A Neural Network Model for Inter-Problem Adaptive
Online Time Allocation

Matteo Gagliold and dirgen Schmidhubés

LIDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
2TU Munich, Boltzmannstr. 3, 85748 Garchingiikichen, Germany
{matteo, j uergen}@dsi a. ch

Abstract. One aim of Meta-learning techniques is to minimize the time needed
for problem solving, and the effort of parameter hand-tuning, byraatmg al-
gorithm selection. The predictive model of algorithm performance exéddr

this task often requires long training times. We address the problemanlare
fashion, running multiple algorithms in parallel on a sequence of taskéince

ally updating their relative priorities according to a neural model that rttagis
current state to the expected time to the solution. The model itself is updated at
the end of each task, based on the actual performance of each afgatiém-
sored sampling allows us to train the model effectively, without need df ad
tional exploration after each task’s solution. We present a preliminggrarent

in which this newinter-problem technique learns to outperform a previously pro-
posedntra-problem heuristic.

1 Problem statement

A typical machine learning scenario involves a (possiblgxiperienced) practitioner
trying to cope with a set of problems, that could be solvedprinciple, using one
element of a set of available algorithms. While most usellssstive such dilemmas
by trial and error, or by blindly applying some unquestiondlé-of-thumb, the steadily
growing area oMeta-Learnind1] research is devoted to automating this process. Apart
from a few notable exceptions (e.g. [2,3,4,5], see [6], ofclwtwe adopt the notation
and terminology, for a commented bibliography), most @xistechniques amount to
the selection of a single candidate solver (&fgorithm recommendatiofv]), or a
small subset of the available algorithms to be run in pdrafitn the same priority (e.g.
Algorithm portfolio selectiofi]). This approach usually requires a long training phase,
which can be prohibitive if the algorithms at hand are corapanally expensive; it also
assumes that the algorithm runtimes can be predafféde, based on problem features,
and do not exhibit large fluctuations. In more complex casésre the difficulty of the
problems cannot be precisely predicted a priori, a morestdgoproach would be to run
the candidate solvers in parallel, adapting their priesitinlineaccording to their actual
performance. We termed thglaptive Online Time AllocatiofAOTA) in [6], in which

we further distinguish betweedntra-problem AOTA, where the prediction of algorithm
performance is made according to some heuristic based oior@fmowledge about
the algorithm’s behavior; anidter-problem AOTA, in which a time allocation strategy
is learned by collecting experience on a sequence of tasks.

In this work we present aimter-problem approach for training a parametric model
of algorithm runtimes, and give an example of how this model be used to allocate
time online, comparing its performance with the simjpiga-problem heuristic from

(6].

2 A parametric model for inter-problem AOTA

Consider a finite algorithm set containingn algorithmsa;, i € T = {1,...,n},
applied to the solution of the same problem and running a@egrto some time allo-
cation procedure. L&t be the time spent om;; x; a feature vector, possibly including
information about the current problem, the algorithmitself (e.qg. its kind, the values
of its parameters), and its current stdte H; = {(xz(.r), tgr)), r=20,...,h;} asetof
collected samples of these paif$;= U;c; H; the historic experience set relative to the
entire A.

In order to allocate machine time efficiently, we would likehap each pair in each
H; to the timer; still left beforea; reaches the solution. If we are allowed to learn such
mapping by solving a sequence of related tasks, we can, foc@essful algorithna;
that solved the problem at timt€'), a posteriorievaluate the correet” = ¢! — (")

for each pair(x,g”),tgr)) in H;. In a first tentative experiment, that led to poor results,
these values were used as targets to learn a regression &imsxep ¢) to residual time
valuesr. The main problem with this approach is whickalues to choose as targets for
the unsuccessfuhlgorithms. Assigning them heuristically would penalizighwhigh 7
values algorithms that were stopped on the point of solMiegask, or give incorrectly
low values to algorithms that cannot solve it; obtaining enexact targets by running
more algorithms until the end would increase the overhead.

The alternative we present here is inspiredcensored samplinépr lifetime dis-
tribution estimation [9], and consists in learning a paraimenodel g(7|x;, t;; w) of
the conditional probability density function (pdf) of thesidual timer. To see how the
model can be trained, imagine we continue the time allondtioa while after the first
algorithm solves the current task, such that we end up hasiregor more successful
algorithmsa;, with indicesi € I, C I, for whoseH; the correct targetsi(r) can be
evaluated as above. Assuming eaéf‘? to be the outcome of an independent experi-

ment, including: in x to ease notation, if(x) is the (unknown) pdf of th&ﬁr) we can
write the likelihood ofH; as

h;—1

Sier,(H) = [] 9% w)p(x") @)
r=0

For the unsuccessful algorithms, the final time va‘lf:.’!’é) recorded inf; is a lower

bound on the unknown, and possibly infinite, time to solveptablem, and so are the
Ti(T), so to obtain the likelihood we have to integrate (1)

h;—1

Sigr.(H) = [[11 - G %" w)lp(x(") 2)

r=0

whereG(7[x; w) = [g(¢|x; w)d¢ is the conditional cumulative distribution func-
tion (cdf) correspondlng tg.

We can then search the valuewfthat maximizesS(H) = [[,.; £(H;), or, in a
Bayesian approach, maximize the postepion | H) o £(H |w)p(w). Note thatin both
cases the logarithm of these quantities can be maximizet{eams not inw can be
dropped.

To prevent overfitting, and to force the model to have a realshape, we can use
some known parametric lifetime model, such as a Weibulridistion [9], with pdf
g(r]x,t: w) = MBrA-1e=(OD” and express the dependency-omndw in its two
parameters\ = A\(x;w),0 = ((x;w). In the example we present here, these will
be the two outputs of a feed-forward neural network, which k& trained by back-
propagation minimizing the negative logarithm ©fH), whose derivatives are easily
obtainable, in a fashion that is commonly used for modeltiogditional distributions
(see e.g. [10], par 6.4).

From the time allocation perspective, one advantage offtpsoach is that it allows
to learn also from the unsuccessful algorithms, suffer@sg from the trade-off between
the accuracy of the learned model, and the time spent onifegitn

3 Anexampleapplication

If the estimated mode} was the correct one, the time allocation task would be frivia
as we could allocate all resources to the expected fastpstitaim, i.e., the one with
lower expected run tim%roo 7g(7|x)dr, periodically re-checking which algorithm is
to be selected given the current stafgs}. In practice, however, the predictive power
of the model depends on the how the current task compareg tonhs solved so far,
so trusting it completely would be too risky. In preliminagyperiments, we adopted
a time allocation technique similar to the one in ([6]), islgc machine time in small
intervals AT, and sharing eaci\T" among elements oft according to a distribution
P4y = {p;}, the latter is updated at each step based on the current modich is
re-trained at the end of each task on the whole histdrgollected so far, as follows:

for each problembd
while (r not sol ved)
update {TZ} based on current g and current {x;}:
fo 7g(7|x;)dT
update Py ={p;} based on {r;}
for each i=1.n
run a; for a tinme p,AT
updat e x;
end
end
update H
update ¢g maxi m zing £(H)
end

To modelg we used an Extreme Value distributiasn the logarithms of time values,
with parameters)(x; w) andd(x; w) being the two outputs of a feedforward neural
network, with two separate hidden layers3afunits each, whose weights are obtained
by minimizing the negative logarithm of the Bayesian pastep(w|H) obtained in
Sect. 2, usin@0% of the current history as a validation set, and a Cauchy distribution
p(w) =1/(1 +w?) as a prior.

At each cycle of the time allocation, the current expectatti; to the solution is
evaluated for each; from g(7|x;; w); these values are ranked in ascending order, and

the current time slice is allocated proportionally(fo— bgfg’g’:#l)_j))—”, r; being the
current rank ofz;, m the total number of taskg, the index of current task (from to
m). In this way the distribution of time is uniform during thesti task (when the model
is still untrained), and tends through the task sequencestwagng pattern in which
the expected fastest solver gets half of the current tinoe,slhe second one gets one
quarter, and so on. We ran some preliminary tests, usingglogithm setAs from [6],
a set of76 simple generational Genetic Algorithms [11], differingpopulation size
(2,4 = 1..19), mutation rate({ or 0.7/L, L being the genome length) and crossover
operator (uniform or one-point, with rate5 in both cases). We applied these solvers
to a sequence of artificial deceptive problems, such as thp™tescribed in [3], con-
sisting ofn copies of anm-bit trap function: eachn-bit block of a bitstring of length
nm gives a fitness contribution ef if all its bits arel, and ofm — ¢ — 1 if ¢ < m bits
arel. We generated a sequence2dfdifferent problems, varying the genome length
from 30 to 96 and the size of the deceptive block fr@io 4. The problems were first
sorted by genome length, then by block size, such that thétiressequence is roughly
sorted by difficulty (see Table 1). The feature vectancluded two problem features
(genome length and block size), the algorithm parametees;drrent best and average
fitness values, together with their last variation and theirent trend, the time spent
and its last increment, for a total ®8 inputs.

We compared the presented inter-problem AOTA with the ipt@blem AOTA,,,
the most competitive from [6], in which ther; } were heuristically estimated based on
a simple linear extrapolation of the learning curve. In feglirwe show the significant
improvement over AOTA\,, which by itself already greatly reduces computation time
with respect to a brute-force approach.

4 Conclusions and futurework

The purpose of this work was to show that a parametric modsboiithm performance
can be learned and used to allocate time efficiently, witmegtiring a long training
phase. Thanks to the model, the system was able to learnthefka-priori knowl-

edge that we had to pre-wire in ti@ra-problem AOTA,,: for example, the fact that
increases in the average fitness are an indicator of paigr@od performance. Along

YIf 7 is Weibull distributed,I = log7T has Extreme Value distributioy(l) =
%e{[”"’)/‘sl‘e“*")/s}, with parameters = 1/8, n = — log A. The distribution of the log-
arithm of residual times was used to learn a common model for a setkafwdsse solution
times have different orders of magnitude.

x 10°

T T T
5H —— UNKNOWN BEST
—©— NN-AOTA Inter-P
—— AOTAga Intra-P
45H —= BRUTE FORCE Jui

N w
N ul w (6]
T T T T

Cumulative time (fitness func. evals)

H
[62]
T
=

0.5

2 4 6 8 10 12 14 16 18 20
Task sequence, from 1 to 21

Fig.1. A comparison between the presented method, labeled NN-AOTA IntmePthe intra-
problem AOTA,., on a sequence dfl tasks. Also shown are the the performances of the (a
priori unknown, different for each problem and for each randeeds fastest solver of the set
(which would be the performance of an ideal AOTA with foresight), lah&l&IKNOWN BEST,

and the estimated performance of a brute force approach (runnittgeadlgorithms in parallel
until one solves the problem), labeled BRUTE FORCE, which leaves theefeyud completes
the task sequence at tin8e3 x 107. The cumulative time spent on the sequence of tasks, i.e. the
total time spent in solving the current and all previous tasks, is plottedstgairrent task index.
Time is measured in fitness function evaluations; values shown are $fffeconfidence limits
calculated or20 runs.

Table 1. The21 trap problems used, each listed with its block sizand number of blocks.

m n m n m n
1) 2 15| 8 3 16/15) 4 18
2) 3 8 9 4 12/16) 2 40
3) 4 6/10) 2 30/17) 3 28
4) 2 20/11) 3 20/18) 4 21
5 3 12/12) 4 15/19) 2 45
6) 4 9/13) 2 35200 3 32
7) 2 25/14) 3 24[21) 4 24

the sequence of tasks, the model gradually became morblegland NN-AOTA was
finally able to outperform AOT, . In spite of the size of the network used, the obtained
model is not very accurate, due to the variety of the algorithvehavior on the different
tasks; still, it is discriminative enough to be used to ramé algorithms according to
their expected runtimes.

The neural network can be replaced by any parametric modes&vtearning al-
gorithm is based on gradient descent: in future work, we pdatiest a more complex
mixture model [12], in order to obtain more accurate prédict, and even better per-
formances.

As the obtained model is continuous, and can give predistadso before starting
the algorithms (i.e. fot; = 0), it could in principle be used to adapt also the algorithm
set A to the current task, guiding the choice of a set of promisioigfs in parameter
space.

Acknowledgements. This work was supported by SNF grant 16R1GSMLR1.

References

1. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-leagnifirtif. Intell. Rev.18
(2002) 77-95

2. Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias wittcess-story algorithm,
adaptive Levin search, and incremental self-improvement. Macteaening?28 (1997) 105—
130 — Based on: Simple principles of metalearning. TR IDSIA-69-96619

3. Harick, G.R., Lobo, F.G.: A parameter-less genetic algorithm. dnzZBaf, W., Daida,
J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smittg.Reds.: Proceedings of
the Genetic and Evolutionary Computation Conference. Volume 2., QuJdfidrida, USA,
Morgan Kaufmann (1999) 1867

4. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinfar@nt learning. In:
Proc. 17th International Conf. on Machine Learning, Morgan Kauim&an Francisco, CA
(2000) 511-518

5. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, Bi¢k#ring, D.M.: A bayesian
approach to tackling hard computational problems. In: UAI '01: Pedagys of the 17th
Conference in Uncertainty in Artificial Intelligence, San Francisco, CBAUMorgan Kauf-
mann Publishers Inc. (2001) 235-244

6. Gagliolo, M., Zhumatiy, V., Schmidhuber, J.: Adaptive online time @tmn to search algo-
rithms. In Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi,d3.; &achine Learning:
ECML 2004. Proceedings of the 15th European Conference on Madtgarning, Pisa,
Italy, September 20-24, 2004, Springer (2004) 134-143 — Extetetdd report available
athttp://ww. i dsi a.ch/idsiareport/IDSIA-23-04. ps. gz.

7. Rirnkranz, J., Petrak, J., Brazdil, P., Soares, C.: On the usstafifhsampling estimates for
algorithm recommendation. Technical Report TR-2002&&erreichisches Forschungsin-
stitut fur Artificial Intelligence, Wien (2002)

8. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligeri@é (2001) 43-62

9. Nelson, W.: Applied Life Data Analysis. John Wiley, New York (1982)

10. Bishop, C.M.: Neural networks for pattern recognition. Oxforaversity Press (1995)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems. Uniirsf Michigan Press,
Ann Arbor (1975)

12. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: phigia mixtures of local experts.
Neural Computatiol (1991) 79-87

