
A SIMD Neural Network Processor
for Image Processing

Dongsun Kim1, Hyunsik Kim1, Hongsik Kim2,
Gunhee Han2, and Duckjin Chung3

1 DMB Project Office, Korea Electronics Technology Institute
455-6 MaSan-Ri, JinWi-Myon, PyungTaek-Si, KyungGi-Do 451-865, Korea

{dskim,hskim}@keti.re.kr
2 Department of Electrical & Electronic Engineering, Yousei University, Seoul, Korea

{hskim,gunhee}@yonsei.ac.kr
3 Information Technology and Telecommunications, Inha University

253 Younghyun-Dong, Nam-Gu, Incheon 402-751, Korea
djchung@inha.ac.kr

Abstract. Artificial Neural Networks (ANNs) and image processing re-
quires massively parallel computation of simple operator accompanied
by heavy memory access. Thus, this type of operators naturally maps
onto Single Instruction Multiple Data (SIMD) stream parallel process-
ing with distributed memory. This paper proposes a high performance
neural network processor whose function can be changed by program-
ming. The proposed processor is based on the SIMD architecture that
is optimized for neural network and image processing. The proposed
processor supports 24 instructions, and consists of 16 Processing Units
(PUs) per chip. Each PU includes 24-bit 2K-word Local Memory (LM)
and a Processing Element (PE). The proposed architecture allows multi-
chip expansion that minimizes chip-to-chip communication bottleneck.
The proposed processor is verified with FPGA implementation and the
functionality is verified with character recognition application.

1 Introduction

Massively parallel computation of simple operator in neural networks and image
processing suggest analog implementation as an attractive choice. Analog imple-
mentation of neural-network processor has advantages in low-power and small
silicon area [1,2]. Although many analog implementations have been reported
and commercialized as well, the reliability of analog computation is severely
degraded as the array size increases due to component mismatch. The digital
implementations of neural network processor have been reported in 90s [4,5].
This approach requires large silicon area while application range of the special-
ized neural network processor is limited. Drastic improvement of general purpose
DSP performance and price makes the DSP based implementation more attrac-
tive than neural network processor development. Late 90s and early 2000, digital
neural processor development is revived because the fabrication technology and

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3497, pp. 665–672, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



666 Dongsun Kim et al.

CAD tool advance allow the implementation of a complex system on a chip in
relatively low cost and several commercial products are available. However their
application range is still limited. Data intensive operators in neural networks
and image processing need high computing power and have a great potential for
SIMD parallel processing. SIMD architectures have been adopted effectively on
the applications of image processing, matrix operations, partial differential equa-
tions, artificial neural networks, multimedia processing, etc. Previously, SIMD
architecture was realized in the form of massively parallel computer system start-
ing from the first SIMD machine project, ILLIAC IV. They usually consisted of
high performance host computer and data parallel unit including few hundreds
or thousands of simple processing elements, memory system, and a global array
control unit [2,3]. To overcome the limits of the previous SIMD processors, this
paper proposes a flexible SIMD Processor with distributed memory taking full
advantage of the application specific instruction set and hardware resources; Ad-
dress Modifier (AM), Non-linear Functional Unit (NFU), ring and global buses,
and multi-chip expansion. These features are optimally customized for achiev-
ing high computational efficiency in data intensive applications while providing
flexibility.

2 Processor Architecture

The proposed processor employs an SIMD architecture consisting of 16 process-
ing units (PUs) , a non-linear functional unit (NFU) , and a control unit (CU) ,
which are connected through two global data buses, one control bus, and a ring
bus as shown in Figure 1. The instruction program is stored in the embedded
program memory; on the other hand, the data are distributed in embedded local
memories (LMs) and external data memory. The global data bus and ring bus
allow data broadcast and PU-to-PU data transfer. The CU generates the control
signals for all PUs and allows address jump and branch functions. The NFU is
a look up table memory that realizes an arbitrary non-linear function. Global
Register File (GRF) is used to store data from NFU. The data in GRF are to
be broadcasted to PUs through the data bus or the ring bus. Each PU consists
of 32-bit fixed point numerical arithmetic units, a 32-bit 16-word register file,
16-bit 1.5K-word LM, special purpose registers (CR, FR, and AR), and an ad-
dress modifier (AM). In addition, an l6-bit logical arithmetic unit (LALU) is
embedded for basic logical operations (AND, OR, XOR, and NOT). For MAC
operation, the result of multiplier is bypassed to adder. The adder has the ability
to perform the local memory addressing by adding the offset value stored in the
RF0 register and the address field of WLD (or WST) instruction. The embedded
LM is used to store weights, coefficients, image, and other data according to the
applications. Followings are key features of the proposed processor.

2.1 Address Modifier (AM)

Particularly, each PU contains an AM which enables the proposed processor
to have functionalities of both column-wise data fetch and row-wise data fetch.



A SIMD Neural Network Processor for Image Processing 667

Fig. 1. Block diagram of the proposed architecture

The importance to do so is that many linear algebra applications require series of
matrix-by-vector and transposed matrix-by-vector multiplications. In ANNs, the
matrix contains the synaptic weights and the vector does input values or error
values. The matrix element accessing direction is dependent on the Processing
state. Figure 2 shows an operational model of how an AM works on multi-
layer perception (MLP) with back-propagation (BP). Here, a row of the forward
weight matrix is allocated to each PU. The first is feed-forward (FF) operation,
in which the network computes the equation, ui =

∑b
j sjωy. The second is error

BP that computes the equation,ej =
∑m

i δiωy. From these two equations, the
weights distributed over LMs should be accessed in two different modes; the
row-wise for the (FF)and the column-wise for the error BP. In the proposed
processor, three mechanisms, ring, bus, and AM, are used for effective memory
access for BP. For the process of FF operation, the address is broadcast to all
PUs simultaneously through bus as shown on Figure 2 (a) since the weights are
stored in local memories in row order. In error BP phase, the AM calculates a
new address using modular operation for column base memory access. Previous
error values are shifted to next PU through ring register as shown in Figure
2 (b). Therefore, the proposed architecture enables both row and column wise
memory access without many overheads.

2.2 Multi-chip Expansion

The expandability of the proposed processor is essential because most scientific
computations require large sizes of parallel processing. The multi-chip expansion
through a register ring is used for increasing the network size. This is called as
multi-chip ring shift operation mode which is decided by the flag attached to
instructions. In this mode, the ring ready register is set to ‘1’ and the program is
stalled. After all the ring ready registers in chips are set (or the signal,ext shift en



668 Dongsun Kim et al.

Fig. 2. Row and column mode memory access with AM

becomes ‘1’), the chip-to-chip ring shift operation is performed forming a larger
ring across all the chips. This simplifies the chip-to-chip data transfer in multi-
chips expansion. The contents of program memory of each chip are duplicated,
and share the external data memory for multi-chip SIMD operation.

2.3 Instruction Set

The function of the proposed processor is programmed by means of 24 cus-
tomized instructions for target applications. They include instructions for mem-
ory access, data transfers, arithmetic operations, and flow controls. Table 1 shows
the instruction list including several special purpose instructions such as BR,
WLD, etc. BR is used for broadcasting data through ring or bus. The selection
is made by the flag bit appended to BR instruction. WLD loads data from an
LM of its neighbor PUs or its own PU to RF, at this time, the AM can be
selected to operate on column-wise or row-wise memory access.

3 Character Recognition System

The functionality and the performance of the proposed processor are verified with
the character recognition application based on ANNs including image processing.
Figure 3 shows the overall architecture of the proposed character recognition
system. Generally, the character recognition application is separated into three
phases [6]. The first phase is the image pre-processing using translation, dilation,
rotations, thinning, and so on to bring a character to a standardized form. The
second phase is the feature extraction that corresponds to linear or non-linear
filtering. The third phase is the classification based on features that are obtained
in the second phase. If the recognition system requires learning or adaptation,
then additional learning or training stage is required.

3.1 Preprocessing and Feature Extraction

The pre-processing and the feature extraction consist of 4 stages; thinning, im-
age filtering, connection,and shrinking. These operations are based on two di-
mensional morphological filtering [7]. The thinning skeletonizes an input image



A SIMD Neural Network Processor for Image Processing 669

Table 1. Instruction Set

Instruction Description

NPLD
CRn,@(disp:21),D

CRn and (RR or DBR)
←DM@(disp:21+CR0)

Load a data to data bus or ring bus from external
memory (D=0: ring bus, D=1: data bus)

NPST CRn, DM@(disp:13+CR0)
@(disp:13),S

Store a data in an OR into external memory ←
OR@CRn

NPMV Rn,Rm,P,S Rn← Rm Move a data in a register Rn to a register Rm

NBR CRn,C,D DBR or RR ←
GM@CRn or CRN

Broadcast a data in a register GRn of a general
prupose register file a data bus(D) or a ring bus(R)

NMAC Rm,Rj,S AR ← (Rm × Rj)+AR Multiply Rm and Rj, then add with a accumulator
register AR

NPADDim Rj, Rj ←Rj+ �(imm:16) Add Rn with an immediate value

�(imm:16)C S (C=0: add in PU, C=1: add in CU)

NPSUBim Rj, Rj ← Rj-�(imm:16) Subtract Rn with an immediate value

�(imm:16) C S (C=0: subtract in PU,C=1: subtract in CU)

NBS OPT,Rn,Rm, Rn ← Barral shift(Rm) Rn ← Barral shift(Rm) with shift amount of CRj

SH,OPT,S

NWLD Rn
�(LMAddr:12) M S

Rn ← LM@(LMAddr
+RF0)

Load a data in a local memory to a register Rn

WST Rn
�(LMAddr:12) S

LM@(LMAddr+RF0)←
Rn

Store a data in a register Rn to a local memory

NSHIFT Rn,Rm Rn← 1 bit shift (Rm) Shift a data in a register Rm with one bit to a
register Rn

NFU
CRn,CRm,Cj,M,D

GM@CRn and (DBR or
RR) or CRn ← NFU
OR@CRm with shift
offset in Cj

NFU look-up table access with a data in an OR of
a PUand broadcast NFU data to a data bus(D) or
a ring bus(R)

while preserving its original shape. After that, the skeletonized image is filtered
with 12 two-dimensional morphological feature filters like direction, angle, cross-
ing, and T-crossing filters. Each feature extraction filtering is performed in each
PU and the filter weight is stored in LM. The input image is broadcasted through
the data bus and the filter output is stored in LM. During the image filtering
certain lines may be broken. These broken lines have to be reconnected by the
connection process that is a morphological dilation. Then the object in the re-
sulting image is shrunken down until only one point remains for each object. The
number of renaming point is counted for each feature filter and it represents how
many corresponding features are in the input image. These numbers are used as
an input vector for the classifier that is realized through MLP with BP learning.

3.2 Multi-layer Perception (MLP)

MLPs are well-established multipurpose classifying algorithm, and they are fre-
quently employed in recognition systems. On the proposed system, the MLP
consists of three layers; input, output, and one hidden layer. Each layer consists
of 16 nodes. To improve recognition performance, the input character sets are
grouped into one of four sub-nets according to the number of strokes in the
character. Figure 4 shows the general structure of MLP with memory access



670 Dongsun Kim et al.

Fig. 3. Pattern recognition application using the proposed processor

mode on FF and BP stages. Each PU is assigned for one neuron on a layer.
Therefore, one PU holds two weight sets, one for the first layer and the other
for second layer. The FF path is processed with one input element at a time.
The first input element z1 is broadcasted through the data bus and all PUs com-
pute the corresponding synaptic weight using vji stored in each PU, and then
the second input element z2 is broadcasted through the data bus. The same
operations are repeated for all input elements and the result of synaptic weight
for every input is accumulated at AR in each PU. This is the process between
the input layer and the hidden layer, which can be express as the equation,
netj =

∑j−1
j=0 vjizi. After that netj is moved to NFU through output register

(OR) to calculate the output value yi = fi(netj) for the hidden layer. At this
time, yi is also stored at global memory since it is going to be read again on
BP stage. The same sequence of computations for the second layer is repeated
to calculate the ok in output neuron using the input yi. This process can be
expressed by the equations netk =

∑k−1
k=0 ωkjyj and ok = fk(netk). In the BP

stage, the produced output ok is compared with the desired output dk and an
error value δok = (dk − ok)f ′

k(netk) = (dk − ok)ok(1 − ok) is propagated back-
ward to update weight values. The process is expressed as following equations;
δok = (dk − ok)f ′

k(netk) and ωkj = ωkl + ηδokyi between the output layer and
the hidden layer; δyj = (

∑k−1
k=0 δokωkj)f ′

k(netk) and vji = vji + ηδyizi between
the hidden layer and the input layer. Finally, the weight is updated using δyj .
These operations can be summarized as follows. First, the weight is expressed
in the form of two dimensional matrix and stored in local memory in row or-
der. Second, the input values are broadcasted to all PUs through the bus on
the FF stage. Therefore, all PUs read weights at the same memory location
and executes MAC operation. Third, on BP stage the AM modifies the memory
address and the weights are read and calculated. And the desired values are
broadcasted through the ring. This allows the proposed processor to operate on
both row and column mode memory access without overhead. Another feature
is that the calculation of non-linear function. The non-linear function requires



A SIMD Neural Network Processor for Image Processing 671

Fig. 4. MLP with back-propagation learning

complex computation or large look-up table. Implementation of such block in
each PU significantly increases the hardware comp1exity. Therefore, only one
NFU is implemented as a look-up table. In this case, the computation of non-
linear function win may be a bottleneck of the over all performance. However,
the proposed architecture allows effective bus management which eliminated the
bottleneck to use NFU. Furthermore, the processing time also can be reduced
by storing the output values between each layer in global memory because they
are expected to be fetched again on the BP stage.

4 Implementation Result and Conclusion

Figure 5 shows the physical layout of the prototype system board using the pro-
posed processor architecture embodied in FPGA chip. The operating clock is
55MHz and operating voltage is 3.3V. The overall size is utilizing 19,914 logic
elements equivalent to 320,000 gate level. CU is implemented with 32-bit × 4K-
word program memory, 32-bit × 16-word register file, program counter (PC)
and 24-bit adder. NFU is consisted of 8 bit × 512-word memory and BUS is
32-cell 16-bit ring chain. The implemented recognition system is trained with
20 sets of 17 handwritten alphabets for 1,770 iterations on incremental learning
mode. It took 24 seconds for pre-processing, feature extraction, classification,
and learning. In order to compare its processing time, the application was im-
plemented by using C++ program running on 2.8GHz Pentium IV personal
computer with 1GB SDRAM, and its processing time was 14 seconds. The pro-
posed processor showed no more than 1.7 times slower performance than PC-
implementation, but nevertheless it run with relatively very slow operation clock
of 55 MHz and small memory capacity of 256KB embedded SRAM. Suppose the
proposed processor is implemented as a chip using 0.18-micron process technol-
ogy, it is expected to operate at 400MHz clock speed, and then its computing
power could be over 4 times faster than 2.8 GHz PC. This paper proposed a
high performance acceleration processor optimized for scientific computations



672 Dongsun Kim et al.

such as image processing and ANNs. Highly customized 24 instructions were
devised to improve the performance and the programmability of the processor
on the target applications. From the architectural point of view, the charac-
teristic of the proposed processor is SIMD with 16 PUs and special hardware
resources such as NFU, a ring, and buses. Each PU includes arithmetic ALU
(32-bit adder/subtracter/multiplier) and logical ALU (32-bit bitwise operators:
AND,OR, XOR). The proposed architecture is suitable for applications that
require heavy memory access relatively low computational complexity. Further-
more, the AM in each PU enables the proposed processor to have the ability to
operate on column wise and row wise memory access, which can be exploited by
many linear algebra applications.

Fig. 5. A Prototype system board

References

1. Shiva S.G.: Pipelined and Parallel Computer Architectures. Harper-Collins, New
York (1996)

2. Boulet P., Fortes J.A.B.: Experimental Evaluation of Affine Schedules for Matrix
Multiplication on the MasPar Architecture. Proc. lst International Conf. on Mas-
sively Parallel Computing Systems. (1994) 452–459

3. Hicklin J., Demuth H.: Modeling Neural Networks on the MPP. Proc. 2nd Sympo-
sium on the Frontiers of Massively Parallel Computation. (1988) 39–42

4. Lam K.D., Pattnaik V., Seung-Moon Y., Torrellas J., Huang W., Kang Y., Zhenzhou
G.: FlexRAM: Toward an Advanced Intelligent Memory System. In proceedings of
International Conf. on Computer Design99. (1999) 192–201

5. Chong F., Oskin M., Sherwood T.: Active pages: A ComPutation Model for Intelh-
gent Memory. Proc 25th Annual International Symposium on ComPuter Architec-
ture. (1998) 192–203

6. Salembier P., Brigger P., Casas J. R., Pardas M.: Morphofogical Operators for Image
Ellld Video Compression. IEEE Trans Image Process. 5 (1996) 881–898

7. Yentis R., Zaghloul M. E.: VLSl Implementation of Focally Connected Neural Net-
works for Solving Partial Differential Equations. IEEE Trans. Circnits Syst. I, Fun-
daln. Theory Appl. 43 (1996) 687–690


