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When the transient response of a linear network 10 an applied unit step function consists of a
monotonic rise to a linal constant value, it is found possible to define delay time and rise time in
such a way that these quantities can be compnted very simply from the Laplace system function
of the network. The usefulness of the new definitions is illustrated by applications to law pass,
multi-stage wideband amplifiers for which a number of general theorems are proved. In addi-
tion, an investigation of a certain class of two-terminal interstage networks is made in an
endeavor 1o find the network giving the highest possible gain—rise time quotient consistent
with a monotonic transient response to a step function.

1. INTRODUCTION

THE transient behavior of any linear system

(or network) is contained implicitly in the
system function F(s) which expresses directly the
steady-state (sinusoidal) response of the system.
The variable in the system function, s=o+ jo, is
the complex angular frequency ; w is the ordinary
(real) angular frequency, and o is a real variable
introduced for the purpose of facilitating the
transient analysis of the system.! In the present
paper we shall be concerned primarily with the
class of linear systems in which the transient re-
sponse to a unit step function (the so-called
indicial admittance) consists of a monotonic rise to
a final constant value. For simplicity in presenta-
tion only the transient response of a low pass,
wideband amplifier will be considered. Many of
the results obtained, however, apply equally well
to other electrical systems, as well as to me-
chanical, acoustical, thermal, and to mixed sys-
tems, provided only that they are linear and have
a monotonic transient response to a unit step
function, :

The most important system function of an
amplifier is the complex gain, G(s), connecting
input and output voltages of the form Ee'!, In the
case of a low pass amplifier, G(s) can always be
separated into two factors, Gi(s), which governs
the response at low frequencies, and G;(s), which
governs the response at high frequencies. In an

* Now at Swarthmore College, Swarthmore, Pennsyl-
vania, :

! The notation and terminology adopted here is that
found in M. F. Gardner and J. L. Barnes, Tronsients in
Linear Systems, (John Wiley and Sons, Inc,. New York,
1942), Vol. 1.
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unfedback amplifier, G(s) owes its origin to
various RC networks which couple the plate of
one tube to the grid of the next, and which
furnish bias voltages to various points in the
amplifier. The system function Ga(s) owes its
origin primarily to parasitic interstage capaci-
tances which shunt the signal-carrying leads.
Since we shall be interested in the problem of
obtaining the greatest possible gatn—rise time
quotient for an amplifier,® G4(s) may reflect the
presence of compensating inductances, of feed-
back, or of any other circuit arrangements used
to shorten the rise time or to improve the
transient properties of the amplifier. The portion
G1(s) of the system function may be considered as
that of an equivalent amplifier idealized to have
perfect low frequency response.

For convenience in analysis, we shall use the
normalized system function gi(s)=G,(s)/G4(0),
where G2(0) is the gain of the idealized amplifier
at zero frequency. Normalization evidently makes
the final value of the response to a unit step
function (given by the final-value theorem of the
Laplace transformation) also unity. -

It is not difficult to show that the normalized
system function gi(s) of a stable amplifier con-
taining a finite number of lumped circuit elements
takes the form

14ai5+ass?+- - - +a,;s”
14154 bas? 4« + - +bps™

? The gain—rise time quotient is analogous to the more
familiar gain-band width product, but appears to be a
more use%ul measure of amplifier performance in the case
of amplifiers designed to amplify fast transients. The
definition of rise time is considered in Section 2.

(1

ga(s) =
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F16. 1. Some typical transient response curves,

where the coefficients a; and b; are real, m>n and
the poles of g;(s) all lie in the left half of the
complex s-plane. The normalized transient re-
sponse of the amplifier to the unit step function
#(t) can be computed by means of the inverse
Laplace transformation

1 poting
e(t) =— f —go(s)ettds, ¢>0. (2)

2Wj —-jo  §

Transient response curves computed from Eq.
(2) for various amplifiers have a variety of shapes,
some common forms of which are illustrated in
Fig. 1. The input signal, %#(¢), is shown in (a). The
transient response shown in (b) consists of a
delayed rise, followed by a train of damped
oscillations. The response shown in (c) is similar
to that in (b) except that only a finite number of
oscillations occur, preceding a gradual approach
of the curve to the final value unity. In (d) and
(e) are illustrated monotonic transient response
curves having different amounts of damping. The
response in (e) is supposed to be that of an
amplifier having certain adjustable circuit para-
meters which have been chosen to achieve the
shortest possible monotonic rise for a given
amplifier gain.

F Any circuit elements introduced in an amplifier
for the purpose of controlling the shape of the

transient response curve may be termed com-

pensating elements. In the present instance they
afford high frequency compensation to the re-
sponse of the amplifier. When the fastest possible
monotonic rise has been obtained with the par-
ticular type of compensation used, the amplifier is
said to be critically compensated. If the transient
response is monotonic but the rise is slower than
can be obtained by suitably adjusting the com-
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.are not as critical in this res

pensating elements, the amplifier will be referred
to as under-compensaled. Finally, if the transient
response is not monotonic, usually as the result of
increasing the compensating elements beyond the
point giving critical compensation, the amplifier
will be referred to as over-compensated,®

It is evident that the various types of transient
curves illustrated in Fig. 1 possess certain com-
mon features, in particular, a delay which occurs
before the response is well under way, and a fnite
time of rise. For many purposes each curve can be
sufficiently well characterized by its delay time
and rise t4me, which can be defined in several
different, but approximately equivalent ways.
One of the purposes of the present paper is to
propose useful definitions for these quantities,
with a view to facilitating their computation
from the system function g.(s). The new defini-
tions, unfortunately, are of such a nature that

- they apply only to systems which are not over-

compensated. Their utility for all systems having
a monotonic transient response, however, appears
to be great enough to outweigh this defect. It is
possible that an equally useful method for treating
the over-compensated case can be discovered.

2. THE DEFINITION OF DELAY TIME AND OF
RISE TIME

A number of definitions of delay time and of
rise time appear to be in practical use. Two of
these will be illustrated by reference to Fig. 2,
which shows the transient response e(t) to the
unit step function, and its derivative, ¢'(f), of an
under-compensated amplifier.?

The delay time, Tp, is usually defined as the
time required for the response to reach half its
final value, as illustrated in Fig. 2a. The rise
time, T, is sometimes defined as the reciprocal of
the slope of the tangent drawn to the response
curve at its half-value point, again as illustrated
in Fig. 2a. A somewhat more practical definition

3 For many applications it is important to avoid over-
compensation in an amplifier. This is particularly true for
pulse amplifiers used in nuclear physics (to amplify pulses
obtained from an electrical detector of radiation} and for
wideband amplifiers used in studying fast electrical
transients (such as amplifiers for cathode-ray oscillo-
graphs). Video amplifiers used in television applications
t since small oscillations
resulting from over-compensation do not impair the quality
of television pictures.

4 The curve ¢'(f) may be considered to be the response
of the amplifier to a unst impulse applied at time 1=0.
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results if 7% is taken to be the time required for
the response to increase from 10 to 90 percent of
its final value.’ Although these definitions are
useful in the laboratory, they are extremely
awkward for making computations, or for enter-
ing upon a theoretical investigation of the
relative merits of various methods of compen-
sating an amplifier to reduce its rise time. The
difficulty, of course, lies in the necessity for
computing the transient response curve for each
case under consideration, a formidable under-
taking. It is practically impossible to obtain
values of T and T, as defined, by any simple
method of analysis.

Let us now consider alternative definitions for-.

delay time and rise time. Evidently the delay
time should be measured from =0 to some time
at which the transient rise is about one-half over.,
It is reasonable, therefore, to measure Tp to the
centroid of area of the curve €’(¢), that is,

Tp= f ) te’ (£)dt. 3)

The formula for the centroid takes this simple

form since
f- e'(t)dt=1.
0

This definition of delay time is illustrated in
Fig. 2b, and it is seen to givé a result which differs
but little from that obtained from the customary
definition. The two values of delay time depart
most markedly in the case of a very asymmetrical
response curve. It is easy to convince oneself that
the new definition becomes meaningless if the
curve ¢’(¢) possesses a negative portion, i.e., e(t) is
not monotonic. It will be shown presently that it
is a simple matter to obtain a value of the integral
in Eq. (3) directly from the system function g,(s).

The rise time T’z should express in a prescribed
manner the time required for the transient rise to

occur. Now the shorter the rise time, the narrower

(and higher) the curve of ¢’(¢). It is reasonable,
therefore, to define Ty as proportional to the
radius of gyration of the area under the curve,

SH. E. Kallman and R. E. Spencer, Proc. L.LR.E. 33,
169-195 (1945),
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that is,
Tgi= Const.f (t—1p)% (t)dt. 4)
0

In other words, the rise time is proportional to
the standard deviation of the response e'(t). The
constant of proportionality is chosen to be 2 for
the following reason: it is possible to show that
the curve &(¢) for any n-stage amplifier® ap-
proaches more and more closely the form of a
Gauss error curve with increasing #.” To make
the new definition of rise time agree with the
definition based on the slope of the transient re-
sponse curve (F ig. 2a), the value of T should
therefore be '

R =W = (27)* [radius of gyration of ¢'(¢) ],
e max

which expresses the relation between the height
and the radius of gyration of a Gauss error curve
of unit area, here denoted temporarily by é&'(¢).
Equation (4) can now be written

Tp= {z«[ f " ey~ m] l s

where the integral has been expressed in terms of
moments about the time origin. It is found in
most instances that rise times computed from
Eq. (5) differ by less than ten percent from the

e 1

t
@)
0.5

ewt
® !

I= Jwem dt
T® 2m (: Ty ewadt

— Tp—" 4

FiG. 2. Curves illustratinF the definitions of delay
time and of rise time.

® The individual stages in the amplifier must each have
a monotonic transient response to the unit step function.

" This result appears to have been first noticed by
Henry Wallman, and will be discussed in Chap. 7, Vol. 18
of the Radiation Laboratory Series (McGraw-Hill Book
Company, Inc., New York, in press).
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rise times defined earlier, which can continue to
be used for most laboratory work.

The great usefulness of the new definitions of
delay time and rise time will now be demon-
strated. The system function g.(s) and the
transient response ¢’(f) are related bv.the direct
Laplace transformation

£als) = [ ewera, ©)

where o, the real part of s, must be greater than
o1, the real part of the pole s, of go(s) lying
farthest to the right in the s-plane. In the case of
a stable amplifier; o: is negative, in fact, for a

monotonic transient response, the poles of gs(s) '

all lie on the negative real axis of the s-plane.
Let us now expand the Laplace integral (6) in a
power series in s, which will be a valid expansion
of gs(s) for values of s lying within the circle of
convergence |s|=|si|. We do this by first ex-
panding €™ in a power series in s¢ and then
integrating term by term, obtaining the de-
velopment
] sﬂ L
gg(s)=1—sf te’(t)dt-l—;f e’(tydt—---. (1)
0 Py

It follows that if a given system function is
expanded in ascending powers of s, it is a simple
matter to obtain by inspection the first and
second moments of e’(f) about the time origin,?

(0

FiG. 3. Shunt-compensated interstage networks.

% It has been called to the attention of the writer that
this method of computing moments is closely related to
methods used in mathematical statistics, the method of
the moment generating function, and the method of the
characteristic function. See, for instance, S. S. Wilks;
Mathematical Statistics (Princeton University Press, Prince-
ton, New Jersey, 1943).

The mathematical steps leading to Eq. (7) can be made
more rigorous by noticing that the series for the integrand

%
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and therefore to obtain values of I and Ty
defined by Egs. (3) and (5), respectively. Part of
the virtue of the proposed definitions lies in the
ready way in which delay times and rise times
can be computed. Other advantages of the defi-
nitions will be made use of in Section 3.

- It is useful to obtain expressions for Tp and T
for a system function of the form given by Eq. (1).
By expanding Eq. (1) in ascending powers of s, it
is found that

Tp=bh -, (8)
and that

Tp?

=b12—a.*+2(ay—b,). (9)

2x

Before considering other matters, let us com-
pute values of Tp and T for a single-stage
amplifier having a two-terminal plate load im-
pedance of the type shown in Fig. 3a.? Such an

~amplifier stage is said to be shunt compensated.

The system function of the single stage is
identical to the driving point impedance of the
plate load, since it can be assumed that the
amplifying tube is equivalent to a constant cur-
rent generator. Hence we have that

14+Ls
1+s+Ls*

in order that no transient oscillation of the type
shown in Fig. 1b shall exist, the poles of gi(s)
must lie on the negative real axis of the s-plane.
This requires that in Eq. (10) L <1/4. The values
of Tp and Tr (computed using Eqs. (8) and (9))

are

b p()= (10)

Tp=1—1L, } | (1

Te=(2x(1—2L—L))

When L=0, corresponding to a simple re-
sistance-coupled amplifier stage, Tp=1, and
Tr=(2m)t=2.51, When L=1/4, corresponding
to critical shunt compensation, Tp=3/4, and
Tr=(27)¥7/16)}=1.66. To express the improve-

converges uniformly, thus permitting term-wise integration
between zero and a finite upper limit T Since the integrated
series, considered as a function of T, is also uniformly con-
vergent when s is restricted to the region near the origin,
the series must converge, as T approaches infinity, to the
Laplace integral (6) from which it is derived.

. By setting C=1, R=1, and expressing L in units of
‘R3C, values of Tp and T are obtained in units of RC.
This device enables the system function to be written
immediately in a simple, normalized form.
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ment realized by compensating the stage it is
convenient to define the rise-time figure-of-merit
S, which is the ratio of the rise time of an R-
coupled stage to the rise time of the same stage
(i.e., a stage with the same value of R and C)
compensated to reduce its rise time. Evidently
S=(16/7)¥=1.51 for a critically shunt-compen-
sated stage. In Section 4 an attempt will be made
to discover an interstage network which gives the
smallest value of Tk with a given interstage
parasitic capacitance and load resistance, that is,
the largest value of .S. The problem is somewhat
analogous to that of discovering the network
which leads to the maximum band width {with-
out regard to good transient response).1°

3. SOME THEOREMS REGARDING MULTI-STAGE
AMPLIFIERS

We have just seen how the delay time and rise
time of a single amplifier stage can be computed.
Let us now consider how the delay time and rise
time of an unfedback multi-stage amplifier de-
pends on the properties of individual stages in it.

If the amplifier contains » stages in tandem,
the system function of the entire amplifier is the
product of the system functions of the individual
stages.!! Let the system function of the sth stage
be g::(s), and let the corresponding values of
delay time and rise time be Tp; and T'gs, re-
spectively. The function gy(s) can be expanded
in the series

52
ga:(s) =1 _STD{+_2‘(

Tr .
+Tof) =, (12
2

which is obtained directly from Eqgs. (3), (5) and
(7). The system function of the entire amplifier
therefore becomes

&m=ﬁ@m)

Tyt

32
=1—g5 Z: TD:+_2"[E

27

+3 o242 Y% TmTDj]— ceel

>3

1 See, for instance, H. W. Bode, Network Analysis and
Feedback Amplifier Design, (D. Van Nostrand Company,
Inc., New York, 1945), pp. 408, et seq. .

1t This statement is true provided that no coupling be-
{ween stages exists except through the electron stream in
the constituent amplifying tubes. This situation can be
realized in practice if the tubes in the amplifier are
pentodes. i

VOLUME 19, JANUARY, 1948

By again using Eqs. (3), (5) and (7), the delay
time and the rise time of the entire amplifier are
found to be

Tp=3 Tp, (13)
1
and

Ta=(5 Tad)*. (14)

The result expressed by Eq. (13) is intuitively
obvious, since it is to be expected that the total
delay is the sum of the delays of the individual
stages. The manner of combining rise times indji-
cated by Eq. (14) is not as evident, although the
fact that this simple mode of combination is the
correct one has been proposed by several of the
author’s colleagues prior to the present proof of
the theorem.

Another theorem of practical importance con-
cerns the manner in which the gain of an n-stage
amplifier should be distributed among the indi-
vidual stages in order to achieve the shortest
possible over-all rise time for a given over-all
gain. Now the rise time of any stage in the
amplifier varies directly with the gain of the
stage, since both quantities are proportional to
the value of the plate load resistor. It is desired,
therefore, to minimize the expression (14) subject
to the condition that

II Tri=Constant. (15)
1

It is easy to prove from Eqgs. (14) and (15) that
the over-all rise time is a minimum when the rise
tilg?s of all stages are made the same.2? If Ty, is
the rise time of each stage, the rise time of an
n-stage amplifier becomes

TR=TRm*. (16)

Let us now consider certain matters regarding
the design of an amplifier consisting of identical
stages. We shall treat the simple case where the

interstage couplings are of the general type

2 For instance, by using Lagrange’s method of undeter-
mined multipliers, the differential of Eq. (14) must be zero,
& TridTri=0, subject to the condition (II Tz:) 2 dTx:/
Tri=0 which is the differential of Eq. (15). After multi-
plying the latter equation by the undetermined multiplier
« and adding it to the former, each coefficient of dTr; must
be identical?y zero, giving TRi=TR,=-. *+ A proof that
this :émdition leads to a minimum rise time is scarcely
needed. :
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illustrated in Fig. 3, i.e., a parasitic capacitance
C, and a resistance R in series with some sort of
compensating reactance whose impedance be-
comes zero at zero frequency. At frequencies
where 1/0C<XR, the gain of each stage is

Gi1=gmR, - (17)

where g, is the transconductance of the ampli-
fying tube.’® The rise time of each stage can be
written in the form

1
T1=— T ’RC,
S(Z ) (18)

where § is the rise-time figure-of-merit of the
stage. By definition S=1 for a simple R-coupled
stage and we have already shown, for example,
that S=(16/7)! for a critically shunt-compen-
sated stage. Eliminating the resistance R between
Eqgs. (17) and (18), we have that

€m
Gl = S( ) .,[‘3.
@miC

(19)

The quantity g./(27)}C expresses the figure-of-

merit of the amplifier tubes, and may be con-
veniently stated as so much gain per microsecond
rise time.

If T is the rise time of the n-stage amplifier,
then according to Eq. (16) the rise time of each
stage must be Ty = T/n}, requiring a gain for each

stage
m T
Gl=S( g )"—“"
2m)C/ nt

(20)

Equation (20) can be written as a pair of
equations,

S b
Gl=—Gu,
nt

where ‘ - (20a)

(;o=( g"‘ )T
@mic/ )

The quantity Gy is the gain of a single R-coupled
stage of rise time T, whereas G, is the gain that
each stage of the #-stage amplifier must have in

. ::It is ‘assumed that R<r,, the plate resistance.of the
ube. )

60

order that the entire amplifier shall have the rise -

time T.14
The total gain of the amplifier is

. Gi=G,m,

Let us now investigate‘what gain per stage will
result in the shortest rise time for a given total

(21)

" amplifier gain. From Egs. (20) and (21), we have

that

17Q2x)
T=—(( ™) C)n*G,”“. (22)

S En

On minimizing T with- respect to n while
keeping G, constant, it is found that » =2 InG,, or
that

Gr=e=(2.72.- -} =1.65---. (23)

This result is independent of the degree of
compensation used, provided, of course, that
critical compensation is not exceeded. The mini-
mum rise time which can be obtained for a total
gain G, is found from Egs. (20), (21), and (23) to
be '

| ((21)*0 (2eInG

Em

(24)

min

requiring a total of =2 InG, stages.

4. SOME CRITICALLY COMPENSATED
INTERSTAGE NETWORKS

There are two matters of considerable interest
concerning interstage networks of a critically
compensated wideband amplifier. The first is
primarily of theoretical importance and concerns
the maximum value that can be obtained for the
quantity S (the ratio of the rise time obtained
with a simple RC network to that obtained with
a compensated network). The second matter is of
practical importance and concerns the design of

’?. '?l 492
C, Ca

F1G. 4. A general driving point reactance having zero
reactance at zero frequency. The inductance I, will vanish
if thg reactance must be zero at infinite frequency.

M The pair of equations (20a) can be made the basis of a _
convenient nomograph to aid in the design of an amplifier
of assigned rise ttme and total gain.

[ ]
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networks whose performance approaches as
nearly as possible the theoretical limit.

Interstage coupling networks of two types
must be distinguished, two-terminal and four-
terminal.!® This distinction is necessary since it
is possible to separate the parasitic interstage
capacitance into two portions, the output capaci-
tance of one stage, and the input capacitance of
the following stage. If a critically compensated
four-terminal network is based on the two capaci-
tances, as separate entities, it would seem likely
that a shorter rise time can be achieved than for
the two-terminal case. Only two-terminal net-
works of a simple type will be discussed in the
present paper, mainly because a treatment of
other cases is beset with algebraic difficulties.

Let us then consider the generalized, shunt-
compensated interstage network illustrated in
Fig. 3b, where the pure reactance X has a value
zero at zero frequency, but is otherwise unre-
stricted in form. According to Foster's reactance
theorem,'® a possible formula for any reactance of
this type can be written

5(s2—542)(s2—542) - (52— 5u?)

X(s)=Fk ,
(52— 512 (s2~547) - + - (52— $n_y7)

(25)

where the s ({=1---m) are negative real num-
bers, % is a positive constant, and m is an even
integer. The general reactance can be realized
physically by a variety of equivalent networks

Z(s)

1+dis+cast+dast+ - - - cp_gs—24-d,_ 571

TaBLE 1. Some critically compensated networks.

#  Circuit constants S Response ¢/(#) to unit impulee
I X=0 1.000 et

2 lo=1/4 1.512 (1 42¢0)

3 Lh=8/21;00=1/8 1,769 =311 20 4-612)

4

lo=1/4;
h=1/16; c1=1 1.899 (1 441 (64 /3)1)
S L=(4/125)(5 +(S)§) 1970 e5¢(1 4-4¢ +20ﬂ—(100/3)t'+(250/3)£4)
c1=(1/16)(3 +(5))
b= (4/125)(5 — (5)})
c2=(1/16)(3 —(5)h)

o ;=2 /x3% 2,121 1—-4/2, 05152
ck=1/2 o 2
(k=1,2,3, -+

made up of inductances and capacitances.! It is
convenient here to adopt the form of network
shown in Fig. 4 to represent the general reactance
X (5). If theinductancel, vanishes, i.e., the general
reactance becomes zero at infinite frequency, it is
necessary to omit the factor (s2~s,?) from the
right-hand member of Eq. (25).
By writing Eq. (25) in the form

dis+das?+ - - - Fdpyismt

X(s)= . ,
Ttcas?tcustt v - o Fcps™

- where the new, real, positive constants, ¢; and d;,

are uniquely related to the constants appearing in
Eq. (25), and t6 the circuit constants defined in
Fig. 4, we find that the driving point impedance
becomes

(26)

where n=m+2. It should be noticed that when
ly=0, the coefficient dn.1=d,_; vanishes. Equa-
tion (26), of course, has the form of Eq. (1).

To realize a monotonic transient response to
the unit step function, it appears necessary to re-
quire that the poles of Z(s) all lie on the negative
real axis of the s-plane. (Otherwise the transient
response will contain oscillatory terms.) We shall
assume that the most desirable arrangement of
poles is to have but one multiple pole, and then
show that this assumption leads to useful results.

% Strictly speaking, two-terminal and three-terminal
networks. -

16 See reference 10, pp. 177-181 for a discussion of
Foster's reactance theorem and of the various networks
which can be used to realize an arbitrary reactance.
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_1+s+ (d1+-c2)52+cas®+ - + - F-¢,_psm—14-d,_ s»

Indeed it can be proved at once for the network
under consideration that a single multiple pole
must lead to the shortest rise time. Thus, the rise
time

TR = [2#(2 —2d1—d12)]*,
computed from Eq. (26) using Eq. (9), is a mini-
mum when the real, positive coefficient d; is
maximum. The negative real roots of the de-
nominator of Z(s), =—51, —%s, +++, —$, must
satisfy the relations

Z(l/é's') = 1
and _
di= 2 (1/sis5)— 3 (1/5:5;5)
<F i<k

found by multiplying together the # factors
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(1++s/s5:} of the denominator and comparing the
resulting expression with the denominator in
Eq. (26). Using Lagrange's method of unde-
termined multipliers it is found that d, is
a maximum, Le., Tp is a minimum when
Sp=sg=sgm==een, :

The denominator of Eq. (26) can be an even
or an odd degree polynomial of degree #, or n—1,
respectively, depending on whether or not I,
occurs in the network of Fig, 4. The treatment
for both cases follows similar lines, and will be
illustrated for the case where 1,3=0. In this case
we require that Z(s) have one multiple pole of
order n (n is always even), and the denominator
of Eq. (26), accordingly, must be the binomial
expansion of [1+4(s/s0)]® giving a set.of #
equations from which the # quantities so, d, €y, dy,
€4y *++, dn_y can be determined. The values of the
components in the network of Fig. 4 can then be
computed, as well as a value for the rise-time
figure-of-merit S, and an expression for the
transient response to a unit impulse applied at
t=0.

The computation suggested has been carried
out for cases where Z(s) has poles of order
£=1,2,3,4, and 5, as well as for the limiting case
where p— . The following general expressions
are found from Eqs. (8) and (9) for the delay
time and for the rise-time figure-of-merit

2 1 )

Tp=—+

3 3p?

and L

3
5= :
(2+8/p*—1/p4t ]

where p is the order of the multiple pole of Z(s).
A summary of the results derived from the
computations is presented in Table I. The analy-
sis employed for the limiting case is given in
Appendix 1.

The RC network (p=1) has been included in
Table I to serve as a basis for comparing the
other critically compensated networks. The net-
work for p=2 is the well-known, shunt-compen-
sated network, used as an illustration in Section 2.
By increasing the value of the inductance from
0.25 to 0.296, and shunting it with a capacitance
of 0.125 (p=3), a decrease in rise time of about

i

vortnl il

(27)
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17 percent is obtained. Adding a second in-
ductance (p=4) results in a further decrease in
rise time of about 7 percent. By adding more and
more components, the limiting value for the rise-
time figure-of-merit, Smex=3/VZ=2.12 is ap-
proached. The remaining improvement possible
in the transient behavior after a few inductances
and capacitances are incorporated in the network
is not very marked. These cases, therefore, are
not of great practical importance. The limiting
case (p—> ) is of interest primarily because it
possesses the greatest figure-of-merit possible
with a network of the type under consideration.
It is conjectured that this network has the
greatest figure-of-merit possible for a low pass
two-terminal interstage network. No completely
adequate proof, however, has been found for this
theorem. .

The trapsient response to a unit step function
for all the cases listed in Table I has a monotonic
form, which, of course, is necessary in order that
the method used.for computing delay time and
rise time be applicable. The general proof that the
transient response is monotonic for arbitrary
values of p appears to present considerable
algebraic difficulties.

APPERDIX I
Case Where p—

The analysis for the case where the reactance X {s) in
Fig. 3b has an infinite number of poles can be made by
setting the denominator in Eq. (26) equal to [14+(G/p) 1
and then writing the resulting expression in the alge-
braically equivalent form

Z(s)=1/s--1/233[1—(1—% 1+§)"].

In the limit where p— «, this expression becomes
Z{5)=1/5—1/252(1 — &%) (28)

which has the inverse Laplace transform given in Table .17
From Eq. (28) and the network of Fig. 3b, the reactance
X{(s) is found to have the form

X(s) =coths—1/s. (29)

7 It is of interest to note that if a switch is inserted in
series with the capacitor C in Fig. 3b, and the capacitor
is initially given a unit charge, then Eq. (28) is the Laplace
transform of the voltage developed across the network
when the switch is closed at £=0. Since the voltage across
the capacitor decreases linearly while it is being discharged
into_the remaining branch of the network, the current
flowing through the resistor must have the form of a
rectangular pulse (of amplitude ). The network can
evidently be used (ideally, at any rate) to convert either
a current impulse, or the sudden discharge of a capacitor,
into a rectangular voltage pulse across a resistive load.
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The zeros and poles of X(s) are located, of course, on the

real frequency axis, and are given by the roots of tanw =uw,
and sinw/w=0, respectively.

To determine values of I and ¢;, the expression for the

reactance, Eq. {29), can be expanded in the infinjite series!s

X(s)=coths—1/s=Z —2i~ (30)

1 2+ ktx?

Each term in the infinite series can be interpreted as the

reactance of a parallel combination of inductance and

'8 See, for instance, E, ‘T, Whittaker and G. N. Watson,

Modern Analysis, (Cambridge University Press, Tedding-
ton, England, 1927), fourth edition, p. 136, example 7.

capacitance, where

b=2/n2k2 .
‘, L-Z=1f5. '}(k=l,2, 3, -+0). (31)

It is evident from the nature of the terms occurring in
the infinite series that the inductance I, must vanish.

The formulas for delay time and rise-time figure-of-
merit, Eqs. (27), hold in the limit when P+, 50 no
separate computation need be made for these quantities.

This paper is based on work performed under Contract
No. W-7405-Eng-36 with the Manhaiian Project at the
Los Alamos Scientific Laboratory of the University of
Caliiornia.

A General Divergence Formula*

H. J. RiBLET** anND C. B. BARKER*™*
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A divergence expression for the ratio of energy per steradian reflected from a smooth curved
surface to that incident on the surface is derived. It generalizes previous results in that the
source and point of observation may both be at finite distances from the reflecting surface. No
restrictions are placed on the angles of incidence and reflection except that they be equal. The
only limitation placed on the analytical accuracy of the geometrical result is that the surface be
sufficiently smooth o that the principal fadii of curvature are defined at the point of reflection.
It is required, of course, that the Wave-length of the energy shall be small compared to the
principal radii of curvature of the surface, in order that the geometrical result may be inter-
preted as a divergence formula. All of the previous results on this problem known to the
authors are derived as special cases. Application of the result in connection with the spreading
of radio rays by the curvature of the earth leads to somewhat simpler formulas than now

available.

INTRODUCTION

PROBLEM of basic importance in the

radio and radar art is that of determining
the amount of energy reflected in any direction
from a given object placed in a plane or spherical
electromagnetic wave, The exact solution of this
type of reflection problem is known for only a
few special cases. However, if the wave-length is
small compared to the radii of curvature of the
surface of the reflecting object, it is possible to

handle this question by means of geometrical

rt on work done for the Office
of Scientific Research and Development under Contract
OEMsr-262, It was originally submitted under the title
“Reflection from curved surfaces” having Eq. 18 as its
principal result. A question of accuracy raised by the
reviewer led us to the general result of Eq. 13.

** Now at the Submarine Signal Company, Boston,
Massachusetts.

*** Now at Naval Research Laboratory, Washington,
District of Columbia,

* This paper is based in
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optics. The cases of normal incidence on a
general curved surface for a plane and spherical
wave have been discussed, respectively, by
Goudsmit and Carlson' and Silver.? Spencer®
l‘}_gls extended the analysis to arbitrary angles of
incidence with the restriction that the wave be
plane, while Barker and Riblet* have discussed
the general case of a spherical wave under the
assumption that the point of observation is
infinitely far from the reflecting object. This

LS. A, Goudsmit and J. F. Carlson, ‘‘Microwave radar
reflections,” Radiation Laboratory Report, 43-13, Feb-
ruary 20, 1943,

*S. Silver, “Contribution of the dish to the impedance
of an antenna,” Radiation Laboratory Report, 442, Sep-
tember 17, 1943.

#R. C. Spencer, “Reflections from smooth curved sur-
fa(fss," Radiation Laboratory Report, 661, January 26,
1945,

*+ C. B. Barker and H. J. Riblet, ‘‘Reflections from curved
surfaces,” Radiation Laboratory Report, 976, February 1,
1946.
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