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A Mixed Analog-Digital Artificial Neural
Network Architecture with On-Chip
Learning

Alexandre Schmid, Yusuf Leblebici and Daniel Mlynek

Abstract— This paper presents a novel artificial neural net-
work architecture with on-chip learning capability. The
issue of straightforward design-flow integration of an au-
tonomous unit is addressed with a mixed analog-digital ap-
proach, by implementing a charge-based artificial neural
network which interacts with digital control and processing
units. We demonstrate the circuit architecture and design-
flow approach for the case of a Hamming network perform-
ing pixel-pattern recognition.

Keywords— Charge-based ANN, mixed-mode ANN hard-
ware architecture, ANN integration design-flow.

I. INTRODUCTION

HE ABILITY of artificial neural networks (ANN) to
acquire knowledge of their surrounding environment
and adapt to it, as well as their use of a high degree of com-
puting parallelism makes them very efficient in many ap-
plication fields including process and quality control, con-
sumer products, optical character and speech recognition,
and complex forecasting tasks among many others [1].
Silicon implementation of ANNs as an integrated cir-
cuit (IC) [2] aims at providing a final product with desir-
able low-area, low-power and low-cost properties. Several
purely analog ICs, most of them belonging to the charge-
based or current-based families, have been developed in or-
der to meet the criteria of minimal area and fast through-
put. Yet the main drawbacks of analog systems include
sensitivity to ambient noise and to temperature, as well
as the lack in efficient automated synthesis methods and
tools. On the other hand, purely digital realizations have
the advantage of a limited but well defined precision that is
given by the quantification of all neuron parameters. One
main characteristic of purely digital realizations is their
straightforward design-flow; some realizations start from a
high-level hardware language description such as VHDL, to
be synthesized into a standard-cells based architecture or
a FPGA. The extensive reuse of precharacterized modules,
may these be VHDL-based descriptions or mask layouts, is
yet another possible solution to speeding up the IC devel-
opment process.
Combining the advantages of both analog and digital re-
alizations into a novel mixed-mode architecture is the pur-
pose of the implementation described in this paper. We will
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focus on developing a simple design-flow aiming at the inte-
gration of artificial neural networks with on-chip learning
into an autonomous and easily reconfigurable integrated
circuit architecture. We will show the silicon integration of
a Hamming network [3] of 20 charge-based neurons, inter-
acting with a purely digital unit which the on-chip-learning
and circuit control tasks are dedicated to. Section II gives
an overview on the architecture of the realized IC. The in-
tegrated ANN architecture and operation is described in
Section III. The algorithmic aspects of the implemented
training algorithm are explored in Section IV, and Sec-
tion V presents the IC realization.

II. THE CIRCUIT ARCHITECTURE AND ITS
DEsIGN-FL.Ow

A. The Main Building Blocks

The overall circuit architecture is divided into two main
parts with regard to their operating modes, i.e. analog and
digital. The analog ANN unit executes the neural function
processing based on a charge-based circuit structure; it is
composed of a 20 neuron layer, each with 10-bit vector in-
puts. The winner-take-all (WTA) [4] unit is devoted to the
task of selecting one neuron as the winner on the criteria of
best degree of matching between the stored pixel pattern
and the current input vector. On the other hand, the er-
ror correction unit (OLU), the circuit control (CCU) and
clock generator (CGU) units perform purely digital opera-
tions (see Fig. 1).
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Fig. 1. Block-diagram of the implemented IC.

This mixed analog-digital architecture is consistent with
our objectives to construct a flexible, straightforward



design-flow with reusability properties, and also to address
the issues of efficient and compact design. The ANN oper-
ates in the analog domain and thus inherits most of advan-
tages associated with it, especially speed of neural function
execution and compact design. All the digital parts on the
other hand were designed, simulated and then synthesized
from a VHDL high-level hardware language description.
This design-flow significantly simplifies such issues as fast
prototyping of a new algorithm into an IC, fast integration
of the selected architecture, and easy layout floorplanning.
A dedicated multipurpose memory unit (MMU) which has
a scan-path architecture with parallel and serial read/write
ability is devoted to the task of loading the initial weights
and observing the new processed weights. This unit is an
operating and test structure that together with others al-
low full testability and observability of the IC.

B. The Control Signals and Data Flow

The CCU is the master circuit controller; i.e. all other
units are subordinated to this unit. Its tasks mainly in-
clude the synchronization of all processing units among
themselves and with the circuit supervisor, as well as the
input/output protocol implementation. The control and
dataflow are represented on Fig. 2. Notice that the ANN
and WTA are completely controlled by the CGU that has
the ability of generating the clock signals ¢; through ¢s5,
asynchronously from the circuit master clock.

Initidization Training Forward
Forward ~ Backprop. Processing
Pass Pass
Supervisor STAR ”STAR
CCU— :-—(’s CGU s OLU (s CGU—DONEN
CeU—((@2o® ‘j—(qm_%
ANN (fwd pass) Idw)- J) (Twd pass )
OLU backprop pass
[ SiGNAL || CONSEQUENCE |
Id_INITS IC initialization sequence. IC in wait mode until
START
START A new vector is available for processing. One for-
ward processing pass is allowed
s_.CGU Makes the CGU produce one cycle of ¢; through
¢1 signal clocks
s_-OLU Makes the OLU start one error correction cycle
Id_w Loads the new processed weights into the ANN
DONE The launched process has finished. When in for-
ward processing mode : a new result is available
Fig. 2. Control signals and dataflow between the main blocks.

The external dataflow consists in presenting a new data
on the START event; and sampling the result on the DONE
event. The internal dataflow is simplified; no complex
dataflow control structure are required as any new vector
is immediately processed by the ANN. This data is lost at
the end of a cycle since no internal framing is available.

C. The Clircuit Environment

The developed architecture needs to interact with a su-
pervisor to download several process control and data sig-

nals in order to allow proper work. This global control sys-
tem may either be a dedicated microcontroller in the case
of an embedded microsystem or a piece of control software
driving a conventional microprocessor in a computer archi-
tecture. This requirement obviously reduces the autonomy
of the overall circuit architecture and assumes that it has
to be included in a complete system such as a computer
board. Nevertheless, the ability to modify some algorith-
mic parameters and decision criteria in real time signifi-
cantly improves the efficiency of the system.

For example, the learning rate parameter n has a signif-
icant influence on the ANN convergence and on its ability
to properly acquire knowledge. As stated in Section IV its
value may be downloaded into the IC at any time. A sig-
nal indicating whether or not error correction was applied
during the last cycle is sent to the supervisor in order to
keep the decision of accepting or rejecting the convergence
condition outside the chip. Following the same idea, the
selection of the neuron to be trained is also devoted to the
supervisor. The threshold value also has to be produced
externally in the form of an analog voltage V3.

All of these features could be easily integrated into a fully
autonomous version of the developed architecture, which,
however, would result in loss of flexibility due to the im-
possibility to modify any parameters.

III. THE MIXED ANALOG-DIGITAL ANN
ARCHITECTURE AND OPERATION

A. The ANN Circuit Architecture

A Hamming network is a two layer feed-forward ANN
with the ability to classify noise corrupted patterns. Its
internal architecture consists in a first layer of neurons per-
forming in parallel the Hamming distance of a m-bit digital
input vector with n previously stored exemplar patterns -
this is the quantifier subnet; the second layer is devoted to
the selection of the winner neuron which is the one with
smallest Hamming distance to the input vector (see Fig. 3)
- this is the discriminator subnet. This network performs
efficient classification for relatively low complexity, and al-
ways converges to one of the previously stored combina-
tions.

., ... |
X1 |
I
- = &
Ll
SRS > L.
E o > L
e e |
A !
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X | + Output |
|Quant|f|er | Buffers
Subnet I |
| Discriminator |
(St .
Fig. 3. General structure and functional description of a Hamming
network.



The number of independent neurons (n) corresponds to
the number of patterns to be sorted out, and the number
of synapses (m) associated with each neuron corresponds
to the number of input vector components.

For the realization of the Hamming network, we use a
modified version of the charge-based circuit architecture
first presented in [5], which was originally designed with
fixed weights. In particular, the circuit architecture was
modified to allow simple programming of the input weights.
Since this paper is primarily focused on the overall system
architecture, a detailed analysis of the charge-based quan-
tifier and discriminator subnets is not presented here. The
fundamental circuit architecture of the capacitive Ham-
ming network is essentially identical to the fixed-weight
classifier circuit published earlier, the operation and limita-
tions of which were well documented in [5]. It has also been
experimentally demonstrated earlier that charge-based cir-
cuit architectures offer the advantages of high integration
density, high speed and low power dissipation, while sensi-
tivity limitations (discriminator offset) that may stem from
circuit/device mismatch still allow a relatively large input
vector size [5], [6]. For a detailed description and electrical
analysis of the charge-based capacitive Hamming network
architecture, the reader is referred to [5].

Each charge-based synapse is composed of four binary
weighted capacitors as well as four memory latches to sup-
port programmability of the device. The capacitor values
associated with each synapse are chosen as C; = 2"C,,
where n = 0,---,3 and C, is unit capacitance. Thus the
modified configurable circuit architecture of the charge-
based Hamming network allows four-bit weight program-
ming.

B. The ANN Circuit Operation

The circuit operates in two distinctive modes (forward
processing mode and training mode) which can be selected
by an external triggering signal. The circuit operates in the
following sequence when in forward processing mode (also
called recall mode):

o Initialization phase: the initial weights (or newly
processed weights) are downloaded into the internal
synaptic memory.

o Quantification phase: the input vector is applied. De-
pending on the programmed weight values, all den-
dritic voltages in the ANN structure assume their new
level.

o Discrimination phase: the WTA processes to winner
selection. The result may be sampled when conver-
gence of the WTA is reached.

The circuit controller flags the availability of a new max-
imum likelihood classification result. All these steps repeat
every time a new forward processing pass is required under
the control of the circuit supervisor unit.

The circuit has to be trained in order to acquire experi-
ence of the patterns to be sorted out. This happens during
the training mode which is divided into two passes: one
forward pass and one backpropagation pass (error correc-
tion pass).

o Forward pass: the training forward pass is identical
to the normal forward processing mode, with the ex-
ception that only one neuron is activated at a time
(each neuron is trained separately). The neuron to be
trained is selected by the supervisor and is activated
through a forward processing pass using the training
pattern, while all other neurons are kept in idle mode
to prevent undesired interaction.

« Back-propagation pass: given the current input vec-
tor, the current processing weights and the binary re-
sult of the forward pass, the circuit controller activates
the OLU, the digital unit which computes the weight
values the ANN will have in the next cycle, to pro-
cess the learning algorithm. The OLU computes the
new weights to be downloaded into the synaptic mem-
ory. The circuit controller flags the end of the cycle
to the outside, and indicates whether or not error cor-
rection was to be applied during the current training
pass. The circuit supervisor may then decide on the
necessity of a refining training pass with the same or
another threshold value, or to train another neuron
because convergence was satisfactorily achieved.

IV. THE LEARNING ALGORITHM AND ALGORITHMIC
CONSIDERATIONS

Hardware implementations of ANNs are typically sub-
ject to restrictions in terms of area, power and time which
may complicate the realization of a chosen learning algo-
rithm. The so-called hardware-friendly algorithms [7] are
intended to yield a simple hardware realization, yet also
achieve a high degree of efficiency despite of limited pre-
cision of computation, approximation of the implied func-
tions, and perturbing effects of quantization.

The training algorithm was chosen as a hardware-
friendly adaptation (2) of the error correction learning al-
gorithm (1) [8].

w(n +1) = w(n) +nd(n) - y(n)x(n) (1)

Here w stands for the weight vector, x for the input
vector, d is the expected output and y the actual neuron
output result, n is the learning rate, n is the time incre-
ment.

wn +1) = w(n) + @)
where
¢ =nldn) —yn)x(n)ifz; =1

The use of a WTA unit restricts the input vector x to
be purely binary; thus all of its components belong to the
binary set {0,1}. This fact, together with the hard limiting
activation function in the ANN produces a purely binary
result to the [d(n) — y(n)]x(n) operation. Hence, the in-
fluence of the n parameter is enhanced as it remains the
only non-binary parameter to be multiplied with one of
the logical values {0,1}. Thus the system was designed so



as to allow the ( value to be changed at any time by the
supervisor controller.

Prior to the design of the unit, C simulations were run to
validate the hardware oriented algorithms. A specific sim-
ulation tool was developed in order to produce a realistic
high-level characterization, which is based on the model of
a neuron that optimally reproduces the analog behavior of
the real implementation in the integer domain. The simula-
tions were run on a network consisting of nine neurons with
9-bit vectors to classify. The small size of the network does
not affect in any way the quality of the results; expanding
the network to a larger one would result in a longer delay
to reach convergence (in a general case). The training set
and simulation parameters can be seen on Fig. 4.
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Fig. 4. Simulation of the implemented algorithms for a pattern

recognition/classification example.

Some simulations were run to test the behavior of the
network when confronted to unknown patterns, which high-
lighted the efficiency of the network in generalizing (see
Fig. 5).

e e ke et

Fig. 5.  PaAr. 1 perturbed by noise.
correctly classified.

All of these patterns were

V. REALIZATION OF THE ANN INTEGRATED CIRCUIT

A test chip implementing the developed architecture was
designed and realized in AMS (Austria Micro Systems)
CMOS 0.8y 2-Poly technology [9], [10]. The layout can
be seen on Fig. 6. The die size is less than 13mm?; the
functional modules (ANN, WTA, CCU, CGU and OLU)
occupy less than 5mm?2. The number of pins is 100, sev-
eral pins being attributed to additional test structures.

The test features were integrated into the design so as to
make each main building element testable independently
from all others. As previously mentioned the multipurpose
memory unit is fully accessible in read/write mode, which
allows to load the weights to be read by the ANN or the
OLU, or download them to check the computation of the
OLU. The binary result of the WTA output in forward
processing mode (is current presented pattern recognized
as being the one stored in current trained neuron ?) is also
fully accessible in read/write mode, which allows for testa-
bility of WTA and control of the OLU in test mode. The
WTA outputs are all connected to output pins which en-
sures full testability over the ANN and WTA. The reason
for observing all the WTA outputs lies in the internal op-
eration of the WTA that may produce multiple winner se-
lection. The ANN and WTA can be tested independently;
in this test mode all the driving clock signal are provided
by external means via the CLK_DVR unit. Finally one sin-
gle neuron with full external access was integrated to allow
sensitivity and speed tests.

Fig. 6. Microphotograph of the realized IC. All operative units oc-
cupy an area less than 5mm?; the overall die size is less than
13mm?, with a 100 PGA package. Several test structures and
test pins were implemented to allow easy testability of the chip.



All of the major modules on chip were tested separately
to confirm their functionality. The digital error correc-
tion unit (OLU), circuit control unit (CCU), multi-purpose
memory unit (MMU) and the clock generator unit (CGU)
were tested using the HP82000 testing environment and
were found to be fully functional. Measurements were also
performed to verify the operation of the analog ANN and
WTA modules. The WTA was found to operate correctly
for all cases with a minimum Hamming distance of two
bits or more. Discrimination of a winner neuron was found
to become problematic in cases where the minimum Ham-
ming distance is only one bit, which indicates that the
unit weight capacitance of 17 fF actually remains below
the limit value dictated by the process-dependent quanti-
fier offset voltage. Extensive measurements for a complete
characterization of the entire ANN architecture are cur-
rently continuing.

The main effort was not put on developing a high-speed
architecture. Nevertheless, a speed of 4M inferences per
second is expected in forward processing mode with an ex-
ternal control. Internal control processing is limited by the
slowest clock signal to be produced by the CGU, by the
circuit master clock and by the control path which makes
it difficult to evaluate. A realistic estimation gives an ex-
pected speed of 100K inferences per second with a master
circuit clock reaching 10MHz and an ANN driving clock
reaching 1MHz.

VI. CONCLUSIONS

We have demonstrated in this paper the integration of a
novel artificial neural network architecture. The proposed
mixed analog-digital realization is based on an analog ANN
block which interacts with a purely digital learning unit,
implementing the error correction learning algorithm, as
well as the circuit control part. The ANN is a Hamming
network including a first layer of charge-based neurons driv-
ing a WTA unit.

A test chip containing 20 neurons of 10 synapses each has
been designed using a AMS CMOS 0.8 2-poly technology.
It has an active area of less than 5mm? for a die size of
13mm?.

The general idea in this development was to establish a
valid design-flow for a ANN-based integrated circuit to be
reusable in some other applications, rather than focus on
integrating a high throughput processing unit.

The mixed analog-digital architecture presented in this
work can be used in applications where the main focus
is the on-chip learning ability of the ANN rather than a
high processing/inference capability. This includes all au-
tonomous systems with relatively slow time constant but a
very long lifetime. Possible applications may be found in
medical engineering, automotive engineering and consumer
products.
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