number of remaining problems vs. algorithms: F-races (left) and A-races (right)

5 Conclusion

It is clear that for each of our experiments, racing provides significant computational
benefit over an exhaustive set of experiments. The F-races algorithm was observed to
be more effective at eliminating candidates from experimentation than A-races. Note
however that the F-races method is based on ranks instead of raw fitness values,
which means that it actually works on a different performance measure.

The effectiveness of racing in some sense needs to be evaluated according to the
aims of the experimenter. In the above, racing almost never incorrectly eliminated the
single best candidate (as verified by the exhaustive experiments). The number of
candidates remaining at the end of the racing procedure is dependent on the
significance level (α), the statistics of the experiments and the stopping time. In some
of the experiments above, racing could only eliminate a relatively small number of
candidates (e.g., Fig. 4) while in other cases most of candidates could be eliminated
after a few test instances (e.g., Fig. 8). The worst performance of both racing
algorithms occurred where the experimental data had large variance (Fig. 3), which
means that the performance of many candidates varied greatly from test instance to
test instance. Also, when the performance of the candidates was very similar to each

other (Fig. 5), A-races could not distinguish them because they had very close mean
values (Fig. 7 right). However, F-races (based on the block design and ranks) showed
much better performance in the same situation (Fig. 7 left). As a contrast, in the final
set of experiments (Fig. 8) both racing algorithms worked extremely well.
Examination of the experimental data set (Fig. 6) shows that the most difficult
problem was significantly more difficult than others and the variance of each group of
data was relatively small.

In summary, this paper has shown that racing algorithms represent a promising tool
for increasing the capacity and efficiency of empirical research in EAs. We expect
that the use of statistical methods will play an important role in the improvement of
standard and practice in the empirical evaluation of EAs and other metaheuristics.

Acknowledgement

This work was supported by the Australian Postgraduate Award granted to Bo Yuan.

References

1. Whitley, D., Mathias, K., Rana, S. and Dzubera, J.: Evaluating Evolutionary Algorithms.
Artificial Intelligence, 85(1-2): pp. 245-276, 1996.

2. De Jong, K.A., Potter, M.A. and Spears, W.M.: Using Problem Generators to Explore the
Effects of Epistasis. In Seventh International Conference on Genetic Algorithms, T. Bäck
Ed., Morgan Kauffman, pp. 338-345, 1997.

3. Eiben, A.E. and Jelasity, M.: A Critical Note on Experimental Research Methodology in
EC. In Congress on Evolutionary Computation, Hawaii, IEEE, pp. 582-587, 2002.

4. Maron, O. and Moore, A.W.: Hoeffding Races: Accelerating Model Selection Search for
Classification and Function Approximation. In Advances in Neural Information
Processing Systems 6, J.D. Cowan, et al., Editors, pp. 59-66, 1994.

5. Maron, O. and Moore, A.W.: The Racing Algorithm: Model Selection for Lazy Learners.
Artificial Intelligence Review, 11: pp. 193-225, 1997.

6. Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. Journal
of the American Statistical Association, 58(301): pp. 13-30, 1963.

7. Conover, W.J.: Practical Nonparametric Statistics. 3rd ed, John Wiley & Sons, Inc., 1999.
8. Box, G.E.P., Hunter, W.G. and Hunter, J.S.: Statistics for Experimenters. Wiley, 1978.
9. Birattari, M., Stutzle, T., Paquete, L. and Varrentrapp, K.: A Racing Algorithm for

Configuring Metaheuristics. In Genetic and Evolutionary Computation Conference
(GECCO 2002), pp. 11-18, 2002.

10. Mühlenbein, H. and Paaß, G.: From Recombination of Genes to the Estimation of
Distributions: I. Binary Parameters. In Parallel Problem Solving from Nature IV, H.-M.
Voigt, et al. Eds., pp. 178-187, 1996.

11. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, 1995.
12. Gallagher, M.: Multi-Layer Perceptron Error Surfaces: Visualization, Structure and

Modelling. PhD Thesis, The University of Queensland, 2000.
13. Yuan, B. and Gallagher, M.: On Building a Principled Framework for Evaluating and

Testing Evolutionary Algorithms: A Continuous Landscape Generator. In the 2003
Congress on Evolutionary Computation, pp. 451-458, 2003.

