
A Neural Network Model for Inter-Problem Adaptive
Online Time Allocation

Matteo Gagliolo1 and J̈urgen Schmidhuber1,2

1IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
2TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany

{matteo,juergen}@idsia.ch

Abstract. One aim of Meta-learning techniques is to minimize the time needed
for problem solving, and the effort of parameter hand-tuning, by automating al-
gorithm selection. The predictive model of algorithm performance needed for
this task often requires long training times. We address the problem in anonline
fashion, running multiple algorithms in parallel on a sequence of tasks, continu-
ally updating their relative priorities according to a neural model that mapstheir
current state to the expected time to the solution. The model itself is updated at
the end of each task, based on the actual performance of each algorithm. Cen-
sored sampling allows us to train the model effectively, without need of addi-
tional exploration after each task’s solution. We present a preliminary experiment
in which this newinter-problem technique learns to outperform a previously pro-
posedintra-problem heuristic.

1 Problem statement

A typical machine learning scenario involves a (possibly inexperienced) practitioner
trying to cope with a set of problems, that could be solved, inprinciple, using one
element of a set of available algorithms. While most users still solve such dilemmas
by trial and error, or by blindly applying some unquestionedrule-of-thumb, the steadily
growing area ofMeta-Learning[1] research is devoted to automating this process. Apart
from a few notable exceptions (e.g. [2,3,4,5], see [6], of which we adopt the notation
and terminology, for a commented bibliography), most existing techniques amount to
the selection of a single candidate solver (e.g.Algorithm recommendation[7]), or a
small subset of the available algorithms to be run in parallel with the same priority (e.g.
Algorithm portfolio selection[8]). This approach usually requires a long training phase,
which can be prohibitive if the algorithms at hand are computationally expensive; it also
assumes that the algorithm runtimes can be predictedoffline, based on problem features,
and do not exhibit large fluctuations. In more complex cases,where the difficulty of the
problems cannot be precisely predicted a priori, a more robust approach would be to run
the candidate solvers in parallel, adapting their prioritiesonlineaccording to their actual
performance. We termed thisAdaptive Online Time Allocation(AOTA) in [6], in which
we further distinguish betweenintra-problem AOTA, where the prediction of algorithm
performance is made according to some heuristic based on a-priori knowledge about
the algorithm’s behavior; andinter-problem AOTA, in which a time allocation strategy
is learned by collecting experience on a sequence of tasks.

In this work we present aninter-problem approach for training a parametric model
of algorithm runtimes, and give an example of how this model can be used to allocate
time online, comparing its performance with the simpleintra-problem heuristic from
[6].

2 A parametric model for inter-problem AOTA

Consider a finite algorithm setA containingn algorithmsai, i ∈ I = {1, . . . , n},
applied to the solution of the same problem and running according to some time allo-
cation procedure. Letti be the time spent onai; xi a feature vector, possibly including
information about the current problem, the algorithmai itself (e.g. its kind, the values
of its parameters), and its current statedi; Hi = {(x

(r)
i , t

(r)
i), r = 0, . . . , hi} a set of

collected samples of these pairs;H = ∪i∈IHi the historic experience set relative to the
entireA.

In order to allocate machine time efficiently, we would like to map each pair in each
Hi to the timeτi still left beforeai reaches the solution. If we are allowed to learn such
mapping by solving a sequence of related tasks, we can, for a successful algorithmai

that solved the problem at timet(hi)
i , a posteriorievaluate the correctτ (r)

i = t
(hi)
i −t

(r)
i

for each pair(x(r)
i , t

(r)
i) in Hi. In a first tentative experiment, that led to poor results,

these values were used as targets to learn a regression from pairs(x, t) to residual time
valuesτ . The main problem with this approach is whichτ values to choose as targets for
theunsuccessfulalgorithms. Assigning them heuristically would penalize with high τ
values algorithms that were stopped on the point of solving the task, or give incorrectly
low values to algorithms that cannot solve it; obtaining more exact targetsτ by running
more algorithms until the end would increase the overhead.

The alternative we present here is inspired bycensored samplingfor lifetime dis-
tribution estimation [9], and consists in learning a parametric modelg(τ |xi, ti;w) of
the conditional probability density function (pdf) of the residual timeτ . To see how the
model can be trained, imagine we continue the time allocation for a while after the first
algorithm solves the current task, such that we end up havingone or more successful
algorithmsai, with indicesi ∈ Is ⊆ I, for whoseHi the correct targetsτ (r)

i can be

evaluated as above. Assuming eachτ
(r)
i to be the outcome of an independent experi-

ment, includingt in x to ease notation, ifp(x) is the (unknown) pdf of thex(r)
i we can

write the likelihood ofHi as

Li∈Is
(Hi) =

hi−1∏

r=0

g(τ
(r)
i |x

(r)
i ;w)p(x

(r)
i) (1)

For the unsuccessful algorithms, the final time valuet
(hi)
i recorded inHi is a lower

bound on the unknown, and possibly infinite, time to solve theproblem, and so are the
τ

(r)
i , so to obtain the likelihood we have to integrate (1)

Li/∈Is
(Hi) =

hi−1∏

r=0

[1 − G(τ
(r)
i |x

(r)
i ;w)]p(x

(r)
i) (2)

whereG(τ |x;w) =
∫ τ

0
g(ξ|x;w)dξ is the conditional cumulative distribution func-

tion (cdf) corresponding tog.
We can then search the value ofw that maximizesL(H) =

∏
i∈I L(Hi), or, in a

Bayesian approach, maximize the posteriorp(w|H) ∝ L(H|w)p(w). Note that in both
cases the logarithm of these quantities can be maximized, and terms not inw can be
dropped.

To prevent overfitting, and to force the model to have a realistic shape, we can use
some known parametric lifetime model, such as a Weibull distribution [9], with pdf
g(τ |x, t;w) = λββτβ−1e−(λτ)β

and express the dependency onx andw in its two
parametersλ = λ(x;w),β = β(x;w). In the example we present here, these will
be the two outputs of a feed-forward neural network, which will be trained by back-
propagation minimizing the negative logarithm ofL(H), whose derivatives are easily
obtainable, in a fashion that is commonly used for modellingconditional distributions
(see e.g. [10], par 6.4).

From the time allocation perspective, one advantage of thisapproach is that it allows
to learn also from the unsuccessful algorithms, suffering less from the trade-off between
the accuracy of the learned model, and the time spent on learning it.

3 An example application

If the estimated modelg was the correct one, the time allocation task would be trivial,
as we could allocate all resources to the expected fastest algorithm, i.e., the one with
lower expected run time

∫ +∞

0
τg(τ |x)dτ , periodically re-checking which algorithm is

to be selected given the current states{xi}. In practice, however, the predictive power
of the model depends on the how the current task compares to the ones solved so far,
so trusting it completely would be too risky. In preliminaryexperiments, we adopted
a time allocation technique similar to the one in ([6]), slicing machine time in small
intervals∆T , and sharing each∆T among elements ofA according to a distribution
PA = {pi}; the latter is updated at each step based on the current modelg, which is
re-trained at the end of each task on the whole historyH collected so far, as follows:

for each problem b
while (r not solved)

update {τi} based on current g and current {xi}:

τi =
∫ +∞

0
τg(τ |xi)dτ

update PA = {pi} based on {τi}
for each i = 1..n

run ai for a time pi∆T
update xi

end
end
update H
update g maximizing L(H)

end

To modelg we used an Extreme Value distribution1 on the logarithms of time values,
with parametersη(x;w) andδ(x;w) being the two outputs of a feedforward neural
network, with two separate hidden layers of32 units each, whose weights are obtained
by minimizing the negative logarithm of the Bayesian posterior p(w|H) obtained in
Sect. 2, using20% of the current historyH as a validation set, and a Cauchy distribution
p(w) = 1/(1 + w2) as a prior.

At each cycle of the time allocation, the current expected timeτi to the solution is
evaluated for eachai from g(τ |xi;w); these values are ranked in ascending order, and
the current time slice is allocated proportionally to(2 − log(m+1−j)

log(m))−ri , ri being the
current rank ofai, m the total number of tasks,j the index of current task (from1 to
m). In this way the distribution of time is uniform during the first task (when the model
is still untrained), and tends through the task sequence to asharing pattern in which
the expected fastest solver gets half of the current time slice, the second one gets one
quarter, and so on. We ran some preliminary tests, using the algorithm setA3 from [6],
a set of76 simple generational Genetic Algorithms [11], differing inpopulation size
(2i, i = 1..19), mutation rate (0 or 0.7/L, L being the genome length) and crossover
operator (uniform or one-point, with rate0.5 in both cases). We applied these solvers
to a sequence of artificial deceptive problems, such as the “trap” described in [3], con-
sisting ofn copies of anm-bit trap function: eachm-bit block of a bitstring of length
nm gives a fitness contribution ofm if all its bits are1, and ofm− q − 1 if q < m bits
are1. We generated a sequence of21 different problems, varying the genome length
from 30 to 96 and the size of the deceptive block from2 to 4. The problems were first
sorted by genome length, then by block size, such that the resulting sequence is roughly
sorted by difficulty (see Table 1). The feature vectorx included two problem features
(genome length and block size), the algorithm parameters, the current best and average
fitness values, together with their last variation and theircurrent trend, the time spent
and its last increment, for a total of13 inputs.

We compared the presented inter-problem AOTA with the intra-problem AOTAga,
the most competitive from [6], in which the{τi} were heuristically estimated based on
a simple linear extrapolation of the learning curve. In figure 1 we show the significant
improvement over AOTAga, which by itself already greatly reduces computation time
with respect to a brute-force approach.

4 Conclusions and future work

The purpose of this work was to show that a parametric model ofalgorithm performance
can be learned and used to allocate time efficiently, withoutrequiring a long training
phase. Thanks to the model, the system was able to learn the bits of a-priori knowl-
edge that we had to pre-wire in theintra-problem AOTAga: for example, the fact that
increases in the average fitness are an indicator of potentially good performance. Along

1 If τ is Weibull distributed, l = log τ has Extreme Value distributiong(l) =
1
δ
e{[(l−η)/δ]−e(l−η)/δ}, with parametersδ = 1/β, η = − log λ. The distribution of the log-

arithm of residual times was used to learn a common model for a set of tasks whose solution
times have different orders of magnitude.

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
6

Task sequence, from 1 to 21

C
um

ul
at

iv
e

tim
e

(f
itn

es
s

fu
nc

. e
va

ls
)

UNKNOWN BEST
NN−AOTA Inter−P
AOTAga Intra−P
BRUTE FORCE

Fig. 1. A comparison between the presented method, labeled NN-AOTA Inter-P,and the intra-
problem AOTAga, on a sequence of21 tasks. Also shown are the the performances of the (a
priori unknown, different for each problem and for each random seed) fastest solver of the set
(which would be the performance of an ideal AOTA with foresight), labeled UNKNOWN BEST,
and the estimated performance of a brute force approach (running allthe algorithms in parallel
until one solves the problem), labeled BRUTE FORCE, which leaves the figure and completes
the task sequence at time3.3 × 107. The cumulative time spent on the sequence of tasks, i.e. the
total time spent in solving the current and all previous tasks, is plotted against current task index.
Time is measured in fitness function evaluations; values shown are upper95% confidence limits
calculated on20 runs.

Table 1. The21 trap problems used, each listed with its block sizem and number of blocksn.

m n m n m n

1) 2 15 8) 3 16 15) 4 18
2) 3 8 9) 4 12 16) 2 40
3) 4 6 10) 2 30 17) 3 28
4) 2 20 11) 3 20 18) 4 21
5) 3 12 12) 4 15 19) 2 45
6) 4 9 13) 2 35 20) 3 32
7) 2 25 14) 3 24 21) 4 24

the sequence of tasks, the model gradually became more reliable, and NN-AOTA was
finally able to outperform AOTAga. In spite of the size of the network used, the obtained
model is not very accurate, due to the variety of the algorithms behavior on the different
tasks; still, it is discriminative enough to be used to rank the algorithms according to
their expected runtimes.

The neural network can be replaced by any parametric model whose learning al-
gorithm is based on gradient descent: in future work, we planto test a more complex
mixture model [12], in order to obtain more accurate predictions, and even better per-
formances.

As the obtained model is continuous, and can give predictions also before starting
the algorithms (i.e. forti = 0), it could in principle be used to adapt also the algorithm
setA to the current task, guiding the choice of a set of promising points in parameter
space.

Acknowledgements. This work was supported by SNF grant 16R1GSMLR1.

References

1. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev.18
(2002) 77–95

2. Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with success-story algorithm,
adaptive Levin search, and incremental self-improvement. Machine Learning28 (1997) 105–
130 — Based on: Simple principles of metalearning. TR IDSIA-69-96, 1996.

3. Harick, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In Banzhaf, W., Daida,
J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Proceedings of
the Genetic and Evolutionary Computation Conference. Volume 2., Orlando, Florida, USA,
Morgan Kaufmann (1999) 1867

4. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In:
Proc. 17th International Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA
(2000) 511–518

5. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A bayesian
approach to tackling hard computational problems. In: UAI ’01: Proceedings of the 17th
Conference in Uncertainty in Artificial Intelligence, San Francisco, CA, USA, Morgan Kauf-
mann Publishers Inc. (2001) 235–244

6. Gagliolo, M., Zhumatiy, V., Schmidhuber, J.: Adaptive online time allocation to search algo-
rithms. In Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., eds.: Machine Learning:
ECML 2004. Proceedings of the 15th European Conference on Machine Learning, Pisa,
Italy, September 20-24, 2004, Springer (2004) 134–143 — Extendedtech. report available
athttp://www.idsia.ch/idsiareport/IDSIA-23-04.ps.gz.

7. Fürnkranz, J., Petrak, J., Brazdil, P., Soares, C.: On the use of fast subsampling estimates for
algorithm recommendation. Technical Report TR-2002-36,Österreichisches Forschungsin-
stitut für Artificial Intelligence, Wien (2002)

8. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence126 (2001) 43–62
9. Nelson, W.: Applied Life Data Analysis. John Wiley, New York (1982)

10. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press (1995)
11. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975)
12. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts.

Neural Computation3 (1991) 79–87

