Branch and Bound Algorithm Selection by Performance Prediction

Lionel Lobjois and Michel Lemaitre

ONERA-CERT/DCSD - ENSAE

2, avenue Edouard Belin — BP 4025 — 31055 Toulouse cedex 4 — France
{Lionel.Lobjois,Michel.Lemaitre}@cert.fr

Abstract

We propose a method called Selection by Performance
Prediction (SPP) which allows one, when faced with
a particular problem instance, to select a Branch and
Bound algorithm from among several promising ones.
This method is based on Knuth’s sampling method
which estimates the efficiency of a backtrack program
on a particular instance by iteratively generating ran-
dom paths in the search tree. We present a simple
adaptation of this estimator in the field of combinato-
rial optimization problems, more precisely for an ex-
tension of the maximal constraint satisfaction frame-
work. Experiments both on random and strongly struc-
tured instances show that, in most cases, the proposed
method is able to select, from a candidate list, the best
algorithm for solving a given instance.

Introduction

The Branch and Bound search is a well-known algo-
rithmic schema, widely used for solving combinatorial
optimization problems. A lot of specific algorithms can
be derived from this general schema. These can differ in
many ways. For example, one can use different static
or dynamic orderings for variables and values. Like-
wise, the computation of a lower bound (in the case of
minimization) at each branch node is often a compro-
mise between speed and efficiency of the induced cut,
and several variants are potentially appropriate. Thus,
each algorithm is a combination of several particular
features. It is generally difficult to predict the precise
behavior of a combinatorial algorithm on a particular
instance. In actual practice, one can observe that the
range of computation times used by the candidate algo-
rithms to solve a particular instance is often very wide.
Faced with a particular instance to be solved, often in
a limited time, one must choose an algorithm without
being sure of making the most appropriate choice. Bad
decisions may lead to unacceptable running times.

Copyright © 1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved. This work
was partially supported by the French Délégation Générale
a ’Armement, under contract DRET 94/002 BC 47.

The authors thank Gérard Verfaillie and Thomas Schiex for

helpful discussions during this work.

In this paper, we propose a method called Selec-
tion by Performance Prediction (SPP) to select, for
each particular problem instance, the most appropri-
ate Branch and Bound algorithm from among several
promising ones. We restrict ourselves to the case of
constraint optimization problems expressed in the Val-
ued CSP framework (Schiex, Fargier, & Verfaillie 1995),
which 1s an extension of the mazimal constraint sat-
1sfaction framework, as explained in the next section.
The proposed SPP method is based on an old and very
simple idea (Knuth 1975) allowing one to statistically
estimate the size of a search tree by iterative sampling.
It gives surprisingly good results on both strongly struc-
tured and random problem instances. Estimating each
candidate algorithm on the very instance to be solved
1s the key to a successful choice.

This paper is organized as follows. We first introduce
the VCSP framework and describe Knuth’s method of
estimation. We show how this estimation can be used
for Branch and Bound algorithms. Then we introduce
the SPP method, and show some experimental results
on both strongly structured and random problem in-
stances. Lastly, after the review of some related works,
we state our conclusions and discuss future directions.

Valued CSPs

A Constraint Satisfaction Problem (CSP) instance is
defined by a triple (X, D, C), where X is a set of vari-
ables, D is a set of finite domains for the variables,
and C 1s a set of constraints. A constraint i1s defined
by a subset of variables on which it holds and by a
subset of allowed tuples of values. A solution of an in-
stance is a complete assignment — an assignment of
values to all of the variables — which satisfies all of the
constraints. Many CSP instances are so constrained
that no solution exists. In this case, one can search
for a solution maximizing the number of satisfied con-
straints. This 1s the maximal constraint satisfaction
framework introduced by (Freuder & Wallace 1992).
This framework can be further generalized by giving
a weight or a waluation to each constraint, mirroring
the importance one gives to its satisfaction. The cost
of a complete assignment is the aggregation of the valu-
ations of the unsatisfied constraints. We then search for

a solution minimizing this cost. This extension of the
CSP model is called the Valued CSP (VCSP) frame-
work (Schiex, Fargier, & Verfaillie 1995). In this paper,
we only consider X-VCSPs, for which the aggregation
operator is the ordinary sum. Algorithms for maxi-
mal constraint satisfaction (Freuder & Wallace 1992;
Larrosa & Meseguer 1996) are easily extended to VC-
SPs.

Knuth’s method of estimation
Knuth’s method (Knuth 1975) is based on a statisti-

cal estimation of the quantity ¢ Lef erhodes(m flz),
where T is any tree. Among other quantities this
method can estimate the number of nodes in a search
tree (f(x) = 1), or the total running time (f(z) being
the time spent on the node z).

Let S = (#1,®2,...) be a random path from the root
x1 to a terminal node, in which the successor of each in-

ternal node is randomly selected according to a uniform

distribution. TLet () def D oeies w(zi) fzi), where

w(z;) def HZ_:11 d(zy), and d(zy) is the number of suc-
cessors of zx. ¢ is an unbiased estimate of ¢. This is
formally expressed as E ¢ = ¢ (the expected value of

the random variable ¢ is ¢). The variance of ¢ is

5 (i))’

p= > w) Y (v -)
-th

z€nodes(T) 1<i<j<d(x)
| (1)
where x() is the ™ successor of z, @(x) =
ZyEnodes(Tz) f(y), and T is the subtree rooted in x.

<

The expression for the variance shows that it can be
quite large, all the larger as the tree is unbalanced. Of
course, one can get a better estimate of ¢ by repeatedly
sampling the tree. Let ¢, be the mean of ¢(S;) over n
successive random paths S;. We still have E g, = ¢,
but the variance is now reduced to Vg, = Vo/n.
When sampling search trees, experiments show that the
distribution of ¢ cannot be considered as a common
one, hence it is difficult to provide a good confidence
interval for ¢. However, Chebyshev’s inequality! gives
a confidence interval for ¢ with a probability of error
less than 1/¢? : Pr(|gn, — | > ¢/ Ve/n) < 1/c¢% In
practice V¢ is unknown and must be estimated from
the n random paths S; using the well-known formula
Vo = 553001 (e(S) — ¢n)*

In his paper, Knuth suggests a refinement called ¢m-
portance sampling, in which the successor of a node is
selected according to a weighted distribution (instead of
a uniform one), the weight of each successor being an
estimate of the corresponding ¢ (z("). Knuth’s method
has been improved in different ways by (Purdom 1978)
and (Chen 1992). These improvements are based on a
deep knowledge of the structure of problem instances.

Tt can be used because it does not make any assumption
on the actual distribution of the random variable .

DFBB(ubo)
c* « ubg
success < false
SEARCH(1)

SEARCH(1)
if 1 < nb-variables
then v; < VARIABLE-CHOICE(¢)
for each value k in Current- Domain[v]
A[U,‘] — k
PROPAGATE(1)
b «+ Bounp(¢)
if b < ¢* then SEARCH(i + 1)
UNPROPAGATE(?)
else success + true
A*+— A
c* « CostT(A)

Figure 1: Depth First Branch and Bound search.

In this paper, we choose to keep close to the original
and simplest prediction method.

Estimating the Performance of a Branch
and Bound Algorithm

In this section, we will show how Knuth’s estimation
method can be used to predict the running time of a
Depth First Branch and Bound algorithm for solving
a particular VCSP instance. This prediction i1s based
on the estimation of the number of nodes in the tree
developed during the search.

Figure 1 shows the pseudo-code of a Depth First
Branch and Bound algorithm. It looks for a complete
assignment A* of minimal cost ¢* less than an initial
upper bound wubg. If such an assignment does not ex-
ist (because ubg is less than or equal to the optimal
cost) then the algorithm ends with success equal to
false. The current partial assignment, involving vari-
ables vy, va,...v;, is stored in A[l..i]. PROPAGATE({)
is a procedure which, like forward-checking, propagates
the choices already made for the assigned variables onto
the domains of the unassigned ones. This propagation
may result in value deletions in the domains of future
variables, and thus may improve the subsequent lower
bound computation. BOUND(¢) returns a lower bound
of the cost of any complete extension of the current par-
tial assignment. UNPROPAGATE(¢) simply restores the
domains.

Figure 2 shows the pseudo-code of the proce-
dure ESTIMATE-NB-NODES(ubg,n) which estimates the
number of nodes that will be developed by the call
DFBB(uby). The procedure VARIABLE-CHOICE used
in both SEARCH (figure 1) and SAMPLE (figure 2)
chooses the next variable, using an appropriate heuris-
tic. It should be stressed that the structure of the SAM-
PLE procedure is simply obtained from the structure of
the SEARCH procedure by changing the for loop into a
single random value choice.

ESTIMATE-NB-NODES(ubg,n)

c* « ubg

$n < 0

for j=1ton
w1
P+ 0
SAMPLE(1)
$n = ¢n+ @

return ¢,

SAMPLE(7)

if 1 < nb-variables

then v; < VARIABLE-CHOICE(%)
k + randomly select a value

in Current-Domain[v;]

A[U,‘] — k
w + w - | Current- Domain[v]|
= ptw
PROPAGATE(1)
b + Bounp(i)
if b < ¢* then SAMPLE(: 4 1)
UNPROPAGATE(?)

Figure 2: Estimating the size of a DFBB search tree
through iterative sampling.

As mentioned by Knuth in his paper, “the estimation
procedure does not apply directly to branch-and-bound
algorithms”. To better understand this, one should
note that SEARCH updates the current upper bound ¢*
each time it finds a better complete assignment, thus
allowing for a better subsequent pruning of the search
tree. On the contrary, SAMPLE never updates its ini-
tial upper bound: it estimates the size of a tree which
would be generated by a search process in which the
upper bound remained constant. Hence, the sampled
search tree does not correspond exactly to the actual
search tree.

Search efforts between the regular version and the
constant upper bound version of a Branch and Bound
algorithm can differ tremendously. One extreme case
occurs when the initial upper bound is set to infinity:
whereas the regular version finds good solutions and
consequently prunes its search tree, the constant upper
bound version has to explore all complete assignments.
On the other hand, if the initial upper bound is less
than or equal to the optimal cost, both versions develop
exactly the same tree. Eventually, good estimates need
low upper bounds. In practice, one can execute an in-
complete method like a local search first in order to get
a low upper bound of the optimal cost. This upper
bound will help the estimation process as well as the
resolution itself.

The SAMPLE procedure of figure 2 makes it possible
to estimate the size (number of nodes) of the search
tree. However, we are in fact more interested in an es-
timate of the running time. A simple way of estimating
this running time is to estimate first the average time

SPP(Z,L,t,,ts,ubo)
for each BB; in £
fi + ESTIMATE-TIME-PER-NODE(Z,BB;,t,,uboy)
Pn + ESTIMATE-NB-NODES(Z,BB;,t,ubo)
time; < fi - ¥n
return BB; such as time; is minimal

Figure 3: The Selection by Performance Prediction
(SPP) method.

1 spent on a node. To do this, we run the target algo-
rithm during a brief interval of time and then deduce
an estimate of the average time per node. According to
our experiments, such a simple procedure is sufficient
to produce reasonable estimates.

Experiments with several instances and algorithms
show that the variance of ¢ 1s generally very large.
Hence, 1t seems difficult to produce useful confidence
intervals for the number of developed nodes (and hence
for the running time). The main contribution of this pa-
per is to show empirically that the SPP method works
well in practice despite this huge variance and the dif-
ference between sampled and actual search trees.

Selecting the Best Algorithm

In this section, we give a detailed description of the
“Selection by Performance Prediction” method (SPP).
Given an instance to be solved and a list of promising
candidate Branch and Bound algorithms, we would like
to select the best possible algorithm from among the
candidates, that is, the algorithm which will solve the
instance within the shortest time.

The principle of the method 1s very simple: we esti-
mate the running time of each candidate algorithm on
the instance; then we select the algorithm which gives
the smallest expected running time. Figure 3 shows
a pseudo-code of the proposed SPP method. 7 is the
instance to be solved. £ is the list of candidate algo-
rithms. ¢, is the time allocated for estimating p and
ts the time for estimating the size of each search tree.
ubg 1s the initial upper bound used both for the actual
search and for the estimation process.

EsTIMATE-TIME-PER-NODE(Z,BB;,t,,,uby) runs the
algorithm BB; for a time ¢, on the instance Z using ubg
as initial upper bound. It returns an estimate fi of the
average running time per node for BB;. ESTIMATE-NB-
NoDEs(Z,BB;,ts,uby) samples during a time ¢ the tree
developed by the algorithm BB; using uby as constant
upper bound. It returns the mean value ¢, of the n
random paths that have been generated. ESTIMATE-
NB-NODES is similar to ESTIMATE-NB-NODES of figure
1 (however, while SAMPLE in figure 2 is given a fixed n,
ESTIMATE-NB-NODES is given instead a time limit).

Although the SPP method is very simple, it works
surprisingly well in practice. Two reasons may explain
this success. First, the estimator is unbiased: it pro-
duces on average good estimates despite a huge vari-

ance. Second, the method does not depend on absolute
performance predictions: since it compares the constant
upper bound version of each candidate algorithm, pes-
simistic estimates due to a poor upper bound are pes-
simistic for all algorithms.

Experiments

In this section, we describe some experiments of the
SPP method both on random and strongly structured
instances?. We selected four well known algorithms as
candidates. Good descriptions of these algorithms can
be found in (Freuder & Wallace 1992), (Wallace 1994)
and (Larrosa & Meseguer 1996). BB; is a forward-
checking (P-EFC3) with the widely used dynamic vari-
able ordering: minimum current domazwn as first heuris-
tic and decreasing degree to break ties. Its value order-
ing is increasing IC (Freuder & Wallace 1992). BBa.,
BB3 and BBy are forward-checking with Directed Arc
Consistency Counts for lower bound computation (P-
EFC3+DAC2 described in (Larrosa & Meseguer 1996)).
They all use increasing IC' + DAC as value ordering but
they differ on their static variable ordering: BB, uses
decreasing forward degree (FD in (Larrosa & Meseguer
1996)) with maa-cardinality (Tsang 1993, p 179) as sec-
ond criteria, BBz uses minimum width (Tsang 1993, p
164) and BB, uses decreasing degree. Our experience
on several problems shows that these algorithms appear
to be among the best Branch and Bound algorithms
available today for strongly structured instances.

Since we are mainly interested in solving realistic
problems, we chose for these experiments the field of
Radio Link Frequency Assignment Problems (RLFAP)
(Cabon et al. 1998). We used sub-instances of CELAR
instances 6 and 7 which are probably the two most dif-
ficult instances of the set®. The next table summarizes
some properties of these sub-instances:

name # of # of # of optimal
variables | values | constraints cost

I 16 44 207 159

I 14 44 300 2669

Is 16 44 188 10310

In the following experiments, we address three dif-
ferent cases depending on the initial upper bound. The
first case corresponds to the common situation in which
ubg 1s an upper bound of the optimal cost provided by
a simple local search. In the second case, ubg is the
optimal cost itself. Such a situation may occur when
the optimal cost is easily found by a local search but
there 1s no proof of its optimality. In the last case, we
try to prove that ubg is a lower bound of the optimal
cost. This may be helpful to bound the optimal cost
when it is impracticable (de Givry & Verfaillie 1997).

2All experiments have been done on a SUN Sparch with
64 Mo of RAM using CMU Common Lisp.

*The original instances and the sub-instances are avail-
able at ftp://ftp.cs.unh.edu/pub/csp/archive/code/
benchmarks/FullRLFAP. tgz.

We ran SPP 5000 times on each instance using
£={BB1,BB,,BB3,BB4}, t, = 1 second and t; = 3
seconds. In order to check predictions we then ran the
complete algorithms using upper bounds given to SPP.
The next table shows, for each instance and each al-
gorithm, the running time in seconds of the complete
search using the given upper bound and nbc, the num-
ber of times the algorithm was selected. For instance,
algorithm BBj3 solved instance 7; to optimality in 377
seconds and was selected 4660 times among the 5000
runs of SPP:

7 I 73

ubg 159 2000 10413
opt 159 2669 10310

time nbc time nbc time nbc
BB, 530000° 0 1200 | 4939 | 2116 441
BB-> 1961 170 | 18149 31 | 3200 229
BB 377 | 4660 | 40299 0 | 2162 881
BB, 1015 170 | 18271 30 | 1010 | 3449

These experimental results are very encouraging: for
all instances, SPP is able to find the best algorithm in
the majority of runs. When it does not select the best
algorithm, it generally selects a good one and rarely
the worst. As could be guessed, SPP is unable to dis-
tinguish two algorithms which have close running times.
More generally, the more the actual running times dif-
fer, the easier it is for SPP to select the best algorithm.

To give a more precise idea of the quality of the
SPP method, we propose to compare it with two alter-
native approaches in terms of expected running time.
The first approach, RANDOM, makes a random choice
in the list of the candidate algorithms. When sev-
eral algorithms seem to be suitable for the instance,
one can pick one of them at random. The expected
running time one obtains using this approach is sim-
ply the mean of the four running times. The sec-
ond approach, INTERLEAVED, runs all the candidate
algorithms in an interleaved way on the same proces-
sor as proposed in (Huberman, Lukose, & Hogg 1997;
Gomes & Selman 1997). The first algorithm which fin-
ishes the search stops the others. For this approach, the
expected running time is four times the running time
of the best algorithm. We approximated the expected
running time one obtains using SPP with the simple
formula > nbe; - t;/ > nbe;, where nbe; is the number
of times SPP selects algorithm BB, and ¢; is the actual
running time of the complete solving using BB;.

Figure 4 compares the running times of each algo-
rithm and the expected running time using RANDOM,
INTERLEAVED and SPP on our three instances. For
SPP, we added the cost of the estimation process which
is 4-(1+3) = 16 seconds to the expected running time
(this appears in a darker grey).

According to these experiments, SPP definitely out-
performs RANDOM and INTERLEAVED approaches on
these instances. In each case, the expected running

5This time is not the actual running time of BBy on 7,
but an estimation using ¢, = 3 minutes and ¢, = 1 hour.

1
BB 580000

BB2 | nos1

BB3 377

BB4 |[1015

Random 145838

Interleaved ‘1 508

SPP I 469

o 500 1000 1500 2000

BB1 | |1200

BB2 | 18149

1 [[[
BB3 40299

1 [[[
BB4 | |18271

Random

19479

Interleaved ‘ 4800

spp [Jra23

(o] 5000 10000 15000 20000 25000 30000 35000 40000

|
BB1 |211
1 \ \ \

BB2 3200

BB3 | 2162

BB4 1010

Random ‘2122

B \ \ \
Interleaved 4040

SPP 1411

:

500 1000 1500 2000 2500 3000 3500 4000

o

Figure 4: Expected running times using different ap-
proaches when solving instances 71, Z5 and Zs.

time using SPP is very close to the running time of the
best algorithm: wrong selections have a small influence
on the expected running time since they occur rarely.

To validate our approach on more instances, we ex-
perimented with the SPP method on a set of random
instances. The goal of the experiment was to solve se-
quentially all instances of the set as quickly as possi-
ble. For this experiment, we chose to tackle the case
where there are only two promising candidates for solv-
ing the whole set, neither algorithm clearly dominating
the other. We restricted £ to {BB1,BB2} and gen-
erated 238 instances according to the model described
in (Smith 1994) modified to allow valued constraints.
These instances contain 20 variables and 10 values per
variable; the graph connectivity is 50% and the tight-
ness of each constraint is 90%. Constraints are uni-
formly valued in the set {1, 10,100, 1000, 100000}. With
such parameters, both algorithms have nearly equal
chances to be the best.

For each instance, we first ran a simple Hill-Climbing
to find an upper bound. Then we ran BB; and BBs on
each instance with the given upper bound and recorded

1 [

BB1 68540 ‘
T T T 1

BB2 ‘52120
] \ \ \ \ \

Random ‘ 58756
T E—
Perfect ‘ 29161

] \ \

sppP I 35892

I I I

o 10000 20000 30000 40000 50000 60000 7000

Figure 5: Cumulated running times on 238 random in-
stances (t, =1, t, = 3)

their running times: 103 instances were best solved by
BB; as opposed to 135 for BBs. Finally, we used ap-
proaches RANDOM and SPP to select an algorithm for
each instance. Figure 5 shows the cumulated running
times using, for each instance, algorithm BB1, BB, the
one selected by RANDOM, and the one selected by SPP*.
To emphasize the performance of the SPP method, we
also show the cumulated running times one would ob-
tain using the hypothetical perfect selection method (a
method which could choose the best algorithm for each
instance).

One important point stressed by this last experiment
is that it is better to use the algorithm selected by the
SPP method for each instance, than to use the best al-
gorithm on average for all instances. As a matter of
fact, large experiments on a class of instances may in-
dicate which algorithm is the best on average for this
class. Nevertheless, our experimental results clearly
show that each instance has to be solved with an ap-
propriate algorithm. Moreover, SPP seems to be a very
accurate selecting method since it is close to a perfect
one, at least on this set of instances.

To summarize, experimental results confirm the in-
terest of the SPP method. It allows one to use an
appropriate algorithm, avoiding exceptional behaviors
which can lead to unacceptable running times. Hence,
it may save great amounts of time even when the best
algorithm for the class of the instance is known.

Related work

(Bailleux & Chabrier 1996) estimate the number of so-
lutions of constraint satisfaction problem instances by
iterative sampling of the search tree.

In the context of a telescope scheduling application,
(Bresina, Drummond, & Swanson 1995) use Knuth’s
sampling method to estimate the number of solutions
which satisfy all hard constraints. But the main use
of the sampling method 1s for statistically characteriz-
ing scheduling problems and the performance of sched-
ulers. A “quality density function” provides a back-
ground against which schedulers can be evaluated.

“For SPP we added its running time which is 2:(143) =38
seconds per instance.

Works mentioned below do not make use of Knuth’s
estimator, but are related to this work in some way.

An adaptive method, aiming at automatically switch-
ing to good algorithms, has been proposed by (Bor-
ret, Tsang, & Walsh 1996). Despite similar goals, the
adaptive method and the sampling method are differ-
ent. The former one is based on a thrashing predic-
tion computed during the regular execution of an algo-
rithm. When such a thrashing is likely to occur, an-
other algorithm is tried sequentially. Conversely, the
SPP method, once its choice made, runs only one algo-
rithm: the one which has the best chance of success.

Heading in yet a different direction, both (Gomes,
Selman, & Crato 1997) and (Rish & Frost 1997) show
that, in the case of random unsatisfiable CSPs, the log-
normal distribution is a good approximation of the dis-
tribution of computational effort required by backtrack-
ing algorithms. We, too, observed a “heavy-tailed” dis-
tribution for the random variable ¢, but were unable
to identify it. Note that the distribution of ¢ on a par-
ticular instance and the distribution of ¢ on a class of
instances are two different distributions.

Algorithm portfolio design (Huberman, Lukose, &
Hogg 1997; Gomes & Selman 1997) aims at combin-
ing several algorithms by running them in parallel or
by interleaving them on a single processor.

(Minton 1996) addresses the problem of specializing
general constraint satisfaction algorithms and heuristics
for a particular application.

Conclusion and future work

We have proposed a simple method for selecting a
Branch and Bound algorithm from among a set of
promising ones. It is based on the estimation of the
running times of those algorithms on the particular in-
stance to be solved. We provided experimental results
showing that the SPP method is a cheap and effective
selection method. This efficient performance has been
empirically demonstrated, in the field of constraint opti-
mization problems, both on random and strongly struc-
tured problem instances.

Clearly, improvements on the proposed method must
be sought in the estimation process itself. A better
knowledge of the structure of problems to be solved
would probably make it possible to better estimate run-
ning times. Improvements like importance sampling
(Knuth 1975), partial backtracking (Purdom 1978) or
heuristic sampling (Chen 1992) merit further investiga-
tions into the field of constraint optimization problems.

There is no doubt that this method can also be ap-
plied to inconsistent CSP instances, because a proof of
inconsistency implies a complete search as well. Be-
sides, 1t would be interesting to investigate the appli-
cation of the proposed method to consistent CSP in-
stances.

Experimental results clearly show that each instance
is best solved with a particular algorithm. This con-
firms the interest of adapting general algorithms to suit
each instance.

References

Bailleux, O., and Chabrier, J. 1996. Approximate
Resolution of Hard Numbering Problems. In Proc.

AAAI-96.

Borret, J. E.; Tsang, E. P. K.; and Walsh, N. R. 1996.
Adaptive Constraint Satisfaction : The Quickest First
Principle. In Proc. ECAI-96, 160-164.

Bresina, J.; Drummond, M.; and Swanson, K. 1995.
Expected Solution Quality. In Proc. IJCAI-95, 1583—
1590.

Cabon, B.; de Givry, S.; Lobjois, L.; Schiex, T.; and
Warners, J. 1998. Benchmark Problems: Radio Link

Frequency Assignment. To appear in Constraints.

Chen, P. 1992. Heuristic Sampling: a Method for Pre-
dicting the Performance of Tree Searching Programs.

SIAM Journal on Computing 21(2):295-315.
de Givry, S., and Verfaillie, G. 1997. Optimum Any-

time Bounding for Constraint Optimization Problems.

In Proc. AAAI-97.

Freuder, E., and Wallace, R. 1992. Partial Constraint
Satisfaction. Artificial Intelligence 58:21-70.

Gomes, C. P., and Selman, B. 1997. Practical aspects
of algorithm portfolio design. In Proc. of Third ILOG
International Users Meeting.

Gomes, C. P.; Selman, B.; and Crato, N. 1997. Heavy-
Tailed Distributions in Combinatorial Search. In Proc.

CP-97, 121-135.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997.

An economics approach to hard computational prob-

lems. Science 275:51-54.

Knuth, D. 1975. Estimating the Efficiency of
Backtrack Programs. Mathematics of Computation
29(129):121-136.

Larrosa, J., and Meseguer, P. 1996. Expoiting the Use
of DAC in MAX-CSP. In Proc. CP-96, 308-322.

Minton, S. 1996. Automatically Configuring Con-
straint Satisfaction Programs : A Case Study. Con-
straints 1:7-43.

Purdom, P. 1978. Tree Size by Partial Backtracking.
SIAM Journal on Computing 7(4):481-491.

Rish, 1., and Frost, D. 1997. Statistical Analysis of
Backtracking on Inconsistent CSPs. In Proc. CP-97,
150-162.

Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Val-

ued Constraint Satisfaction Problems : Hard and Easy
Problems. In Proc. IJCAI-95, 631-637.

Smith, B. 1994. Phase Transition and the Mushy
Region in Constraint Satisfaction Problems. In Proc.
ECAI-94, 100-104.

Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. London: Academic Press Ltd.

Wallace, R. 1994. Directed Arc Consistency Pre-
processing. In Proc. of the ECAI-9/ Constraint
Processing workshop (LNCS 923). Springer. 121-137.

