Addressing the Selective Superiority Problem:
Automatic Algorithm/Model Class Selection

Carla E. Brodley
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

brodley@cs.umass.edu

Abstract

The results of empirical comparisons of ex-
isting learning algorithms illustrate that each
algorithm has a selective superiority; it is best
for some but not all tasks. Given a data set,
it is often not clear beforehand which algo-
rithm will yield the best performance. In
such cases one must search the space of avail-
able algorithms to find the one that produces
the best classifier. In this paper we present
an approach that applies knowledge about
the representational biases of a set of learn-
ing algorithms to conduct this search auto-
matically. In addition, the approach permits
the available algorithms’ model classes to be
mixed in a recursive tree-structured hybrid.
We describe an implementation of the ap-
proach, MCS, that performs a heuristic best-
first search for the best hybrid classifier for a
set of data. An empirical comparison of MCS
to each of its primitive learning algorithms,
and to the computationally intensive method
of cross-validation, illustrates that automatic
selection of learning algorithms using knowl-
edge can be used to solve the selective supe-
riority problem.

1 THE PROBLEM OF SELECTIVE
SUPERIORITY

Several dozen inductive learning algorithms have been
developed over the last few decades, including versions
of perceptron, DNF cover, decision tree, instance-
based, and neural-net algorithms. In every case, the
algorithm can boast one or more superior learning per-
formances over the others, but none is always better.
The results of empirical comparisons of existing learn-
ing algorithms illustrate that each algorithm has a se-
lective superiority: it is best for some but not all tasks
(Weiss & Kapouleas (1989), Aha, Kibler & Albert
(1991), Shavlik, Mooney & Towell (1991), Salzberg

(1991).) This is because each algorithm is biased, lead-
ing to a good fit for some learning tasks, and a poor
fit for others.

An algorithm’s success in finding a good generalization
for a given data set depends on two factors. The first
is whether the algorithm’s representation space con-
tains a good generalization. In statistics, this space is
called the algorithm’s model class. For example, the
model class of a symbolic, univariate decision tree al-
gorithm is the Disjunctive Normal Form. The model
class of a perceptron learning algorithm is the class of
linear discriminant functions. Because an algorithm’s
model class defines the space of possible generaliza-
tions, not even an exhaustive search strategy can over-
come a poor choice of model class. The second factor
of an algorithm’s success 1s its search bias. Even algo-
rithms that search the same model space have shown
selective superiority. For example, if a set of instances
is not linearly separable then the Least Mean Squares
(LMS) training rule provides a better solution than
the Absolute Error Correction rule (ACR) for learn-
ing the weights of a linear discriminant function (Duda
& Hart, 1973). However, when the instances are lin-
early separable the situation is reversed; LMS is not
guaranteed to find a separating hyperplane, whereas
ACR is. In many cases, the choice of learning algo-
rithm can be made on subject matter considerations.
However, when such prior knowledge is not available,
the choice can be made by comparing each algorithm’s
performance on the data.

2 AUTOMATIC ALGORITHM
SELECTION

Selecting the best algorithm for a data set in the ab-
sence of prior knowledge is a search problem. One
well-known approach from statistics is to use cross-
validation (Linhart & Zucchini, 1986). Given a set of
data, an n-fold cross-validation splits the data into n
equal parts. Each candidate algorithm is run n times;
for each run, n — 1 parts of the data are used to form a
classifier, which is then evaluated using the remaining

part. The results of the n runs are averaged and the
algorithm that produced classifiers with the highest
average classification accuracy is selected. Recently,
Schaffer (1993) applied this idea to selecting a classifi-
cation algorithm. The results of an empirical compar-
ison of a cross-validation method (CV) to each algo-
rithm considered by CV, illustrated that on average,
across the test-suite of domains, CV performed best.

A cross-validation strategy performs an exhaustive
search through the space of candidate methods. As
the number of alternatives increases, the time required
to search for the best algorithm may become imprac-
tical due to the computational expense of performing
a cross-validation. One of the oldest methods in Ar-
tificial Intelligence for reducing search effort is to use
knowledge about the problem domain. Here the prob-
lem domain is selection of the best learning algorithm
for a given set of data. The search space is defined
by the data set and the set of candidate algorithms.
In this domain, knowledge stems from understanding
the biases of the candidate algorithms and how this
can be applied to guide the search for the best algo-
rithm /model class for a given set of data.

A recent focus of research in machine learning is to
understand the tasks for which a particular algorithm
will perform better than some specified set of alter-
natives (Feng, Sutherland, King, Muggleton & Henry,
1993; Aha, 1992; Shavlik, Mooney & Towell, 1991;
Rendell & Cho, 1990). Systems that allow the user
to specify an inductive policy, require that the biases
of the available learning algorithm be known and be
represented explicitly (for manipulation during search)
(Provost & Buchanan, 1992). The knowledge result-
ing from such efforts can be used to form a heuris-
tic search procedure for automatic algorithm selection.
To this end, we present a knowledge-based approach
to algorithm /model class selection. Our approach dif-
fers from cross-validation in two fundamental ways.
Firstly, algorithm selection i1s guided by various kinds
of hypothesis pathology that develop when using an
algorithm that is a poor choice. We define hypothesis
pathology to be the recognizable symptoms of when
a hypothesis fits the data poorly. When an algorithm
and its underlying model class i1s inappropriate, one
needs to find a different one that is appropriate. The
ability to do this depends both on recognizing whether
and why the algorithm is a poor choice, and on using
this information to select a better one. We have en-
coded this knowledge as a set of heuristic rules. Sec-
ondly, our approach is applied recursively, providing a
mechanism for mixing the available model classes to
form a hybrid classifier.

3 KNOWLEDGE-BASED SEARCH

Our approach of using hypothesis pathology to guide
the search has the ability to assess why a particular

model class or search bias is inappropriate and from
this assessment can make an informed choice as to
which to try next. If a hypothesis representation is
judged inappropriate, then we want to redirect the
search to a part of the space that will produce a good
generalization. The type of pathology dictates where
in the space to redirect the search.

A simple approach was illustrated in the work on per-
ceptron trees (Utgoff, 1989). The algorithm first tried
a simple perceptron as the test, but if it was doing
poorly, it was replaced by a single variable test. This
approach detected hypothesis pathology, and selected
a new representation, but the pathology was not used
to guide the selection, because there was only a single
alternate choice.

FRINGE (1990) uses a different approach. The con-
cept representation is changed by adding compound
terms, based on those found at the fringe of the deci-
sion tree, and rebuilding the tree. When a compound
term would be useful, and is missing, the tree contains
many replicated subtrees. When such pathology ex-
ists, the terms that would be useful in a compound
term often appear near the fringe of the tree. Thus,
the hypothesis pathology indicates a specific change in
bias through the addition of compound terms.

Our approach to searching the model space is dynamic;
given a set of training instances, a best-first search for
the appropriate classifier is performed. A set of heuris-
tic rules is used to decide which model class to try next,
which search bias to use, and to determine when the
best classifier has been found. The best classifier found
is then used to partition the instance space, and the
search is applied recursively to each resulting partition.
If during the best-first search, a subiree of the partially
formed classifier exhibits some type of pathology, the
approach can backtrack and replace the subtree with
a different classifier.

The heuristic rules are created from practical knowl-
edge about how to detect when a generalization is a
good fit, or whether a better one could be found by
changing the model class or search bias. For example,
the model class of a univariate decision tree is a poor
choice when the features are related numerically. In
this case, the features will be tested repeatedly in the
decision tree, giving evidence that a series of tests are
being used to approximate a non-orthogonal partition
of the data that is not easily represented by a series
of hyper-rectangles. The following rule not only de-
tects this situation, but also directs the search to the
appropriate model class.

IF two or more features are tested repeatedly
in a path of the tree
THEN switch from univariate test to linear test
AND fit a linear test of these features to the
instances at the top of the path

4 RECURSIVE COMBINATION OF
MODEL CLASSES

Our method builds a hybrid decision tree, with the
test at a node being created by selecting and applying
a primitive learning algorithm, each with a different
underlying model class. The ability to combine the
different model classes and apply different learning al-
gorithms allows for the possibility that the data set is
not best represented by a homogeneous classifier. For
some data sets, combining heterogeneous model classes
will produce the best classifier. The ability to combine
model classes in a single tree structure allows a space
of classifiers that is strictly richer than the union of its
constituent primitive model classes. The case of pick-
ing a single model class is not lost, but the approach
also permits hybrid classifiers. In our approach, each
model class is permitted anywhere in the recursive tree
structure. Both perceptron trees (Utgoff, 1989) and
CRL (Yerramareddy, Tcheng, Lu & Assanis, 1992) re-
strict where in the tree certain model classes are per-
mitted. For example, in perceptron trees, internal test
nodes must be univariate and symbolic, whereas leaf-
node tests (tests right above the leaves) must be per-
ceptrons.

5 MCS: A MODEL CLASS
SELECTION SYSTEM

We have implemented the approach in a system that
we call the Model Class Selection (MCS) System.
Given a set of data, MCS builds a hybrid classifier us-
ing a set of heuristic rules to guide a best-first search
for the best model class for each node in the hy-
brid classifier. To avoid overfitting, the classifier is
pruned back to reduce the estimated classification er-
ror, as computed for an independent set of instances
(Breiman, Friedman, Olshen & Stone, 1984). MCS’s
pruning procedure differs from the traditional pruning
phase of decision tree algorithms. During MCS’s tree-
formation stage, if an alternative classifier to the one
selected appears almost as good, it is stored for the
pruning phase. When considering whether to prune
back a subtree in the hybrid classifier, MCS computes
the classification errors of both the subtree and the al-
ternative classifier. MCS compares the error rates to
choose among: keeping the subtree, replacing it with
the alternative classifier or replacing it with a leaf node
containing the most frequently observed class for the
instances used to form the subtree. In the next two sec-
tions we describe MCS’s model classes and rule base.

5.1 MODEL CLASSES

MCS combines three primitive representations that
have been used extensively in both machine learn-
ing and statistics algorithms: linear discriminant func-
tions, decision trees and instance-based classifiers. A

set of R linear discriminant functions defines a set of
R regions in the instance space, separated by hyper-
planes, each labeled with a different class name. A uni-
variate decision tree splits the instance space with cuts
orthogonal to each of the axes, forming a set of hyper-
rectangular regions,; each labeled with a class name.
An instance-based classifier defines a piece-wise linear
partition of the instance space; the number of pieces is
determined by the number and distribution of the in-
stances. The result is a set of regions, each labeled by
a different class name, separated by piece-wise linear
boundaries.

Each of the three model classes 1s a subclass of the
model class of piece-wise linear partitions. A univari-
ate test in a decision tree is a special case of a linear
discriminant function: a linear discriminant function
can be based on all n of the input features, only one
feature or some subset of the n input features. A lin-
ear discriminant function defines only one hyperplane
boundary in the instance space, whereas an instance-
based classifier forms a series of hyperplane bound-
aries. In Figure la we show an instance space for which
classifiers from each of the three model classes would
define an identical partition of the instance space.

For many data sets, classifiers from each of the three
model classes will define different partitions. Figures
1b, 1c, and 1d illustrate the type of partition each
model class might define for a simple instance space
consisting of five negative and three positive examples
of the concept to be learned. Which of these con-
cept representations is best depends on where in the
instance space the true concept boundary lies.

For each model class there are many different algo-
rithms for searching for the classifier that best fits the
data. The fitting algorithms for each model class that
MCS uses are:

Univariate Decision Trees: To build a univari-
ate decision tree, MCS uses the information gain-ratio

metric (Quinlan, 1986).

Linear Discriminant Functions: For two-class
tasks the system uses a linear threshold unit, and
for multiclass tasks it uses a linear machine (Nilsson,
1965). To find the weights of a linear discriminant
function the system uses the Recursive Least Squares
procedure (Young, 1984) for two-class tasks and the
Thermal Training rule (Frean, 1990; Brodley & Ut-
goff, 1992) for multiclass tasks. To select the terms
to use with a linear discriminant function, one of four
search procedures is used: sequential backward elimi-
nation (SBE) (Kittler, 1986), a variation of SBE that
uses the form of the function to determine which terms
to eliminate (Brodley & Utgoff, 1992), sequential for-
ward selection (SFS) (Kittler, 1986), and a method
that examines a decision tree for replicated tests of a
subset of the features, to suggest which terms to con-
sider. The choice of which of these search biases to use

a: Univariate decision
tree partition

b: Linear discriminant
function partition

c: k-NN classifier
partition

Figure 1: Partitions of the Instance Space

is determined dynamically during learning, depending
on the hypotheses that have already been formed and
what their pathologies suggested.

Instance-Based Classifiers: MCS uses two algo-
rithms for fitting an instance-based classifier to the
data. The first is the k-nearest neighbor algorithm
(Duda & Hart, 1973), which stores each instance of
the training data. To find k, the system uses the fol-
lowing measure of accuracy: for each instance in the
training data, classify that instance using the remain-
ing instances. MCS searches for the value of k that
produces the most correct classifications on the train-
ing data. The second algorithm tries to eliminate in-
stances that do not contribute to the classifier’s ac-
curacy and is similar in spirit to IB3 (Aha, Kibler &
Albert, 1991). To this end, when the accuracy of the
k-NN is computed MCS keeps track, for each instance,
of the number of times it was a k-nearest neighbor and
whether its class matched that of the instance being
classified. Instances for which the number of incor-
rect matches was higher than the number of correct
matches are removed.

5.2 RULE BASE

The heuristic rules use several types of pathology de-
tection criteria to guide the search for the best clas-
sifier. The following criteria are used in the rules to
detect the success or failure of a hypothesis and pro-
vide information about the reasons of failure:

1. Information Gain-Ratio: This measure is used
to compare any two partitions of the instances; a
partition can be defined by a univariate test, a
linear discriminant function, a kNN classifier, or
even an entire subtree.

2. Codelength: Our use of this measure is based
on the Minimum Description Length Principle,
which states that the best “hypothesis” to in-
duce from a data set is the one that minimizes
the length of the hypothesis plus the length of
the exceptions (Rissanen, 1989). The codelength
of a classifier (the hypothesis) is the number of
bits required to code the classifier and the the

error vector resulting from using the classifier to
classify the instances. This metric is used to de-
termine by how much a symbolic or linear test
compresses the data. We define the amount of
compression to be the codelength of the errors
without the test minus the codelength of the test
plus the codelength of the errors resulting from
using the test to classify the data. We use the
exact error code for exceptions given in Rissanen
and encode integers using Elias’s asymptotically
optimal encoding (Rissanen, 1989).

3. Concept Form: Analysis of a classifier’s form
can be used to guide the search for the best clas-
sifier. For example, MCS examines a partially
formed tree to determine whether a set of univari-
ate tests is tested repeatedly in the tree. The ac-
tion that 1s taken depends on the form of the repli-
cation. Examination of a linear combination test
yields information about the relative importance
of the different features to classification, which in
turn yields information about which search bias
and model class will be most appropriate.

4. Information about the Data Set: We use one
measure of training instances: the number of in-
stances relative to the number of features.

The process of selecting an algorithm to apply to a
data set, often requires knowledge about how to deter-
mine whether the best classifier has been found, and
if not, which algorithm to try next. Many learning
practitioners and statisticians make these decision by
using statistics (diagnostics) computed about the re-
sulting classifier and by examining the classifier’s form.
In MCS this knowledge is encoded explicitly in the
rule base. In Table 1 we show a selection of rules
from MCS. Rule 1 begins the search and is based on
Duda and Hart’s (1973) observation that when there
are fewer than 2n instances (the capacity of a hyper-
plane) a linear test will underfit the training instances;
the fewer the instances, the higher the probability that
the data will be fit by chance. Rule 2 examines the
univariate test to determine whether the initial deci-
sion was correct. If the test is not 100% accurate,
then MCS searches for a multivariate test using SFS
if the average squared difference between the informa-

Table 1: A Selection of Rules from MCS’s Rule Base

1.) TF the number of instances is less than the
capacity of a hyperplane
THEN find the best univariate test
ELSE form linear test LT,, of all n features

2.) IF the best univariate test is 100% accurate
THEN select 1t and recurse.
ELSE
IF the test does not compress the data
THEN fit a &NN (k=2)
ELSIF the average difference in info-score of
each feature to best feature 1s < ¢
THEN start with best feature and
search for a better test using SFS
ELSE select the univariate test and recurse

3.) IF the instances are linearly separable
(determined by accuracy of L'T;)
THEN continue trying to eliminate noisy
and irrelevant features
ELSE examine the magnitudes of the weights
of the linear test:
IF a few weights are larger than the others
THEN find best univariate test
ELSIF many of the weights are close to zero
THEN use greedy SBE
ELSE use SBE to find the best linear test
based on the fewest features

4.) TF info-score(LT;) > info-score(LT;) OR i =1
THEN IF best linear test compresses data
THEN select that test and recurse
ELSE find the best univariate test
ELSE continue trying to eliminate noisy
and irrelevant variables

5.) IF neither a univariate nor a linear test
compress the data (based on MDLP)
THEN find the best value of k for an instance
based classifier AND select from available
tests, the one with max info-score, recurse

6.) IF the best univariate test’s info-score is > than
that of a linear test of n features
THEN search for a better test starting with the
univariate test and using SFS
ELSE examine form of the linear test to choose
SBE or greedy SBE (see Rule 3)

tion score of each of the other features and the best
feature is less than a threshold (10% of the magnitude
of the best score). Using Rules 2 and 5, MCS checks
to see that the best test found thus far compresses the
training data, which occurs when the codelength of the
test plus the codelength of the error vector, resulting
from using the test to classify the data, is less than
the codelength of the error vector of the instances. If
the number of bits to code the test is not less than
the number of bits to code the errors that the test
corrects, then MCS fits a &-NN classifier to the data.
Rule 3 determines whether the initial selection of a lin-
ear test was appropriate. If the instances are linearly
separable then MCS tries to eliminate any noisy or
irrelevant features from the test; otherwise MCS ex-
amines the form of the test to decide where next to
direct the search. Rule 4 evaluates the best linear test
found in the search; if the test compresses the data
then it is selected; otherwise a search for the best uni-
variate test is conducted (if one has not been found
yet). Rule 6 starts a SF'S for the best linear test if the
information score of a univariate test is higher than
that of a multivariate test based on all n features.

Currently, MCS’s rule base contains twenty-five rules,
built using an iterative approach. Candidate rules
were derived based on the author’s knowledge of how
to detect hypothesis pathology and whether a hypoth-
esis 18 a good fit to the data. Each rule was then
tested using a set of four development data sets (the
Breast, Bupa, Cleveland and Segmentation data sets
from the UCT data base). Based on statistics kept of
the rule’s usage, in comparison to the other rules’ us-
age, and on a detailed trace of the search through the
generalization space, the rule was either kept, rejected,
or altered and re-evaluated for inclusion into the rule
base. The rules were constructed such that only one
rule will match; no conflict resolution is required. The
author makes no claim that the current set of rules is
complete or that better rules do not exist. However, as
the results of the next section illustrate, general rules
can be found that work well across many data sets.

6 ILLUSTRATION

To illustrate that knowledge about the biases of learn-
ing algorithms can be used successfully by an auto-
matic algorithm selection system, we compare MCS
to each of the individual model classes: a &~NN, a lin-
ear test based on all of the input features (LT) and
a univariate decision tree (Utree). In addition, we in-
clude a hybrid algorithm LMDT (Brodley & Utgoff,
1992), which combines linear machine tests with de-
cision trees. To determine how a knowledge-based
approach compares to the traditional cross-validation
scheme we report results for an algorithm that we call
CV-10, which performs a ten-fold cross-validation on
the training data to select the best of &-NN, LT, Utree
or LMDT. CV-10 chooses the algorithm that achieves

Table 2: Accuracy for Test Data (Percent Correct)

Method Hep. LED Road Votes Vowel
NN 82.63 62.12 78.95 93.24 94.66
LT 83.95 68.80 70.69 9546 45.22
LMDT 83.42 7256 83.01 9537 75.18
Utree 78.95 7336 83.19 95.09 68.02
CV-10 81.58 72.40 83.19 94.63 94.66
MCS 82.89 72.76 82.79 9528 94.66

the highest average accuracy and then runs that algo-
rithm on the entire training set.

None of the data sets used in this illustration were
used during development of the rule base. The data
sets (all available in the UCT repository) are:

Hepatitis: The task for this domain is to predict
from test results whether a patient will die from
hepatitis. There are 155 instances described by
19 numeric and Boolean attributes.

LED: The data for the digit recognition problem con-
sists of ten classes representing whether an LED
display shows a 0-9. Each of seven Boolean at-
tributes has a 10% probability of having its value
inverted. There are 500 instances.

Road: The data come from four images of coun-
try roads in Massachusetts. Each instance repre-
sents a 3X3 grid of pixels described by three color
and four texture features. The classes are road,
road-line, dirt, gravel, foliage, trunk, sky, tree and
grass. There are 8212 instances in this data set
and 381 values are missing.

Votes: In this domain the task is to classify each of
435 members of Congress, in 1984, as Republican
or Democrat using their votes on 16 key issues.
There are 392 values missing.

Vowel: The task is to recognize the eleven steady
state vowels of British English. There are ten nu-
meric features describing the 990 instances.

To compare the performance of the six learning meth-
ods we ran each ten times. For each run, the data were
split randomly into a training and a test set, with 75%
of the data in the training set and 25% in the test set.
To determine the significance of the differences among
the learning methods we used paired t-tests. Because
the same random splits of each data set were used for
each method, the variances of the errors for any two
methods are each due to effects that are point-by-point
identical. For algorithms that require a separate data
file for pruning (Utree, LMDT and MCS) one third of
the training data was reserved for pruning.

Table 2 shows the sample average of each method’s
classification accuracy on the independent test sets.

Table 3: Time Used to Select a Classifier (Seconds)

Method Hep. LED Road Votes Vowel
CV-10 390 bh98 29,593 838 1,263
MCS 174 130 12,237 246 218

Table 4: Model Classes in the MCS Classifiers

Model Class Hep. LED Road Votes Vowel
NN 0.5 1.7 4.0 0.1 1.0
Linear 0.6 3.5 9.3 1.0 0.0

Univariate 1.7 2.2 23.4 0.9 0.0

Looking first at the individual algorithms, we observe
typical selective superiority results. Each of &-NN, LT
and UTree was best for at least one of the data sets
(LMDT was close to the best for several data sets), and
each was statistically significantly worse (at the 0.05
level) than the best method for other data sets. MCS’s
and CV-10’s performances on the other hand, do not
show a selective superiority for these data sets - they
are robust across the set of tasks. Both CV-10 and
MCS outperform each of the other methods on aver-
age. MCS yields slightly higher accuracies than CV-10
for four data sets, but these differences are not signif-
icant. For the Hepatitis, LED and Votes data sets,
one of the individual methods achieved slightly higher
accuracy, but in each case the difference between the
best individual method and MCS is not significant.
However both CV-10 and MCS are always statistically
significantly more accurate than the worst methods for
each data set.

MCS required far less time than CV-10 and achieved
the same level of accuracy on all test problems. In
Table 3 we report the number of CPU seconds used
by CV-10 and MCS on a DEC Station 5000/200. This
result illustrates that applying knowledge reduces the
search required to find the best classifier without com-
promising the quality of the solution.

The main point to take away from this comparison
is not that MCS “beats” the individual algorithms in
terms of accuracy. MCS achieves significantly better
accuracies than the worst methods and i1s competitive
with the best method for each data set. Therefore,
we conclude from this comparison that MCS’s perfor-
mance demonstrates that knowledge can be success-
fully applied to solve the selective superiority problem
and at a much lower cost than cross-validation.

One 1ssue that requires further investigation is why the
hybrid classifiers are not significantly more accurate
than the individual model classes. In Table 4 we show
the average number of test nodes from each model class
in the classifiers found by MCS. For four out of the
five data sets, MCS selected hybrid classifiers. This

Table 5: Classification Overlap (Percentage)

Pair Hep. LED Road Votes Vowel
MCS-&-NN 86 66 83 94 100
MCS-LT 91 80 72 99 43
MCS-Utree 84 85 85 99 66
LT-Utree 84 75 70 99 26
LT-k-NN 86 58 66 94 43

Utree-k-NN 78 64 79 94 66

raises the question of why the hybrid classifiers did not
achieve higher accuracy than each of the homogeneous
classifiers for these four data sets.

There are several possible answers. Firstly, for these
data sets it may be impossible to achieve higher accu-
racy than that obtained by the best individual method
due to noise in the instances. A second possibility is
that MCS needs better rules to show the advantages of
a hybrid classifier. Finally, MCS’s model classes may
be too similar to show a difference. MCS creates hy-
brid classifiers that are piece-wise linear. Each of the
primitive model classes is also piece-wise linear, albeit
with different restrictions on how they can partition
the instance space and with different search biases.

To cast 1nsight into which of the possible explanations
seems most likely, we examine the differences among
the decision boundaries each classifier forms. To this
end, we compute a heuristic measure of the similarity
between two classifiers’ boundaries: we compute the
percentage overlap in the classification decisions that
each makes. Although this does not tell us the exact
difference in the decision boundaries, it gives a rough
measure of how different these boundaries are for clas-
sification of the types of instances observed.

After each algorithm was run on a random partition
of a data set, we computed the overlap between the
classification decisions made by each pair of learning
algorithms; we counted the number of instances that
were classified the same way by each of two classi-
fiers constructed using different algorithms. In Table
5 we report the average for each data set, over the ten
runs, of the classification overlap percentage between
each pair of classifiers. The higher the percentage, the
closer the decision boundaries are for classification of
instances likely to be observed in the domain. For ex-
ample, the largest pair-wise overlap for the Hepatitis
data set 1s between MCS and LT. This indicates that
MCS defines decision boundaries that are more similar
to LT’s boundaries than Utree’s or k-NN’s. Combining
the results reported in Tables 2 and b, we observe that
MCS’s classification overlap is highest with the best
individual method and therefore its decision bound-
aries are in highest agreement with those of the best
individual method. In addition, MCS’s overlap with
the best method was higher than any pair-wise overlap

between the primitive algorithms for four of the data
sets. The one exception is the Votes data set; both LT
and Utree have an almost perfect overlap with MCS
and therefore show a similarly high pair-wise overlap.

Given that, on average, the hybrid classifiers classify
test instances most similarly to the best of the primi-
tive algorithms for each data set, we find that the two
most likely explanations for why the hybrid classifiers
did not outperform the best of LT, Utree and kNN
on each data set are: it is impossible to achieve higher
accuracies on these data sets than the best of the ho-
mogeneous classifiers or MCS’s model classes are too
similar to improve classification performance over the
best homogeneous classifier for a given data set.

7 FUTURE WORK

In our experiments the hybrid classifiers produced by
MCS did not achieve higher accuracy than the best
homogeneous classifier for each of the five data sets.
Therefore, we were not able to demonstrate that us-
ing different model classes for different subspaces of a
learning task (to form a hybrid classifier) leads to the
best classifier. Our classification overlap analysis sug-
gests two possible explanations that need further inves-
tigation. Firstly, greater benefits of hybrid classifiers
may be realized through the inclusion of model classes
that do not form piece-wise linear partitions; with the
inclusion of classes such as splines or quadratic dis-
criminant functions, the benefits of heterogeneous clas-
sifiers may be more clearly illustrated. A second issue
to investigate is whether data sets exist that are best
represented by a hybrid classifier. Certainly, we can
create artificial data sets for which this is true, but
from the results of the illustration it is unclear whether
better accuracies can be achieved for the five data sets,
than the accuracy of the best of the set of classifiers
constructed using the primitive algorithms.

As more knowledge about the biases of machine learn-
ing, symbolic and statistical classification algorithms
becomes available, the efficiency of the search and the
quality of the solutions will improve. One direction in
which to extend the recursive knowledge-based 1s to
incorporate the results of efforts such as the StatLog
project to reduce the amount of search required. One
of the results of the StatLog project is a study that
relates statistical measures of a data set to the perfor-
mance of different algorithms (Feng, et al. 1993). Mea-
sures such as homogeneity of covariances and skewness
were used to explain differences in the performances of
a set of machine learning, statistical and neural net al-
gorithms on a test-suite of classification tasks. The
knowledge resulting from this type of study could be
used to begin the best-first search. By starting the
search from a promising part of the space, it stands to
reason that the time required to find the best classifier
would be greatly reduced.

8 CONCLUSION

In this paper we have presented a recursive heuristic
approach to algorithm selection for classifier construc-
tion. We illustrated empirically that an automated
algorithm selection system, MCS, can use knowledge
about the biases of machine learning algorithms and
representations to solve the selective superiority prob-
lem. Clearly, when prior knowledge of which model
class will be best for a data set exists, it should be
applied. Such knowledge does not preclude the use
of systems such as MCS; it can be used to focus the
search in the most promising areas, thereby reducing
the amount of search required. As we as researchers
gain more insight into the biases of the algorithms that
we create, we will be able to improve the performance
of systems that use knowledge to perform automatic
algorithm selection.

Acknowledgments

This material is based upon work supported by the
National Aeronautics and Space Administration un-
der Grant No. NCC 2-658. The Hepatitis, LED, Votes
and Vowel data sets are from the UCI machine learning
database. B. Draper provided the Road data. Discus-
sions with J. Callan, J. Clouse, T. Fawcett, C. Schaffer
and P. Smyth helped to clarify the issues presented in
this paper. Thanks to Paul Utgoff, whose comments
improved both the content and presentation of this pa-
per, and for providing the inspiration for this research.

References

Aha, D. W., Kibler, D., & Albert, M. (1991). Instance-
based learning algorithms. Machine Learning, 0,

37-66.

Aha, D. W. (1992). Generalizing from case studies:
A case study. Machine Learning: Proceedings of
the Ninth International Conference (pp. 1-10). San
Mateo, CA: Morgan Kaufmann.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone,
C. J. (1984). Classification and regression trees.
Belmont, CA: Wadsworth International Group.

Brodley, C. E., & Utgoff, P. E. (1992). Multivariate
versus univariate decision trees, (Coins Technical
Report 92-8), Amherst, MA: University of Mas-
sachusetts, Department of Computer and Infor-
mation Science.

Duda, R. O., & Hart, P. E. (1973). Pattern classifica-

tion and scene analysis. New York: Wiley & Sons.

Feng, C., Sutherland, A., King, R., Muggleton, S., &
Henry, R. (1993). Comparison of machine learning
classifiers to statistics and neural networks. Pre-
liminary Papers of the Fourth International Work-

shop on Artificial Intelligence and Statistics (pp.
41-52).

Frean, M. (1990). Small nets and short paths: Opti-
mising neural computation. Doctoral dissertation,
Center for Cognitive Science, University of Edin-

burgh.

Kittler, J. (1986). Feature selection and extraction. In
Young & Fu (Eds.), Handbook of pattern recogni-
tion and image processing. New York: Academic
Press.

Linhart, H., & Zucchini, W. (1986). Model Selection.
NY: Wiley.

Nilsson, N. J. (1965). Learning machines. New York:
McGraw-Hill.

Pagallo, G. M. (1990). Adaptive decision tree algo-
rithms for learning from examples. Doctoral dis-
sertation, University of California at Santa Cruz.

Provost, F. J., & Buchanan, B. G. (1992). Inductive
policy. Proceedings of the Tenth National Confer-
ence on Artificial Intelligence (pp. 255-261). San
Jose, CA: MIT Press.

Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, 1, 81-106.

Rendell, L., & Cho, H. (1990). Empirical learning as a
function of concept character. Machine Learning,

5, 267-298.

Rissanen, J. (1989). Stochastic complexity in statistical
mquiry. New Jersey: World Scientific.

Salzberg, S. (1991). A nearest hyperrectangular learn-
ing method. Machine Learning, 6, 251-276.

Schaffer, C. (1993). Selecting a classification method
by cross-validation. Preliminary Papers of the
Fourth International Workshop on Artificial In-
telligence and Statistics (pp. 15-25).

Shavlik, J. W., Mooney, R. J., & Towell, G. G. (1991).
Symbolic and neural learning algorithms: An ex-
perimental comparison. Machine Learning, 6, 111-
144.

Utgoff, P. E. (1989). Perceptron trees: A case study
in hybrid concept representations. Connection Sci-

ence, 1, 377-391.

Weiss, S. M., & Kapouleas, 1. (1989). An empirical
comparision of pattern recognition, neural nets,
and machine learning classification methods. Pro-
ceedings of the Eleventh International Jownt Con-
ference on Artificial Intelligence (pp. 781-787).
Detroit, Michigan: Morgan Kaufmann.

Yerramareddy, S., Tcheng, D. K., Lu, S. | & Assa-
nis, D. N. (1992). Creating and using models for
engineering design. IFEE Expert, 3, 52-59.

Young, P. (1984). Recursive estimation and time-series
analysis. New York: Springer-Verlag.

