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Abstract. Convolutional Neural Networks (CNNs) obtain very good
results in several computer vision applications at the cost of high compu-
tational and memory requirements. Therefore, CNN typically run on high
performance platforms. However, CNNs can be very useful in embedded
systems and its execution right next to the source of data has many
advantages, like avoiding the need for data communication and real-time
decisions turning these systems into smart sensors. In this paper, we
explore data quantization for fast CNN inference in low density FPGAs.
We redesign LiteCNN, an architecture for real-time inference of large
CNN in low density FPGAs, to support hybrid quantization. We study
the impact of quantization over the area, performance and accuracy
of LiteCNN. LiteCNN with improved quantization of activations and
weights improves the best state of the art results for CNN inference in
low density FPGAs. With our proposal, it is possible to infer an image
in AlexNet in 7.4 ms in a ZYNQ7020 and in 14.8 ms in a ZYNQ7010
with 3% accuracy degradation. Other delay versus accuracy ratios were
identified permitting the designer to choose the most appropriate.

Keywords: Convolutional Neural Network · FPGA ·
Data quantization

1 Introduction

A CNN consists of several layers in a dataflow structure starting with the input
image until the final layer that outputs a classification result. Each layer receives
IFMs (Input Feature Map) from the previous and generates OFMs (Output
Feature Map) to the next. The main and most common layers are: convolutional,
fully connected and pooling.

Convolutional layers are the main modeling blocks of a CNN. For each IFM a
2D convolutional kernel is applied to generate a partial output map. The partial
maps and a bias are accumulated to generate an OFM.

The set of 2D kernels form a 3D kernel. Each 3D kernel slides over the IFMs
and the convolutions produce an OFM. CNNs consider several kernels at each
convolutional layer and so the same number of OFM are produced at each layer.
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Convolutional layers may be followed by pooling layers to sub-sample the OFMs
to achieve translation invariance and over-fitting. Pooling reduces the size of the
feature map by merging neighbor neurons into a single neuron using functions
like max or average pooling.

The last layers are usually the fully connected (FC). In a FC layer each neuron
is connected to all neurons of the previous layer. The last FC layer outputs the
classification probabilities. A nonlinear activation function is applied on every
neuron. A common function recently adopted for its simplicity and effectiveness
is the Rectified Linear Unit (ReLU) that calculates max(0, activation value).

Several CNNs has been developed with different number and type of layers,
and number of kernels. One of the first was LeNet [3] with a total of 60K weights.
The model was applied for digit classification with small images. Later, a much
larger CNN, AlexNet [10], won the ImageNet Challenge. It consists of five con-
volutional layers plus three fully connected layers. Different number of kernels
with different sizes are applied at each layer with a total of 61M weights requir-
ing a 724 MACC (Multiply-ACCumulate) operations to process images of size
224 × 224 × 3. Other CNN models have followed, like VGG-16 [12], GoogleNet
[13] and ResNet [8].

Executing a CNN model (inference) can be done on the same platform used to
train it or in an embedded system with strict performance, memory and energy
constraints. In a vast set of applications, it is advantageous or necessary to have
the inference process near the data input sensor so that important information
can be extracted at the image sensor instead of sending the information to the
cloud and wait for the answer. Also, in systems where the communication latency
and data violations are undesirable, like autonomous vehicles, local processing
at the sensor is also desirable.

A common feature of these CNN models is the high number of weights and
operations. Due to the limited performance and memory of many embedded
platforms it is very important to find architectural solutions to run large CNN
inferences in low cost embedded platforms. One approach to achieve such imple-
mentations is to reduce the type and size of data without compromising the
network accuracy. Size reduction reduces the complexity of arithmetic units and
the memory requirements to store feature maps and weights.

In this paper, the focus is on the optimization of LiteCNN [16] for run-
ning inference of large CNNs in low density FPGAs (Field-Programmable Gate
Arrays) using data size reduction.

The following has been considered for the optimization of LiteCNN:

– Lite-CNN only supports 8 bits dynamic fixed-point. An extended framework
based on Caffe [9] and Ristretto [7] was developed to explore other fixed-point
sizes;

– LiteCNN modifications are proposed to support generic fixed-point sizes;
– A performance model for LiteCNN was developed to allow design space explo-

ration;
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– Tradeoffs among performance, area and accuracy were obtained allowing the
designer to choose the most appropriate LiteCNN configuration for a partic-
ular CNN model and accuracy.

The paper is organized as follows. Section 2 describes the related work on
FPGA implementations of CNNs and optimization methods based on data size
reduction. Section 3 describes the flow used to explore data size reduction of
CNNs. Section 4 describes the LiteCNN architecture, the modifications neces-
sary to support other data sizes and the performance model. Section 5 describes
the results on inference accuracy and area/performance of LiteCNN running
well-known CNNs and compare them to previous works. Section 6 concludes the
paper.

2 Related Work

Common general processing units achieve only a few hundred GFLOPs with
low power efficiency. This performance is scarce for cloud computing and the
energy consumption is too high for smart embedded computing. GPUs (Graphics
Processing Units) and dedicated processors (e.g. Tensor Processing Unit - TPU)
offer dozens of TOPs and are therefore appropriate for cloud computing.

FPGAs are increasingly being used for CNN inference for its high energy
efficiency, since it can be reconfigured to adapt to each CNN model.

The first FPGA implementations of CNNs considered small networks [1,2].
A larger CNN was implemented in [19] but only for the convolutional layers.

A few authors considered low density FPGAs as the target device. In [14]
small CNNs are implemented in a ZYNQ XC7Z020 with a performance of 13
GOPs with 16 bit fixed-point data. In [5] the same FPGA is used to implemented
big CNN models, like VGG16, with data represented with 8 bits achieving per-
formances of 84 GOPs.

In [4] the authors implemented a pipelined architecture in a ZYNQ XC7Z020
with data represented with 16-bit fixed point. The architecture achieves 76 GOPs
with high energy efficiency.

Previous implementations on low density FPGAs have performances below
100 GOPs. Previous works [6,11] show that dynamic fixed-point with 8 bits
guarantee similar accuracies compared to those obtained with 32-bit floating
point representations. In [17] hybrid quantization schema is proposed with dif-
ferent quantizations for different layers targeting edge computing. To deal with
this hybrid quantization, the authors propose a pipeline structure with a layer
at each pipeline level. The problem is that a pipeline structure requires enough
memory to store intermediate feature maps and so it is not adequate for low
density FPGAs with scarce memory resources.

Datawidth reduction is essential to implement CNN in target platforms with
low on-chip memory and low resources. In this work we consider data bitwidths
that can vary between layers and between activations and weights and study
the impact of this hybrid quantization over the inference delay, accuracy and
hardware resources.



390 A. Gonçalves et al.

The extended LiteCNN architecture with support for hybrid quantization
proposed in this work is able to achieve several hundred GOPs in a low cost
FPGA, like the ZYNQ7020, improve the inference delays of the original LiteCNN
and of previous works and achieve high area and performance efficiencies. With
LiteCNN, we have determined the tradeoffs between area, performance and CNN
accuracy. Our solution improves the CNN inference delays of previous works in
low density FPGAs with similar network accuracies.

3 Framework for Bitwidth Optimization

We have developed a framework based on Caffe [9] and Ristretto [7] to explore
the bitwidth of both activations and weights. Ristretto determines the number
of bits to represent data enough to guarantee a maximum error in the precision
of the network specified by the user. To explore particular bitwidth sizes, we
established a design flow with the following steps:

– The network is initially trained with single precision floating-point;
– Ristretto is applied to the trained network with different precision errors,

generating solutions with different datawidths;
– From the results, we extract the fixed-point quantifications from each solution;
– From these values, we create a generic linear model of the quantification

parameters (fractional and integer parts of fixed-point quantification);
– From this model we generate architectures with the required number of bits

and train them to determine their accuracy.

Usually for a given target hardware architecture some data size configurations
are more efficient than others in terms of area/performance. So, we want to
explore these more efficient solutions in terms of network accuracy. This design
flow permit us to determine the network accuracy for specific data bitwidths.

4 LiteCNN Architecture - 8 Bits

4.1 LiteCNN Architecture

The Lite-CNN architecture consists of a cluster of processing elements (PE) to
calculate dot-products, a memory buffer to store on-chip the initial image and
the OFMs, one module to send activations and two modules to send and to
receive weights to/from the PEs (see Fig. 1).

The architecture executes layers one at a time. The execution of convolu-
tional and fully connected layers work the same because we transform the 3D
convolutions in linear dot-products identical to those used in FC layers, to be
explained above. Layers are executed the following way:

– Before starting the execution of a layer, the architecture is configured for the
specific characteristics of the layer. It also specifies if there is a pooling layer
at the output of the feature maps being calculated;
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Fig. 1. Block diagram of the Lite-CNN architecture

– The input image and the intermediate feature maps are stored on-chip. Since
the layers are executed one at a time, the buffer memory only has to be
enough to store the IFM and OFM of any layer;

– For the first convolutional layer, the image is loaded from external memory.
For the others, the IFM is already in on-chip memory. At the same time,
kernels are read from external memory and sent to the PEs. Besides the
weights, the kernel includes the bias value which is stored in the bias memory.
Each PE receives one kernel. So, each PE calculates the activations associated
with one OFM;

– The initial image or intermediate feature maps in the on-chip memory are
broadcasted to all PEs;

– After each calculation of a complete dot product associated with a kernel, all
PEs send the output activations back to the receive neurons module that adds
the bias and stores the result in the on-chip memory to be used by the next
layer. If the layer is followed by pooling, this module saves the activations in
a local memory and wait for the other members of the pooling window;

– The process repeats until finishing the convolution between the image and
the kernels. After that, the next kernels are loaded from memory and the
process repeats until running all kernels of a layer.

The process allows overlapping of kernel transfer and kernel processing. While
the PEs process their kernels, in case the local memory is enough to store two
different kernels, the next kernels are loaded at the same time. This is funda-
mental in the fully connected layers where the number of computations is the
same as the number of weights.

Also, in case the on-chip memory is not enough to store the whole image and
the OFM (usually the first layer is the one that requires more on-chip memory),
the image is cut into pieces which are convolved separately.

The PE cluster contains a set of PEs. Each PE (see Fig. 2) has a local memory
to store kernels and arithmetic units to calculate the dot product.
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Fig. 2. Architecture of the processing elements

Each PE stores a different kernel and so is responsible for calculating the
activations of the output feature map associated with the kernel. This way mul-
tiple output feature maps are calculated in parallel. Also, in convolutional layers,
the same kernel is applied to different blocks of the IFM and produce different
neurons of its OFM. The number of output neurons to be processed in parallel
in each PE is configurable. For example, to calculate two activations in parallel
it receives two input activations from the feature memory in parallel. This mech-
anism permits to explore the intra-output parallelism (fully connected layers do
not use intra-output parallelism). Finally, weights and activations are stored in
groups, that is, multiple weights and activations are read in parallel in a single
memory access (e.g., with 8-bit data, a 64 memory word contains eight neurons
or weights) permitting to explore dot-product parallelism.

The block sendWeights is configured to send kernels to the PE cluster. The
block receives data from direct memory access (DMA) units that retrieve data
from external memory and send it to the PEs in order. It includes a bias memory
to store the bias associated with each kernel.

The sendNeurons and receiveNeurons blocks are responsible for broadcasting
activations from the feature memory to the PEs and receive dot product results
from the PEs, respectively. The send neurons module includes a configurable
address generator. The receive neurons module implements the pooling layer in
a centralized manner.

Previous works use dedicated units to calculate 2D convolutions. The problem
is that the method becomes inefficient since the same units have to run different
window sizes and are used only for convolutional layers. Lite-CNN transforms
3D convolutions into a long dot product to become independent of the window
size. Also, this way, both convolutional and FC layers are executed the same way
by the same arithmetic core units.

Pixels of the initial image, activations of feature maps and weights of kernels
are stored in order (z, x, y) (see Fig. 3).
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Fig. 3. Reading mode of images, feature maps and weights

Each neuron of an OFM is calculated as a dot product between the 3D kernel
of size xk×yk×zk and the correspondent activations of the IFM of size xp×yp×zp
(see Fig. 3b), where zp is the number of IFMs. The weights of kernel are all read
sequentially from memory since they are already ordered. The activations are
also read in sequence from memory but after xk × zk activations it has to jump
to the next yk adding an offset to the address of the input feature memory being
read. For a layer without stride nor followed by pooling, the offset is xp × zp.
Formally, the dot product to calculate each step of the convolution is given by:

DPconv =
i=yk−1∑

i=0

j=xkzk−1∑

j=0

Wixkzk+j × PstartAddr+ixpzp+j (1)

where startAddr is the address of the first neuron of the block of the IFM being
convolved. We use this operation to convolve a kernel with the set of IFMs sliding
the 3D kernel along the feature maps. In this process, if a layer is followed by
pooling, the output neurons of the pooling set are calculated in sequence and
only the final neuron is stored in the OFM buffer. The advantage of our method
is that it is independent of the shapes of kernels and weights and layer type. WE
just have to configure the address generator properly for each layer.

LiteCNN also implements a method to reduce the number of multiplications
by half [16] leading to a considerable reduction in the hardware resources required
to implement a convolutional or fully connected layers. Also, the intra-output
parallelism used during convolutional layers can be used to batch IFM to be sent
to FC layers. This version of LiteCNN supports two parallel lines of computation.
Each of these lines can be used to process one of the batched IFM for the FC
layers, that is, it supports a batch of two.

We have extended LiteCNN with two modifications to support data sizes
different from activation × weight = 8 × 8. Since we cannot afford having a
pipelined datapath with dedicated implementations of each layer, due to low
memory resources, we keep the generic layer implementation that is configurable
to support each particular layer and extended it to support different data sizes.
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In those cases where all layers use the same sizes (e.g., 16× 16, 5× 5, 8× 2),
the processing units are configured exactly to execute operations with this size.
We kept the memory data bus with 64 bits and so the number of parallel units
depend on the size of activations and weights (64/size).

When layers have different data sizes, we store data in their original sizes,
but core units are implemented to support the execution of the bigger operands.
Therefore, data with smaller dimension are extended to the size of data with the
biggest dimension. For example, consider two different representations in the
same CNN - 8 × 4 and 8 × 2 - the arithmetic units are implemented for 8 × 4
and 8 × 2 data is extended to 8 × 4 to be executed. In this extended version of
LiteCNN, cores support multiply-accumulations of data with upto two different
data representations whose sizes are configured initially. For example, it can be
configured to execute layers with size 8×4 and 8×2, or 8×8 and 8×2. Extending
LiteCNN to obtain architecture configurations that support the execution of
more than two different data sizes is straightforward but was not considered in
this paper.

With this architectural solution using layers with different data represen-
tations has no computational advantage, since the number of operations is the
same as using the same data sizes, but the data is read and stored from/to mem-
ory in their original sizes. So, the method permits to take advantage of using
reduced weight sizes to reduce the time to transfer activations and weights from
memory. Designing generic arithmetic units was left for future research.

The second modification of the PEs has to do with the method to reduce
the number of multiplications. When both activations and weights have the
same size, the method is used. Otherwise, the method is less efficient since the
multiplications have the size of the bigger parameter (e.g. if 8 × 4, the size of
the multiplications is 9 × 9). In these cases we adopted and extended for other
dimensions the method proposed in [15].

4.2 Performance Model of LiteCNN

The performance model provides an estimate of the inference execution time of
a CNN network on the LiteCNN architecture. The model determines the time
to process each layer.

Considering convolutional layers, the time to transfer all kernels depends on
the number of kernels, nKernel, the size of kernels, kernelSize, the number of
bits used to represent weights, nBit and the memory bandwidth, BW. The total
number of bytes, tByte, transferred in each convolutional layer is given by Eq. 2.

tByte = nKernel × kernelSize× nBit

8
(2)

The number of cycles to execute a convolutional layer, conCycle, is given by
Eq. 3.

convCycle =
⌈
nKernel

nCore

⌉
× nConv × kernelSize

nMAC
(3)
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where nCore is the number of processing elements, nConv is the number of 3D
convolutions and nMAC is the number of parallel multiply-accumulations of each
PE (intra-output parallelism). From these two equations, the total execution
time, convExec depends on the local memory capacities. If local memories of PEs
have enough space to store two kernels, than communication and processing of
kernels can overlap, otherwise, they must be serialized. Considering an operating
frequency, freq de execution time is given by Eq. 5.

convExec =
tByte

BW
+

convCycle

freq
without overlap (4)

convExec = max(
tByte

BW
,
convCycle

freq
) with overlap (5)

For the totally connected layers, the equation to determine the number of
bytes to transfer all kernels is the same as Eq. 2. The equation to determine the
number of cycles to process the layer is given by:

fcCycle =
⌈
nKernel

nCore

⌉
× kernelSize

nMAC
× nParallel (6)

Since in the fully connected layers there is no intra-output parallelism, only
one line of parallel MACs of the PE is used. Given the number of intra-output
parallel processing lines, nParallel, the number of processing cycles is multiplied
by this value.

The total execution time of FC layers is similar to 5.

fcExec =
tByte

BW
+

fcCycle

freq
without overlap (7)

fcExec = max(
tByte

BW
,
fcCycle

freq
) with overlap (8)

The total execution of a CNN inference in LiteCNN is the sum of the time
to transfer the image to FPGA ( imageSize(bytes)

BW ) plus the time to process each
layer. Between layers there is configuration time of the architecture done by the
ARM processor of ZYNQ. We have checked the accuracy of the model from the
results of LiteCNN 8 × 8 running AlexNet. The delay obtained with the model
is about 1% lower (17.44 ms) against (17.63 ms) of the implementation.

5 Results

We have tested LiteCNN with data size reduction with one small network -
LeNet5 - one medium size CNN - Cifar10-full - and one large CNN - AlexNet.
Cifar10-full is a network with three convolutional layers and one fully connected
layer used to classify images from the CIFAR-10 dataset containing 32×32 color
images. All LiteCNN architectures were implemented with Vivado 2017.3 in the
ZedBoard with a ZYNQ XC7Z020 and run at 200 MHz.
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Table 1. Area occupation for different data size configurations of Lite-CNN

Layer x 4 × 4 5 × 5 6 × 6 16 × 16 8 × 8 8 × 8 8 × 8 8 × 4 8 × 4 8 × 2 2 × 8

Layer y 4 × 4 5 × 5 6 × 6 16 × 16 8 × 8 8 × 4 8 × 2 8 × 4 8 × 2 8 × 2 2 × 2

PEs 64 64 64 32 64 64 64 43 43 40 38

MACC 32 24 20 16 16 16 16 32 32 64 64

LUT 47477 44922 44895 45098 44418 46624 46832 45824 47842 45641 45430

DSP 220 220 220 220 220 220 220 220 220 220 220

BRAM 130 130 130 132 130 130 130 115 115 111 111

Peak GOPs 819 614 512 205 410 410 410 563 563 1024 972

For each CNN we found the relation between delay and accuracy when imple-
mented in LiteCNN. Since LiteCNN is configurable in terms of processing ele-
ments, to facilitate the comparison of architectures with different data size con-
figurations, we implemented all architectures with similar areas by changing the
number of processing elements (see area results in Table 1).

Table 1 gives the number of PEs and the number of MACC in each PE for
a particular implementation of LiteCNN (layer x and layer y lines indicate the
size of the operands supported in each implementation). A line with the peak
performance was also included. With layers configured with 4× 4 data sizes the
architecture has a peak performance of 819 GOPs and configured with 8 × 2 it
has over 1 TOPs of peak performance.

Considering these implementations (with similar areas), we have determined
the accuracy (top-1) of the networks (LeNet, Cifar10-full, AlexNet) for differ-
ent data size configurations and the delay. To avoid long synthesis times of all
architectures, we used the performance model to determine the delay (the per-
formance model was verified for the original LiteCNN).

LeNet is a small network and is used for simple number recognition. There-
fore, it has high accuracy and executes fast compared to the other larger net-
works. We have considered data of convolutional layers with the same size and
varied the size between convolutional and FC layers (see Fig. 4).

Each architecture configuration is specified by the bitwidth of activations
(the same for all layers, specified as A:size) and the bitwidth of weights (can be
different across all layers, specified as W:size.. if the same for all layers or W:
followed by all sizes of each layer when different).

The fastest solution is obtained with configuration (A:8; W:4442). The reason
is that with 2-bit weights in the FC layers, it reduces the high data communica-
tion delay of weights in FC layers. In fact, we observe that the increase in delay
is related to size of weights in fully connected layers. In terms of accuracy, it
increases with the datawidth of activations and weights but the delay increases
more than linearly with the increase in accuracy.

Cifar10-Full has 3 convolutional layers and 1 FC layer. The accuracies of
Cifar10-Full are lower than that of LeNet because the classification problem is
more complex (see Fig. 5).
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The results for Cifar10-Full are slightly different than those for LeNet. The
FC layers of Cifar10 are not the bottleneck since the size and number of kernels
are close to those of the convolutional layers. Therefore, those configurations with
a smaller number of bits for FC weights are not necessarily better; configurations
from A:8 W:4444 to A:8 W:8888 have a small variation in delay (around 3 us)
for 10% variation in accuracy.

AlexNet is larger and requires more bits to represent data in order to maintain
acceptable accuracies. In this case, we considered an hybrid size of weights,
that is, two possible sizes of weights in different layers keeping activations with
the same size for all layers. The results were compared with state of the art
implementations in the ZYNQ board with a low density SoC FPGA - ZYNQ7020.
We have also mapped these different configurations of LiteCNN in a ZYNQ7010.
As far as we know, this is the first attempt to implement a large CNN in the
smallest SoC FPGA of the ZYNQ family from Xilinx (see Table 2).

The results reveal the importance of determining the right bitwidth of data.
Moving from the configuration with the highest accuracy (A:16; W:16..) to a
configuration with almost the same accuracy (A:16; W:8..) the delay improves
43%. The biggest improvements occur when there is a reduction in the size of
the weights. Reducing the activations has a lower impact on the delay with a
higher impact on the accuracy.
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Table 2. Performance comparison of LiteCNN with previous works in low density
FPGAs ZYNQ7020 and ZYNQ7010 SoC FPGAs

Work Format Freq (MHz) Latency (ms) Acc.

ZYNQ 7020

[18] A:16; W:16.. 100 71,75 (a)

[14] A:16; W:16.. 125 52,4 (a)

[4] A:16; W:16.. 200 16,7(b) (a)

LiteCNN A:16; W:16.. 200 33,8 55,6

A:16; W:8.. 19,4 55,5

A:8; W:8.. 17,4 54,4

A:8; W:82222228 7,4 52,7

A:4; W:82222228 6,6 49,5

A:2; W:82222228 5,7 46,5

ZYNQ 7010

LiteCNN A:8; W:8.. 200 24,8 54,4

A:8; W:82222228 14,8 52,7

A:4; W:82222228 12,2 49,5

A:2; W:82222228 8,3 46,5
(a)Authors assume accuracy close to that obtained with floating-
point - 55,9%
(b)With pruning and image batch

Compared to previous works, the proposed architecture improves the delay
in more than 50%, except when compared with [4]. However, in this case, the
proposed solution uses weight pruning and image batch, which are not considered
in our proposal.

With LiteCNN we could map AlexNet in the smallest SoC FPGA from Xilinx
- ZYNQ7010 - in a ZYBO board. As expected, inference delays are higher because
it has much less resources (less PEs) and since the available on-chip RAM is not
enough to hold the image and the first OFM, the image has to be halved and
processed separately. The impact in the delay is higher when we reduce the size
of the weights since in this case the computation times of the convolutional layers
relative to the FC layers increases and the ZINQ7010 implementation has less
PEs to calculate convolutional layers. For example, considering configuration
(A:8; W:8..) the delay increases 1.4×, while for configuration (A:8; W:82222228)
it increases 2×. However, notably, it can run AlexNet in real-time (30 fps).

To better understand the impact of size reduction of activations and weights
on the inference delay, we have determined the time to execute convolutional
layers and the time to execute FC layers (see Fig. 6).

The execution time of FC layers is higher than that of convolutional layers.
The execution time of FC layers is dominated by the communication of weights
from external memory. This fact degrades the average GOPs. Reducing the size of
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Fig. 6. Execution time of convolutional and FC layers for different configurations of
LiteCNN running AlexNet

FC weights improves the real GOPs of the architecture. The real GOPs improves
when LiteCNN is mapped on ZYNQ7010. In this case, the execution time of FC
layers is about the same (the memory bandwidth is the same in both FPGAs)
and the execution time of convolutional layers increase. So, the implementation
in ZYNQ7010 is more efficient.

6 Conclusions

In this work we have developed a framework to explore the design space of
bitwidth of activations and weights. LiteCNN was extended to support the exe-
cution of layers with different data widths.

The extended LiteCNN with configurable bitwidths improves the perfor-
mance/area efficiency with a small impact over the inference accuracy of the
CNN. This is fundamental for embedded systems with low resources.

We have also observed that weight size reduction has more effect on archi-
tecture optimization than activation size reduction since it not only permits to
increase the performance/area ratio of the architecture but also reduces the time
to transmit FC weights, the performance bottleneck in the execution of CNN
models with large FC layers.

We are now studying in more detail the smallest size formats and how to
compensate for the accuracy loss by changing the CNN model. We have also
started to complement data size reduction with data reduction using techniques
like pruning.
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