
The Effects of False Paths in High-Level Synthesis

Reinaldo A. Bergamaschi

IBM Research Division - T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract
This paper discusses the effects of false paths and their

consequences in scheduling and allocation during high-
level synthesis. False paths through the control--ow graph
may occur due to sequences of conditional operations. The
detection of false paths during scheduling may result in
smaller number of states, improved operator sharing and
smaller control logic. An heuristic algorithm is presented
for the detection and elimination of false paths during
path-based scheduling. Results for benchmark examples
are presented. For the designs which containedfalse paths,
the percentage offalse paths variedfrom 5% to 83%. A re-
duction of 15% in the final cell count for one benchmark
was obtained by eliminating false paths.

1 Introduction
A common characteristic of most high-level synthesis

systems is the lack of consideration to logic synthesis as-
pects during the high-level synthesis process. Control sig-
nals (e.g., multiplexer select, register load) are usually
computed at the end of the high-level synthesis steps, by
analyzing the conditional operations (in the control-flow
graph) leading to the execution of each operation (in the
data-flow graph). Scheduling and allocation are performed
largely ignoring the relationships among the conditional
operations. Limited consideration to the conditional use of
operators and registers is given in [l] and [2] respectively,
by analyzing operations on different branches of condi-
tional blocks. A general approach has been implemented in
[31, which globally determines the conditional usage of op-
erators and registers by analyzing every execution path in
the control-flow graph.

Dynamic computation of control conditions, during
high-level synthesis, can be used for detectingfalse control
paths. The elimination of false paths can lead to smaller
number of states, improved operator sharing, and reduced
control logic.

This paper presents an algorithm for detection and
elimination of false control paths during high-level synthe-
sis. This algorithm was integrated in the path-based sched-
uling and allocation steps in the HIS system [4]. It
constitutes, to the best of the author’s knowledge, the first
work to consider false paths during high-level synthesis.

Section 2 introduces the concept of false paths in a
high-level description and discusses their effect in the syn-
thesis results. Section 3 describes the algorithm for detect-
ing and eliminating false paths. Sections 4 and 5 present
results and conclusions respectively.

2 False paths in a high-level description
2.1 Existence of false paths

A high-level description is usually represented by
means of a control-flow and/or a data-flow graph. The
control-flow graph (CFG) defines the relative sequencing
of operations in the high-level description. A path in the
CFG is uniquely defined by a first operation, a last opera-
tion, and a sequence of conditional branches. Multiple
paths result from the presence of conditional operations
(e.g., if, case). A path is executed when all its conditions are
satisfied in the sequence required [5] .

A false path in a high-level description is defined as a
sequence of operations which can never be executed under
any combination of input values, independently of how
these operations are scheduled. False paths in a high-level
description can be seen as an extension of the concept of
false paths in combinational logic [6] with the time dimen-
sion (scheduling) added to it.

The falsehood of a path depends on the conditions be-
ing tested along the path. Each condition corresponds to a
boolean function which must be expressed in terms of all its
primary data dependencies. Primary data dependencies are
either primary inputs or variables which were assigned by
operations outside the path. Data dependencies depend on
the path being considered.

A path in the CFG constitutes a false
path iff the logical and of all conditions along the path, ex-
pressed in terms of their primary data dependencies, is null
for all input values.

If a primary data dependency is also a primary input of
the description then the definition above is only valid if it
can be guaranteed that the value of the primary input re-
mains the same along the path.

2.2 Effects of false paths in high-level synthesis
During scheduling and allocation, decisions may be

taken to balance the usage of hardware resources in order to
meet area and/or speed constraints. Therefore, it is impor-
tant to know in advance (during scheduling) whether or not
operations may be executed in parallel. In most systems to
date, this information is extracted based on the topology of
the CFG (or equivalent representation). Operations in dif-
ferent states or in different branches of a conditional block
are mutually exclusive and therefore can share hardware.
However, this is not the only condition upon which opera-
tions are mutually exclusive. Operations in a false path can
also be mapped into the same hardware resources, since

Definition:

80
CH3026-2/91/0000/0080/$01.00 0 1991 IEEE

address:=0 address:=stack +
offsetl

z:=p[O] z:=p[O]

maddr=address maddr:--address +

they are never executed at the Same time.
In order to analyze the effects of false paths during

scheduling and allocation, consider the CFG of a simplified
address computation unit shown in figure la.

The As-Fast-As-Possible (MAP) path-based sched-
uling algorithm used in the HIS system [5], minimizes the
number of control steps for all possible paths in the CFG.
Each path is scheduled independently, based on constraints
applied to it. Constraints are represented by intervals be-
tween operations, meaning that a new control step must
start within the interval for the constraint to be satisfied.
For example, a constraint of one adder results in constraint
intervals between any two operations using adders (in the
same path). These constraint intervals are shown in figure
lb.

The resulting finite-state machine (FSM), contains
four states, as shown in figure 2a. This schedule uses one
adder and requires variables address and p to be stored.
During allocation, these two variables can share the same
16-bit register. The condition controlling the execution of
each operation in a state is shown in parenthesis beside the
operation number (if none is shown, the condition is '1').

Data-flow analysis on the graph in figure la reveals
that both conditional operations (3 and 13) represent
boolean functions with common support variables, and
hence could be responsible for false paths. By tracing the
data dependencies backwards along all possible paths, it
can be seen that variable p is a function of bits [1 ,O] of the
output of the addition in operation 1. Similarly, variable z
is a function of bit [O] of the output of the addition, in paths
a , b, g and h ; and it is a function of bit [13 of the addition, in
paths c, d, e andf . By checking the values assumed by p
and z along each path, it can be shown that paths a, c,f, and
h, are indeed false paths, hence they can be disregarded by
the scheduler.

(b)

(4 (b) (c) (4 (e) (0 (g) (h)

1 1 1 1 1 1 1 1
2 2 2 2 2 2

6 6 8 8 1 0 1 0
7 7 9 9 1 1 1 1

12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13
14 15 14 15 14 15 14 15
16 16 16 16 16 16 16 16

;i li j 3 3 3 3 3 3 I

The FSM which considers only the non-false paths (6,
d, e , and g) is shown in figure 2b. It needs only two states,
and uses one adder and one 2-bit register (for storing p) .
Variable address does not need to be stored.

Another effect of not eliminating false paths during
scheduling is that logic paths which are not sensitizable
may be present in the final register-transfer level descrip-

bud 14.16

(b)

((S I) & @=l I p=3))
(simplifies to ' 1 ') ST2

Figure 2: Resulting fmite-state machines: (a) FSMl:
considering all paths, (b) FSM2: without false paths.

81

tion. This redundant logic may be eliminated by logic syn-
thesis afterwards. For example, in FSMl (figure 2a), the
transition signal f” State 1 to itself, and the control sig-
nals of operations 15 and 16 in State 1 can be simplified to
null (note that z is a function of p) . This is indeed correct
since a transition from State 1 to itself could only occur
along a false path. Other effects, such as, larger number of
states, extra registers and functional units, cannot be elimi-
nated by logic synthesis alone and must be handled by
high-level synthesis.

3 Detection and elimination of false paths
In order to determine whether a path is false, the path

conditions must be expressed in terms of their primary data
dependencies along the path. The expansion of each path
condition in terms of its primary data dependencies may be
very complex, since any type of operations may be in-
volved. For example, in order to express the boolean condi-
tion on node 3 (figure 1) as a function of &a, it is
necessary to represent a 16-bit addition (in operation 1) as
a boolean expression.

In the general case, the complexity of the boolean func-
tions representing path conditions may be arbitrarily large.
The task of anding all conditions will be similarly complex.
Binary decision diagrams (bdds) and symbolic simulation
techniques can be used for this purpose. However, the gen-
erality of the operations involved make it a very complex
task even if bdds are used. This makes this technique im-
practical for its application during scheduling, since it
would increase execution time unacceptably.

For this reason, an heuristic algorithm for detecting
false paths was developed. Its three main concepts are:
1. Each condition along a path is expressed as a data-flow

tree (called condition tree). The root node corresponds
to the conditional variable itself; internal nodes corre-
spond to the operations on which the variable depends;
and leaf nodes are the primary data dependencies in the
path. Each condition tree may have as many nodes as
operations in the path. Each root node contains a set of
values, which are the values assumed by the conditional
variable along the path.

2. The falsehood of a path is determined by comparing the
condition trees in a path pairwise. If two condition trees
are equivalent and they assume disjoint sets of values,
then the path is false; otherwise nothing can be asserted
about the falsehood of the path.

3. Two condition trees are equivalent if they are isomor-
phic and corresponding nodes perform the same func-
tion. Commutative operations are considered.
The comparison of conditions described in Item 2. is

equivalent to perform the and of every pair of conditions.
If any pairwise and is null, then the and of all conditions is
null and the path is false. The inverse, however, is not true,
and therefore this algorithm may not find all false paths.
Equivalence of condition trees is based on isomorphism,
and is also an heuristic, since non-isomorphic trees are al-
ways considered not equivalent. The complexity of the
above algorithm is O(n2) on the number of conditional op-
erations in the path.

Figure 3 shows an example of a CFG with conditional
operations and condition trees. The set of values assumed
by each tree is indicated beside the root node. The values of

variable dimensions: [0,3]
except for tl. t2: [OJ]

1 (0.11

R [X
data Y z

Q (1.3)

Figure 3: (a) Control-flow graph; (b) condition
trees for t l and t2 in path 1-7-8-12-13

individual bits are taken in consideration. In this example,
the trees shown are equivalent, and path 1-7-8-12-13 is a
false path since tl [13 and t2[11 (which belong to equivalent
trees) assume different values. Path 1-7-8-12-14 is not a
false path.

This algorithm was integrated in the As-Fast-&Po+
sible (MAP) path-based scheduler in the HIS system [3],
[41,[51, [71. The computation of all paths in the CFG is an
integral part of the scheduler. After all paths are deter-
mined, the false paths are eliminated and the remaining
paths are used for scheduling and allocation.

4 Results
Several benchmark examples [8] were run through HIS

with and without false path elimination, for the purpose of
comparing execution times and measuring the effect of
false paths in the final hardware. HIS generated a register-
transfer level description, which was then passed to LSS
[9] for logic synthesis. Results are reported in terms of con-
trol (paths, states and transitions), data-path (registers,
functional units and multiplexerdmux inputs), and linal
cell count (after LSS - a cell is a basic unit of area).

Only three of the examples contained false paths:
ADDRC, M6502 and 1x8251. In ADDRC about 83% of
all paths were false, compared to 49% in 1x8251 and only
5% in M6502. Table 1 shows the scheduling, allocation and
logic synthesis results, with and without false path elimina-
tion, for these three examples plus the example given in fig-
ure 1 (EXl). No hardware constraints were specified for
ADDRC, M6502 or Tx825 1. EX 1 had a constraint of one
adder. Allocation was performed sharing as much hard-
ware resources as possible.

82

Table 1 shows that false path elimination was very ef-
fective in reducing the final area in examples ADDRC and
EX1. In these cases, the elimination of false paths resulted
in a different schedule which used less functional units, less
registers, and simpler control logic. In the case of TX825 1,
although there was a significant reduction in the number of
paths, the final schedule was very similar to the one without
false path elimination. The same was true for the M6502
which had only few paths eliminated. In these two exam-
ples, TX8251 and M6502, the data paths for the designs
with and without false path elimination were identical.
They differed in the initial size of the control logic (before
logic synthesis). The designs without false path elimination
had much larger control logic; however the difference was
due to redundant logic (due to false paths) which was
largely eliminated by logic synthesis. As a result the fiial
size of the designs with and without false path elimination
was virtually the same, for TX8251 and M6502.

addrc n
fu

m6502 n

design Ipathslstates/trans/ regs1 fus Lx/iinp[celIs 1A%
125 9/19 40 4+ 21/75 1903 15%
21 9/16 40 3+ 11/34 1626
414 106/204 121 6+,1- 551284 5527 -

design

fp I 392 I 106/202 I121 I6+,1-155/284 I 55371
tx8251 n l 766 I 22/101 I 13 I 1- I 11/27 11018 I -

Scheduling I Allocation
n l f u I n l f u

fp I392 I 22/96 I 13 I 1- I 11/27 I 1020)
ex1 n I 8 I 41p I 16 I1+ I 5/18 I663 142%

fpl 4 I 242 I 2 I1+ I 3/10 I383 I
Table 1: Scheduling, allocation and logic synthesis re-
sults, for examples with false paths. (n - no false path
elimination; fp - with false path elimination.)

I ~ -1

i8251 I 3.0 13.3 I 7.1 I 7.1
rcv8251 I 2.7 I 2.9 I 6.1 I 6.1 ;.xt51* 1 119/ 7.0 6.9 j 6.4 ~

m6502* 16.3 15.3 161.8 140.4
0.2 0.2 0.8 0.8

Table 2: Execution times for scheduling and allocation,
with and without false path elimination, in seconds. (n -
no false path elimination. fp - with false path elimina-
tion. * Denotes examples with false paths.)

Table 2 gives the execution times for scheduling and al-
location, with and without false path elimination, for sev-
eral benchmark examples. Examples with no false paths
showed a small increase in scheduling time and no differ-
ence in allocation time, due to false path check. Examples
with false paths showed indeed a decrease in scheduling
and allocation times, due to the reduction in the number of
paths and corresponding reduction of control logic.

The reason for so few examples presenting false paths
is due to several factors. Firstly, most of the benchmarks

are small and do not contain a large number of conditional
operations. Secondly, the presence of false paths depends
very much on the way that the input description is written.
Data-flow oriented descriptions (such as the Kalman filter)
tend to present less (usually none) false paths than control-
flow oriented ones.

False path elimination also helps checking the correct-
ness of the input description. Operations which appear only
in false paths will not be present in the final FSM, which
may indicate an error in the description.

4 Conclusions
This paper discussed the effects of false control paths in

high-level synthesis and presented an algorithm for detect-
ing false paths. It was shown that the elimination of false
paths during scheduling can result in schedules with
smaller number of states and transitions, and implementa-
tions with smaller number of registers, functional units,
multiplexers and control logic.

The algorithm presented is heuristic and cannot guaran-
tee the detection of all false paths. Nevertheless, it did find
all false paths in the small to medium size examples tried
(where manually checking of all paths was feasible). In
most cases the condition trees are small, with few data de-
pendencies, which increases the probability of a false path
being found by the algorithm. The time penalty involved in
detecting false paths was practically negligible.

The detection and elimination of false paths during
scheduling is an important step towards making the synthe-
sis system independent of how a given functionality is ex-
pressed in the input description.

References
[l] P. G. Paulin and J. P. Knight, ’Force-Directed Scheduling

for the Behavioral Synthesis of ASICs”, IEEE Trmucfions
on Computer-Aided Design, vol. CAD-8, no. 6, pp.
661-679, June 1989.

[2] F. J. Kurdahi and A. C. Parker. ”REAL: a Program for Regis-
ter Allocation”, in Proceedings of the 24th ACMIIEEE De-
sign Automation Conference, ACM/IEEE, June 1987.

[3] R. A. Bergamaschi, R. Campsano, and M. Payer, ”Data
Path Synthesis Using Path Analysis”, in Proceedings of the
28th ACMIIEEE Design Automation Conference, ACMI
IEEE. June 1991.

[4] R. Campsano, R. A. Bergamaschi, C. Haynes, M. Payer and
S-M Wu, ’The DBM High-kvel Synthesis System”, in R.
Campsano and W. Wolf, editors. High-kvel VLSI Synthe-
sis. Kluwer Academic Publishers, 1991.

[5] R. Campsano, ”Path-Based Scheduling for Synthesis”.
IEEE Tramactions on Computer-Aided Design, vol.
CAD-10, no. 1, pp. 85-93. January 1991.

[6] P. C. McGeer and R. K. Brayton, Integrating Functional and
Temporal Domains inhgic Design, Kluwer Academic Pub-
lishers, 1991.

[7] R. A. Bergamaschi, R. Campsano, and M. Payer, ”Area and
Performance Optimizations in Path-Based Scheduling”, in
Proceedings of the European Conference on Design Auto-
mation, The Netherlands, February 1991.

[8] ”Benchmarks for the Fifth Intemational Workshop on High-
Level Synthesis”, 1991. Available through EMail at
HLSW@ics.uci.edu (InterNet).

[9] J. Darringer, D. Brand, J. V. Gerbi, W. Joyner, and L. Trevil-
lyan, ”LSS: A system for production logic synthesis”, IBM
Journal of Research and Development, vol. 28, September
1984.

83

mailto:HLSW@ics.uci.edu

