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The Elmore Delay as a Bound for RC
Trees with Generalized Input Signals
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Abstract—The Elmore delay is an extremely popular timing- and Rubinstein developed best and worst case bounds on the
performance metric which is used at all levels of electronic step response waveform [18].
circuit design automation, particularly for resistor-capacitor (RC) These step response bounds were improved in [23] and

tree analysis. The widespread usage of this metric is mainly - . L
attributable to it being a delay measure that is a simple analytical later extended to a two-time constant approximation in [4].

function of the circuit parameters. The only drawback to this Sometime later, higher order moment matching techniques
delay metric is the uncertainty of its accuracy and the restriction were developed for resistor, inductor, capacitor (RLC) circuits

to it being an estimate only for the step response delay. [19], of which RC trees are an important subset. Higher

In this paper, we prove that the Eimore delay measure is an ,rqar moments for RC trees can be calculated with excellent
absolute upper bound on the actual 50% delay of an RC tree efficiency [22]

response. Moreover, we prove that this bound holds for input i . ) . ]
signals other than steps and that the actual delay asymptotically ~ But even with the higher order approximations with ac-
approaches the Elmore delay as the input signal rise time in- curacy comparable to SPICE, the Elmore delay remains a
creases. A lower bound on the delay is also developed using thepopular metric merely for its simplicity. It is used during logic
Elmore delay and the second moment of the impulse response. gy nihesis to estimate wiring delays for approximate Steiner
The utility of this bound is for understanding the accuracy and - . . .
the limitations of the ElImore metric as we use it as a performance or spanning tree rou'tes. Itis used. dyrlng performance d”V?n
metric for design automation. placement and routing because it is the only delay metric
which is easily measured in terms of net widths and lengths
and so on. The only drawback to this delay metric is the
uncertainty of its accuracy and the restriction to it being an
estimate only for the step response delay.
l. INTRODUCTION In this paper we prove that the Elmore delay value is an
C TREES are commonly used to model digital logi@Psolute upper bound on the 50% delay of an RC tree. This
gates and their associated interconnect paths at variétiglone by first proving that RC tree impulse response distri-
stages of the design process. During the ear|y phases of destgﬁiyons are guaranteed to be unimodal and positively skewed.
simple approximations or delay bounds are often appliddien, using the classical theory of distribution functions, we
since an exact solution of an approximate circuit model 0w that the mean of such a distribution will always exceed
superfluous. the median. Moreover, we demonstrate that this proof applies
The omnipresent Elmore delay [7], or first moment of thBot only to the step response, but also to any input forcing
impulse response, is the delay approximation of choice fBnction which has a unimodal derivative, e.g., a saturated
resistor-capacitor (RC) trees because of the ease with whickafp with finite rise time. Finally, with a calculation of the
is calculated. In the original work of 1948, Elmore attempte@ean and the variance of the impulse response we specify
to estimate the 50% delay of a monotonic step response dyower bound on the 50% delay. We will show that the
the mean of the impulse response. Penfield and RubinstEiore delay bound is sometimes better, sometimes worse,
[18] proved that RC tree step responses are indeed monotdhign the Penfield—Rubinstein 50% delay bound for the case
and thereby discovered the popular Elmore delay metric f@f step inputs. In addition, we will show that the exact delay
analyzing gate and interconnect delays. However, because @8Reroaches the Elmore bound as the variance of the input-
median of the impulse response is the exact 50% delay a#@inal derivative increases.
Elmore is approximating the median by the mean, Penfield

Index Terms—Delay estimation, EImore delay (new), probabil-
ity, RC trees (new).
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Manuscript received December 16, 1994, revised November 18, 1996. Thjs |[nterconnect Models
work was supported in part by the Semiconductor Research Corporation under . )
Contract 95-DJ-343 and the National Science Foundation under Contract MIP-RC trees, such as the one shown in Fig. 1, have been

9157263.Th_is paper was recommgnded by Associate Edi_tor, G.Zimmermqr,mdew used for modeling the gate and interconnect circuits
R. Gupta is with Bell Laboratories, Lucent Technologies, Allentown, PA

18103 USA. like the one shown in Fig. 2. An RC tree is an RC circuit
B. Tutuianu is with Motorola Corp., Austin, TX 78758 USA. with capacitors from all nodes to ground, no capacitors be-
L. T. Plleggl, formerly L. Plllage, is with the Department of Electrical anq:ween nonground nodeS, and no resistors connected to ground,

Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 | . . .. p

USA. making it a natural model for characterizing digital gate and

Publisher Item Identifier S 0278-0070(97)02705-X. interconnect delays [18], [21]. For modeling simplicity, the

0278-0070/97$10.001 1997 IEEE



96 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 1, JANUARY 1997

60Q 60Q2 unit step response delay approximatidn,, is
W\Aﬁ +
R6 R7 Th =m
6o C7J* b=
:J:p ELZPF = / th(t) dt @)
80Q 60Q2 60Q 60Q  60Q 0
when the area underne equals unit
. RI 1t TR | R ke RS |* akitt) eq y
Vin { cl 2= (6K pu Cc4— " cs 0o
. l?).spF IpF IlpF 11;)}: ;P.ZZPF / h(t)dt = 1. 3)
i i 0
Fig.- 1. A simple RC tree. This approximation appears valid for the symmetrical func-

tion in Fig. 4, where the mean is equal to the median.
. However, it is somewhat erroneous for the real impulse
DO‘ response in Fig. 3, which is skewed asymmetrically. It is this
skew, however, which will allow us to bound the delay by
the mean {p) in this paper.

«{>@ interconnect }—Dw
C. Calculating the EImore Delay

Fig. 2. A CMOS inverter driving a similar inverter through RC interconnect. The Elmore delay is a convenient metric for RC trees
because it can be calculated so easily and efficiently for a
1.0 , , particular circuit topology. Efficient path tracing algorithms for

calculating the Elmore delay for RC trees have been covered
081 extensively in the literature [18], [24], so they will not be
discussed in detail here. In summary, one can calculate the
i Elmore delay from twaD(N) traversals of the tree, wherg
0.6 step response . )
% is the number of nodes in the tree. The Elmore value for the
" o4l impulsc response - output at nodei is given by
N
02t Tp, = Z Ry Cy (4)
k=1
0.00e+00 1.00e-09 .~ 2.00e-09 3.00e-09  whereRy; is the resistance of the portion of the (unique) path

between the input and nodethat is common with the unique
path between the input and no8leandCj, is the capacitance
at nodek [26]. Higher order moments can be obtained via
path tracing with equal efficiency [19], [22]. The EImore delay

nonlinear driver in Fig. 2 is linearized as shown in Fig. 1y5ues at node€);, Cs, and C; for the circuit in Fig. 1 are
A great deal of work has been compiled over the last sevegen in column (3) of Table I.

years regarding these linearized gate models [1], [9], [10], [15],
[16], [24]. In this work, however, we will focus on estimating
the delay of the linearized RC tree in Fig. 1.

Fig. 3. The unit step and the unit impulse response (scalet:hy 09) for
the voltage acros€’s in Fig. 1.

D. First Moment of the Impulse Response

The Elmore delay has also been used as a dominant time
constant approximation. This follows from the transfer func-

B. The Elmore Delay tion for a response node of the RC tree expressed as

The step response for the node voltage at capacitoof
the RC tree in Fig. 1 is shown in Fig. 3. Also shown in Fig. 3 H(s) = 1+ais+as® +- -+ aps” 5)
is the unit impulse responsk(t), at the same node. Since the 14015+ bos? + -+ byps™
step response is the integral of the impulse response (transf(gr

function), the 50% point delay of the monotonic step respon .e.rt(am = n. Expanding (;’) about = 0 yields H(s) as an
(nonnegative transfer function) is the tinreat which INfinite: Series in powers o

H(s)=1+ (a1 —b1)s+ (az — by —b1a; + b%)s2

/0 h(t)dt = 0.5. (1) + (az — bs — aybs + 2b1b;
_ _ _ — agby + a1b? — b+ - (6)
Referring to Fig. 4, EImore proposed to approximatby the
mean of theh(t) distribution. The Laplace transform ok(t) is
Treating the nonnegative impulse response in Fig. 4 as a -
distribution function, the mean of this distribution function is H(s) = / h(t)e ™ dt. )
defined by the first moment of the impulse response. EImore’s 0
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Fig. 4. Elmore’s approximation.
TABLE |
DeLAY Bounps FOR CIRCUIT IN FIG. 1
¢y (2) 3 4) (% (6) 7N
Single PRH PRH
Elmore Lower pole upper lower
Actual delay, bound, approx. bound, bound,
Node delay Tp Tp-c | TpIn(2) tnax tinin
Cl1 0.196 ns 0.55ns O ns 0.383 ns 0.55 ns Ons
C5 0.919 ns 1.2 ns 0.2 ns 0.83 ns 1.32 ns 0.51 ns
C7 0.45 ns 0.75 ns O ns 0.524 ns 1.02 ns 0.054 ns

Expandinge=** abouts = 0 in (7) yields the following series If one of the time constants (or poles) is dominant
in powers of s

1 1
— > —, j:1727"'7m7 J#d (12)
/ h(t)[1 - st+ 3 s*° — £ s°° + -] dt pd P
o0 -0 then
Z k / tRh(t) dt. (8) ,
k=0 0 Ty~ —. (13)
From (8) we observe that thgth coefficient of the impulse Pd
responseh(t) is This dominant time constant approximation is then used to fit
—14 [oo a single pole approximation
my = ( ') / th(t) d 9)
¢ Jo v(t) =1 — ¢ Pat, (14)

Thesem;'s are related to the moments from distribution
theory by the(—1)?/q! term. That is, thexth moment of a Solving (14) for the 50% point delay effectively scales the
functionh(t) is defined to bqooo t"h(t) dt. It was this relation Elmore delay approximation b (2), or about 0.7.
between moments and transfer function coefficients which ledwe should point out that this dominant time constant delay
to Elmore’s original work. prediction can be either pessimistic or optimistic at two
To understand the connection between the first momefiiferent nodes in the same RC tree. For example, column
and the dominant pole, we factor the numerator and t{®) of Table | shows the values f (2)-7p at nodesC;, Cs,
denominator of (5) and show that termis and a; are the andC; for the circuit in Fig. 1. Notice that, when compared
sum of the reciprocal poles (circuit time constants) and thgith the actual delay values in column (1), the response at

sum of the reciprocal zeros, respectively Cs is optimistically predicted byn (2) - 7> while that atC;
m oy is pessimistically predicted. One way to explain this is by the
by = - excessive skew in thi(t) distribution forC, which is shown
=1 P with the step response for this node in Fig. 5, as compared with

the skew for the response &% (shown in Fig. 3). It can be
(10) expected that usinth (2) - Mean to approximate theedian
will be vastly different for these two distributions.
s It is difficult to know when a single pole dominates the low-
%réquency behavior of a circuit. For this reason, Rubinstein and
Penfield established bounds for the step response delay of this
Tp = by. (11) important class of RC circuits.

ai
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| =

o
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—

If there are no low-frequency zeros, the numerator coefficien
including «;, are small and
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Fig. 5. The unit step and the unit impulse response (scalet:hy 09) for

the voltage acros€'1in Fig. 1.

E. Penfield and Rubinstein’s Bounds
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proximation. Higher order moments are obtained withV)
complexity too. But for certain applications, a single term
delay metric, such as the Elmore expression, is invaluable,
and this paper is towards a better understanding of this
approximation.

Ill. THE ELMORE DELAY AS A BOUND

Referring back to Figs. 3 and 5, it is apparent that with
such an asymmetrical distribution for the impulse response,
the mean would not coincide with the median. In this section,
we will show that these asymmetric distributions have a “long
tail” on the right side of the mode, which is roughly the
maximum value point, and a “short tail” on the left side. Such
distributions are said to haymsitiveskew. We will also prove
that the impulse response for an RC tree is unimodal and then
use these two properties to prove that

Penfield and Rubinstein were the first to use the Elmore

delay to analyze RC trees [18]. Before higher order moment

Mode < Median< Mean a7

matching techniques were available, delay bounds were th%quation (17) states that the Elmore delay, or the mean of

only means of estimating the accuracy of the RC tree del

e impulse response, is truly an upper bound on the median,

approximation. The following are the PenfieIQ—Rubinsteigr the 50% point delay. We will show that this holds for
delay waveform bounds for any percentage point on the Ry innt that has a unimodal derivative and that the mean

tree step response waveform

tmin(l/i) =
4 T .
0, 05%51—7%
Tp, Thg.
Tp, — Tp(1 — ), 1— 2L S%‘Sl—i
r Tp
TDi - TRi
T In | —————— 1-— =<yl
L iR, 0 |:Tp(1—l/i):|7 Tp — vi <
tmax(l/i) -
 — TR, 0<y; <1 - :
1—y Ris =V Tp
Tp — Tk, (15)
Tp 1 : 1-— <y <l
L tir Tp(l—l/i):|7 Tp S¥<
where
Tp = Z Ry Cr,
k
Tp, = Y RiiCr,
k
>

becomes a better approximation of the median as the rise time
of the input-signal increases. Further in the section, we will
also provide a lower bound on the 50% delay for an RC tree,
but first a few definitions.

Definition 1: The mode,M, of a distribution function is
that value of the variate exhibited by the greatest number of
members of the distribution [11]. If the distribution function
is continuous and differentiable, a unigue mode exists only if
f is unimodal and is the solution of

fa)= 2 () =0
)= jw) <o

Definition 2: The medianm of a distribution functionf is
that value of the variate which divides the total frequency into
two equal halves [11], i.e.,

/:; f(a:)da::/r:o f(z)dz = 5.

Definition 3: Themeany of a distribution functionf about
the pointz = a is defined by

n= |

Definition 4: A density functionh(¢) is called unimodal

(18)

(19)

(x —a)f(z)dz. (20)

Calculating these bounds requires calculating two additiorialand only if, there exists at least one valtie= ¢,, such

terms in addition to the Elmore delay. All of these termshat 4(¢) is nondecreasing fot < t,,, and nonincreasing for
however, are obtained witt(N) complexity. The values of ¢ > t,, [20].

tmax aNdty;, at the 50% point for our example in Fig. 1 are Definition 5: Coefficient of skewnefs a distribution func-

given in columns (6) and (7) of Table

I. Note that., > Tp

tion is given byy = u3/03, whereo = /2, and iz and 3

at the loads(C; andC;, andt,,.. = Tp at the driving point, are the second and third central moments of the distribution
C;. Also note the values af,,;;, as a lower bound on the delay.function, respectively [5].

In general, one can also calculate more moments for theLemma 1: The impulse respondgt) at any node of an RC
RC tree, and generate a two-pole [4] orggole [19] ap- tree is a unimodal and positive function.
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Lk a(t)

Fig. 7. AdmittanceY;4; of an RC tree at an arbitrary node+ 1.

If v4(¢) is an impulse input at nodk, then iy, s41(¢) is the
impulse response at node+ 1 for the tree rooted at node

This has the same form as in (23) and is unimodal. Thus, the
impulse response at node+ 1 w.r.t. node one (the driving
point), hx41(t), is given by

ha1(t) = P, 1 ()" hae() (25)

where* is the convolution operator. Since the convolution of
two unimodal positive functions is also a unimodal function
_ ) ) [20], hx+1(t) is unimodal. Thush(¢) at any node of an RC
Proof: The proof is by induction. For a general RGyee is a unimodal function. That(t) is a positive function
circuit as shown in Fig. 6(a), if;(¢) is a unit impulse input, nas been shown in [23]. O
from the Norton equivalent circuit shown in Fig. 6(b), the | emma 2: For the impulse responggt) at any node of an
effect of the unit impulse is to charge the capacifgso that R tree, the coefficient of skewnesss always nonnegative.

Fig. 6. (a) Input node of an RC tree with input admittai¢g(s). (b) Norton
equivalent for the circuit in Fig. 6(a).

1 (o s() Proof: The proof again follows an induction-based argu-
ve, (04) = & / T, ment. Following Definition 5, it needs to be shown that for
11 0= ! h(t) at any node of an RC treg,z > 0 and iy > 0. In this
=R (21) proof, it is first shown that the coefficient of skewnegss
1%-1

positive at the first node of an RC tree, and then the additive
Since 1;(t) is an impulse input, fort > 0, ;(¢) = 0 in property ofcentral moment®ver convolution (Appendix B)
Fig. 6(a). The impulse response at node one is then givisnused to motivate the induction argument.

by the voltagevc, (¢) at the discharging capacitan¢g after In Fig. 8(a), consider a general RC tree for which the
the initial state has been established by the impulse i@yt first three moments of the driving point admittandg(s) at

For a general RC circuit, the poles and zeros of the drivingpde one, can be used to synthesize-aodel as shown in
point admittanceY;,(s) in Fig. 6(a) are simple, interlaced,Fig. 8(b) [14]. Note that thisr model exactly matches the first
and are located on the negative real axis of ¢h@ane [25]. three moments of the driving point admittance of the original
Furthermore, the residues at the polestpf(s) are real and RC circuit. In terms of the moments d&f;(s), the 7-model
negative [25]. In Fig. 6(a), fot > 0, the natural response isparameters are

given by the poles o¥;,(s) [8] and is therefore of the form [ma(YD]2
Ry =—t—"2—0
| 2T T ()P
iin(t) = @ Z(_ki)e e ki>0, p;>0 (22) [ma(Y1))?
”‘ Gr=m) = @)
where p; and k; are the poles and residues ®f,(s), re- [ma(Y1)]2
spectively, anda > 0 is a constant to satisfy the initial Co :ﬁ (26)
3\l

condition, v, (04), so thata(> . k)R = 1/R,C;. From
KCL, ve, (t) = vi(t) — i (t) Ry, So that the impulse responsevherem (Y1), ma(Y1), ms(Y7) are the first three moments
at node one is given by of Y1(s).
ha() = —iom () Ry Wi'Fh mg = 1, the central moments, anduz of t.he transfer
m function H; (s) at node one can be expressed in terms of the

:O{(Z kie_pit> Rl' (23) momentSmk as

Following Definition 4,1 (t) is unimodal.

Now consider Fig. 7 which shows node and the RC
tree “downstream” from nodgé. For the induction argument, B3 = —6ms + 6mims — 2mi)’. (27)
assume thahy(¢) is unimodal, and

2
p2 = 2mg —mj

and

It is shown in Appendix A that the momenitsy(H; ) through
Vi+1(t) = v (t) — Rpip, k+1(t). (24) m3(H;y) of the transfer functio; (s) at node one in Fig. 8(a)
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| =

vi{t) l'—r

Fig. 9. AdmittanceY;4; of an RC tree at an arbitrary node+ 1.

Proof: For a unimodal “skewed” distribution function,
vi(t) C G the mean, median, mode inequality states that these three
I l guantities occur either in alphabetical order or the reverse
alphabetical order [11], i.e., either MeahMedian< Mode or
() Mode < Median< Mean. From Lemmas 1 and 2, we have that
Fig. 8. (a) Driving point admittance of an RC tree at the first capacitor nodeach node in an RC tree has a unimodal distribution function
(b) A reduced ordesr model for theYi(s) in (). for which v > 0. We now prove, by contradiction, that for an
RC tree we have that Mod€ Median < Mean.
are a function only of the momentag(Y;) throughms(Y7) For our contradiction argument, let Mead Median <
of the driving point admittancé’ (s). Therefore, an analysis Mode hold for any nodeg, in an RC tree. In a symmetrical
of the 7 model in Fig. 8(b) provides the exact values of thdistribution, for which the coefficient of skewnessis exactly
coefficientsmo(H;) throughms(H;) of the transfer function zero, the mean, the median and the mode coincide [11], [13].
Hi(s). Thus a natural measure of skewness for an asymmetrical
For the RC circuit in Fig. 8(b) (Appendix B) distribution is the deviation of theneanfrom the median
W or the meanfrom the mode Thus

_ (L 2
po =2my " —[m;] Mean— Median

=R}(C} + C3) + 2R} C1Cy + 2R, Ry C3 Skew= 5 (33)
0 =0 (1) W 1) W) (8)  whereo = /2. Thus, at the node, since Mear< Median<
py’ =—6my’ +6my my’ —2[m;]? Mode holds, skew is negative. But, from Lemma 2, we have
:6}21}22022[}21(01 + Cy) + RaCo)] + 2[R1(Ch + 02)]3 that the coefficient of skewness, > 0. Thus, ata, either
>0 (29) Skew = 0 or we have a contradiction. In the former case,

Mean = Median = Mode, i.e., the distribution is symmetric,
wheremf) denotes thekth moment of the transfer function@nd the mean and median coincide. And in the latter case,
at node one. Thus, for the impulse respohsg) at node one Mode < Median < Mean. _ _ _
in Fig. 8(b), from (28) and (29) and Definition 2,> 0. Since the choice of the node is arbitrary, the proof is

Next consider Fig. 9 which shows nodeand its “down- complete. . _ U
stream” part of the RC tree. To complete the induction We should note at this point that the Elmore deldy or
argument, assume that at ndelg:s > 0 andy; > 0 for hy(t), the meanu of the impulse response approaches the 50% delay
and hencey > 0. If 14(t) is an impulse, therhy, 41(%) is point at nodes further downstream from the source in an RC
the impulse response at nofler 1 w.r.t. the input at nodé. tree. Thus, as one moves away from the souycis, a better
This has the same form as in Fig. 8(a) for which the abo@Pproximation of the net delay, as further discussed in Section
argument shows thats; > 0 and > > 0 from (28) and (29). V-

Now, the impulse response at nodet 1 w.r.t. node one,
hr+1(t), is given by A. A Lower Bound on Delay

. X Corollary 1: A lower bound on the 50% delay for an RC
Pr1(t) = hi, e+1() P (2). B0 e is given by
When mg = 1, the second and third central moments add

under convolution (Appendix B). Thus max (= o, 0) (34)

>0 where 1 is the mean and = /Ji3.
= Proof: Consider an impulse responggt), shown in
2 0. (31) Fig. 10, with mean at = x. We define another functiof (¢)

p2(Pry1) = pra(hn, k1) + p2(ha)
3 (1) = pa(hr, k1) + pa(ha)

Thus, forh41(t), from Definition 5,4 > 0. Thus, for every as

node in an RC tree, theoefficient of skewness > 0. O s
Theorem: For the impulse responggt) at any node in an H(t) = /_Oo h(C) dc. (35)
RC tree

With a simple change in the coordinate such that = ¢ — p,
Mode < Median< Mean (32) we haveh(r) such that its mean is at = 0 in the new
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h() delay to estimate RC interconnect delays, the signal coming
A A out of the digital gate is never a step voltage and is generally
modeled by a saturated ramp. Of course several models
! have been developed to characterize the switching gate by
! a linear resistor and a voltage step for compatibility with
! the Elmore-step-response model [1], [9], [10], [16], [24]
! impulse response but at the expense of accuracy. One recent work attempts
! to model high-speed CMOS gates with linear resistors for
! efficiency, but time varying voltage sources to capture the
l t> high-frequency phenomena such as resistance shielding and
t=0 1=0,t= effective capacitance [6]. Most timing analyzers characterize
the gate and output signal transition time empirically as a
function of load and then drive the RC tree interconnect
model with a voltage that represents this transition time. For
coordinate system. Then, we use the following inequality frothese reasons we extend this Elmore-based bound to consider
[5, p. 256] nonzero input signal transition time, or more appropriately, the
2 variance of the input signal’s derivative.

For 7 = —o, (35) and (36) show that

Fig. 10. Impulse respondg(t) at an arbitrary node of an RC tree.

A. The Elmore Delay Upper Bound
Corollary 2: For an RC circuit with a monotonically in-

I Y WY d creasing, piecewise-smooth inpuf(t) such thatyi(t) is a
(=o) = e (€)dg unimodal function, Mode< Median < Mean holds for the
o2 output responsey(t) at any node.
<= 5 Proof: The output responsg)(t) at any node of an RC
o +(=0) tree i t i is given in the Lapl
L 37 ree in response to an inpwt(¢) is given in the Laplace
— 2 (37)  domain by

Equation (37) states that in the new coordinate system,—o V,(s)
is less than the median. Thus, in the original coordinate system, ¢

for h(t) we have thay, — o < Median. where H(s) is the transfer function of the circuit at that

Wheny < o, since the RC tree system is causal and relaxgdge. Also,;(t) is a piecewise-smooth function and hence
[3] with zero input fort < 0, we have Mediar> 0, and hence piecewise differentiable. Thus

u— o <0< Median. This completes the proof.
Referring back to the example in Fig. 1 and the delay  L£{v/(t)} =sL{v,(t)} — 1,(0)

= H(s) - Vi(s) (39)

bounds in Table I, the: — o lower bound atC; equalst,,;y, = sC{h(®) (D)} sincer, (0) = 0
whereas al’; andC+, t,,;,, is a tighter lower bound thapn—o. _ ’ , . ’ _
However, as observed in Section IlI, the EImore delay upper =L{n0)3L{ri(t)}  sincer;(0) =0 (40)

bound, ., becomes a tighter upper bound at the leaf-nodes

\%ere .) is the Laplace transform operator. Further, from
an RC tree as is evident at; and C- in Table I. L)1 P b u '

Appendix B, we have the property that the second and third
o ) » i central moments add under convolution. Thus
B. Approximating the Output Signal Transition Time

Another measure of practical importance for RC circuits, pi2[v, (8)] = pa[A ()] + 2 [ (2)]
other than the 50% delay point, is the rise tirtig;, which ps[ ()] = ps[h(H)] + ns[vi(t)]. (41)
may be defined as the time required for the response to increase
from 10%-90% of its final value [7]. A good measure of th&rom Lemma 2, we know thaty[(¢)] > 0 and u3[h(t)] > 0.

value of Tr for an output response is From hypothesis, we also have
Tr x 0 =/l12 (38) pelvi(t)] >0
/
wherey, is the second central moment of the output response. us[vi(t)] = 0. (42)

Elmore also proposes this value, which he calls rédius of
gyration, as a rise time measure for step-responses [7].

o]

0. Thus, from Definition 5¢[¢/,(¢)] > 0, and Median< Mean.
O
Corollary 3: For a finite sized RC circuit with a mono-
The above shows that the Elmore delay is an upper boutwhically increasing piecewise-smooth input(¢) such that
on the 50% step response delay. In addition, with one marg¢) is a symmetric function, as the rise time of the input
moment the variance can be calculated to establish a loveggnalf, — oo, the 50% delay of the output response Tp,
bound on the 50% delay. However, when using the Elmore., Median— Mean.

From (41) and (42), therefore,[v/ ()] > 0 and pus[/,(¢)] >
]

IV. GENERAL INPUT SIGNALS
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Proof: The output responsg,(t) at any node of an RC
tree in response to an inpuwt(¢) is given in the Laplace vi'(t) o vi (1) —
domain by i1,
H
Vls) = H(s) - Vi(s). (43) R
And from (40) and (41) L
H2 [V:) (t)] = M2 [h(t)] + NQ[I/Z{(t)] Fig. 11. Input signal; () with rise time,#,., and its derivativey! (¢).
palvo(B)] = pslh(®)] + ps[vi(2)]. (44)
From hypothesis, we have thaf(t) is a symmetric function. 1.2¢-09
. / _ H / X
. w3l (®)] = 0. Also, sinceus[vi(t)] « t, 10009 |
tr — o0 = uavi(t)] — . (45
g 8.0e-10r
Also from hypothesis, the circuit is finite sized. [s[A(1)]] < 2
oo. Thus & 6.0e-10
Yvo(t)] = LA . (46) ; 4.0e-10 |
’ WEIAQISG '
Sincey « Mean— Median,v — 0 = Median— Mean. 2.0e-10
Thus, as the rise time of the input-signal increases without 0.0e+00 5

2609 4e-09  6c-09  8e-09  1e-08

bound, the 50% delay for an RC tree approaches the Elmore c
rise-time (sec)

delayTp. O
It is noteworthy here that sinces[v;(¢)] = 0, i.e., v//(t), is Fig. 12. Delay curves show that as the rise time of the input signal increases,
a symmetric function, its mean and median coincide. Furth&}e delay approachesp,.

N v, (t)]oo— plvi(t)] =Tp
= / ol (t) dt — / tvi(t)dt =Tp (47)

where n(.) is the mean Integrating by parts
= {/ [1—v,(8)]dt —t[1 — vo(t)]
0

' ) [ e
- {/0 1 — v (t)]dt — t[1 — vi(t)] } =1p | /

0

4.0e+09

node A (scaled by 2.0)

2.0e+09 ‘ node B .

volts

oo e 0.0e+00
= /0 (1 —wo(t)] dt — / 1—w(t)]dt=Tp (48) 0.0 10 2.0 3.0 4.0
0

time (ns)

where we have used the fa.'Ct tHat, . t[l - ’/O(t)] =0 Fig. 13. Impulse responses at nodes A (driving point), B (middle node), and
andlim,_,., t[1 —;(¢t)] = 0 since bothv,(¢) andy;(¢t) — 1V C (leaf node).

exponentially asg — oo [26]. Thus, (48) says that the area
between the input and the output response equals the Elm[%ﬁﬂ 12

hi s andus(hy i form decreasing and hence
Delay, Tp [12]. (M, 1a1) and pz (g, kt1) g

convergent sequences. Thus, as nodes farther away from the
source are considered, the valuesugth) and p5(hy) start
B. Delay Curves to converge and hence the skew,converges. The fact that
The estimation of the 50% delay by the Elmore delay & is a better approximation of the net delay farther away
a function of the rise time of the input signal (see Fig. 11jrom the driving point is illustrated here using a 25-node RC
as stated in Corollary 3, is shown in Fig. 12 for our RC trewee. For three nodes A, B, and C, where A is near the driving
example circuit (in Fig. 1). As the rise time of the input signgboint, B is in the middle of the tree, and C is a leaf-node, the
increases, the delay asymptotically approaches the Elmargulse responses are shown in Fig. 13. The response at node
Delay value, I, (from below), as expected. C is less “asymmetric” than the response at node B, which
It was observed in Section Il that as one moves awahows that the impulse response approaches symmetry away
from the sourceIr (i.e., the meany) is a better approx- from the driving point and the Elmore deldy, becomes a
imation of the net delay. The proof for Lemma 1 uses thghter bound on the 50% delay point.
additive property of the central moments under convolution. Table Il shows the relative errors ( Delayl’p)/Delay for
Referring to (31), for any node, po(hy), ps(hi) > 0. different input signal rise times. In Fig. 14, the relative error
Furthermore, using (28) and (29), it is clear that sif¢g decreases as a function of the distance from the driving point
(4, and Cs decrease as one moves further from the drivingnd input signal rise time.
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TABLE I r =0
DELAYS AND RELATIVE ERROR AT NODES A, B, C ALONG A SIGNAL PATH |
R
Rise-time = Ins | Rise-time = 5ns | Rise-time =10ns V. ( t) ! I
Elmore in Y, ) | [
Node | delay % % % (s
Delay Error Delay Error Delay Error | |
i

L — —
A 0.02ns | 0.0l ns | 104% | 18.0ps | 11.9% | 19.0ps | 1.54% . . .
Fig. 15. Moments of the transfer functidd, (s) at node one as a function

B 1.13ns | 0.72ns | 54.7% | 1.06ns | 6.5% | 1.116ns | 0.86% of the driving point admittancé’; (s) of the RC tree at node one.

C 1.56ns | 12ns |29.6% | 148ns | 4.8% | 1.547 ns | 0.64%

If my (Y1) is the kth moment of the driving point admittance
Y1(s) of the RC circuit, ther¥;(s) can be rewritten as a series

LOHOZN Y1(s) =mo(Y1) +mi(Y1)s +ma(Y1)s
= Ins

+ma(Y1)s® 4. (A2)

1.0e+01 M Now, m,(Y;) = 0 for an RC tree since for a dc signal (i.e.,

s=0),Y; =0andH; = 1. Now, (Al) can be used to obtain

1.0e+00 M the kth momentm,(H;) of Hi(s) in terms of the moments

of Y1(s) as follows:

Relative%error (log scale)

1
:Rl[ml(Yl)s +ma(Y1)s2 +ma(Y)s3 4+ -] +1
=1— Rymy(Y1)s + { R [m1(Y1)]* — Rima(¥1)]s”

0.0 5.0 10.0 15.0 Hy(s)
Path resistance from driving point (ohms)

Fig. 14. Relative error ( Delay Tp)/Delay as function of path resistance

from driving point (i.e., distance from driving point). + {2R%m1 (Yl)m2 (Yl) - le?:(yl)
= R{[mi (YD)PP}s® 4. (A3)
V. CONCLUSIONS From (A3), the momentsng(H;) through mz(H;) of the

. - transfer functionH are a function only of the moments
The Elmore delay is an extremely popular timing per- 1(5) y

formance metric which is used at all levels of electroni@lo(yl)throughm?’(yl) of the driving point admittance (s)
L . . ; at node one.

circuit design automation. We have proven that this delay
measure is an upper bound on the actual 50% delay of an

RC tree response. Moreover, we have proven that this bound APPENDIX B

holds for input signals other than steps and that the actual CENTRAL MOMENTS FOR ANRC QRCUIT

delay asymptotically approaches the Elmore delay as the inpufor the circuit shown in Fig. 8(b), the central momengé)

signal rise time increases. A lower bound on the delay ihdS" at node one are related to the momengsas follows:

also developed as a function of the Elmore delay, which is(l) W) ()12

the first moment of the impulse response, along with this = =2my " — [m;”]

second moment of the impulse response. Improved bounds =9[R, C;|m{"| + R, Cy|m{?|] - [m{V]2

may be possible with more moments, but moment matching _

techniques, such as asymptotic waveform evaluation (AWE), = 2R IO+ Fa o)

are preferable when higher order moments are available. The + RBiCo(RiCr + Ry + RG]

utility of this bound is for understanding the accuracy and the — (RiCY + RIC3 4 2RIC1 ()
limitations of the EImore metric as we use it as a performance — R3}(C? 4+ C3) 4+ 2RIC1Cy + 2R Ry C3 (B1)
metric.

ps? = —6mfY +6mPm) — 2fm{V)?
= —6[=R, 01 |m$"| — Ry Calm}?)

+6[mV )[R0 m (M| + RiColm || - 2fm VP
=—6{-R,C1[Ri C1|m ("] + Ry Gy |||

APPENDIX A
DRIVING POINT ADMITTANCE IN LEMMA 2

With reference to Fig. 15, the transfer function at node one

is given by — Ry Go[R CimY| + RiCalmi?P| + RaCalmiP I}
. + 6y IR Crlmi”| + Ry Colmi” |
AT — 2[m{VP? (82)
Hle) = R, + Yll( ) Wheremg’) is the kth moment at node, and
S S (A1) ) =R+ Gy
RiYi(s) +1 m{? = —Ry(Cy + Cp) — RyCh. (B3)
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After some algebraic simplifications, (B3) reduces to
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ugl) = 6R1R2022 [Rl(cl + 02) + RQCQ] + 2[R1 (Cl + 02)]3. [13]

When mqy = 1, central moments add under convolution,
From (40) [

(B4)

[24]

15]

LU0} =L} - LLAD) el
=[mo(H) +my(H)s +ma(H)s* + -] (17]
Cmo(Vi) +mi(Vi)s + ma(Vi)s* + - -] [18]
=mo(H)mo(V;) + [m1(H)mo(V) [19]
+ mo(H)m1(Vi)]s + [ma(H)mo(V;)
+ 2my (H)my(V;) + mo(H)ma(Vi)]s* + - 1201
(BS)
[21]

from which the moments ofL{+/(¢)} can be obtained as

a function of the moments oH(s) and £{v/(¢)}. Setting

mo(Vi) = 1andmg(H) = 1, the central moments af{+/(¢)}

can be simplified to

p2(Vo) = 2ma(H) + 2ma(sVi) = [ma(H)? = [ma(sVi)P?

13(Vo)

(1]
(2]
(3]
(4]

= p2(H) + p2(V;)

—6ms(H) — 6ms(sV;) + 6my(H)mo(H)

+ 6my (Viyma(Vi) = 2[ma (H)P = 2[ma (V;)]?
=p3(H) + ps(Vi). (B6)
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