
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/223938078

Artificial neural networks in hardware: A survey of two decades of progress

Article  in  Neurocomputing · December 2010

DOI: 10.1016/j.neucom.2010.03.021 · Source: DBLP

CITATIONS

380
READS

4,270

2 authors:

Some of the authors of this publication are also working on these related projects:

Formal Verification of Real-Time Systems View project

Battery-Constrained Robot Path and Task planning for Different Charging Strategies View project

Janardan Misra

Accenture

37 PUBLICATIONS   506 CITATIONS   

SEE PROFILE

Indranil Saha

Indian Institute of Technology Kanpur

34 PUBLICATIONS   827 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Janardan Misra on 21 June 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/223938078_Artificial_neural_networks_in_hardware_A_survey_of_two_decades_of_progress?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/223938078_Artificial_neural_networks_in_hardware_A_survey_of_two_decades_of_progress?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Formal-Verification-of-Real-Time-Systems?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Battery-Constrained-Robot-Path-and-Task-planning-for-Different-Charging-Strategies?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Janardan_Misra?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Janardan_Misra?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Accenture?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Janardan_Misra?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Indranil_Saha6?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Indranil_Saha6?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Technology_Kanpur?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Indranil_Saha6?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Janardan_Misra?enrichId=rgreq-88c9120a53f046f4681790f91a932f0d-XXX&enrichSource=Y292ZXJQYWdlOzIyMzkzODA3ODtBUzo2NDAwMTc0NzkyNTgxMTNAMTUyOTYwMzQ2NjgzNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Artificial Neural Networks in Hardware: A Survey of Two Decades

of Progress∗

Janardan Misra†

HTS Research Lab
151/1 Doraisanipalya, BG Road, Bangalore 560076, India

Email: janardan.misra@gmail.com
Indranil Saha

Computer Science Department
University of California, Los Angeles, CA 90095, USA

Email: indranil@cs.ucla.edu

Abstract

This article presents a comprehensive overview of the hardware realizations of Artificial Neural Net-
work (ANN) models, known as Hardware Neural Networks (HNN), appearing in academic studies as
prototypes as well as in commercial use. HNN research has witnessed a steady progress for more than
last two decades, though commercial adoption of the technology has been relatively slower. We study
the overall progress in the field across all major ANN models, hardware design approaches, and appli-
cations. We outline underlying design approaches for mapping an ANN model onto a compact, reliable,
and energy efficient hardware entailing computation and communication and survey a wide range of
illustrative examples. Chip design approaches (digital, analog, hybrid, and FPGA based) at neuronal
level and as neurochips realizing complete ANN models are studied. We specifically discuss, in detail,
neuromorphic designs including spiking neural network hardware, cellular neural network implementa-
tions, reconfigurable FPGA based implementations, in particular, for stochastic ANN models, and optical
implementations. Parallel digital implementations employing bit-slice, systolic, and SIMD architectures,
implementations for associative neural memories, and RAM based implementations are also outlined.
We trace the recent trends and explore potential future research directions.

Keyworld: Hardware neural network, neurochip, parallel neural architecture, digital neural design, ana-
log neural design, hybrid neural design, neuromorphic system, FPGA based ANN implementation, CNN
implementation, RAM based implementation, optical neural network.

1 Introduction

Hardware devices designed to realize Artificial Neural Network (ANN) architectures and associated learning
algorithms especially taking advantage of the inherent parallelism in the neural processing are referred as
Hardware Neural Networks (HNN). Although most of the existing ANN applications in commercial use
are often developed as software, there are specific applications such as streaming video compression, which
demand high volume adaptive real-time processing and learning of large data-sets in reasonable time and
necessitate the use of energy-efficient ANN hardware with truly parallel processing capabilities. Specialized
ANN hardware (which can either support or replace software) offers appreciable advantages in these situations
as can be traced as follows [195]:

• Speed: Specialized hardware can offer very high computational power at limited price and thus can
achieve several orders of speed-up, especially in the neural domain where parallelism and distributed

∗This is an earlier (and extended) version of the article: J. Misra and I. Saha: “Artificial neural networks in hardware: A
survey of two decades of progress”. Neurocomputing 74(1-3): 239-255 (2010).
†Corresponding author.

1



computing are inherently involved. For example, Very Large Scale Integration (VLSI) implementations
for Cellular Neural Networks (CNNs) can achieve speeds upto several teraflops [115] (2000), which
otherwise is a very high speed for conventional DSPs, PCs, or even work stations.

• Cost: A hardware implementation can provide margins for reducing system cost by lowering the total
component count and decreasing power requirements. This can be important in certain high-volume
applications, such as ubiquitous consumer-products for real-time image processing, that are very price-
sensitive.

• Graceful Degradation: An intrinsic limitation of any sequential uni-processor based application is its
vulnerability to stop functioning due to faults in the system (fail-stop operations). Primary reason is
the lack of sufficient redundancy in the processor architecture. As some recent studies [329] (2007)
suggest, even with the advancement and introduction of the multi-core PC processors architectures,
the need for having effective fault-tolerant mechanisms is still present. In contrast to this parallel
and distributed architectures allow applications to continue functioning though with slightly reduced
performance (graceful degradation) even in the presence of faults in some components. For those
ANN application which require complete availability or are safety critical, fault tolerance is of utmost
importance and in this respect parallel hardware implementations offer considerable advantage.

Mapping highly irregular and non-planar interconnection topology entailing complex computations and
distributed communication on regular two dimensional surfaces poses significant challenge for the (VLSI)
HNN designers. Also since hardware constraints (especially analog components) may introduce computa-
tional errors, degradation of learning and lack of accuracy in results become a major challenge while designing
HNNs. These errors can divert the trajectory of the learning process, generally increasing the number of cy-
cles required to achieve convergence. Non-linearity of activation functions poses yet another challenge while
designing a compact hardware. To address these challenges wide spectrum of technologies and architec-
tures have been explored in the past. These include digital [172, 134, 31] (1992,1995,2003), analog [214, 39]
(1989,2004), hybrid [278, 186] (1999,2004), FPGA based [281, 233, 2] (2005,2007,2009), and (non-electronic)
optical implementations [222, 300, 176] (1996,2000,2007). At this point it is important to add that, for
practical purposes, a HNN realizing an ANN model alone is not sufficient by itself and a fully operational
system would demand many other components e.g., for sensor acquisition, for pre and post processing of
inputs and outputs etc.

Although not as widespread as ANNs in software, there do exist HNNs at work in real world applications.
Examples include Optical Character Recognition, Voice Recognition (Sensory Inc. RSC Micro controllers
and ASSP speech recognition specific chips), Traffic Monitoring (Nestor TrafficVision Systems), Experiments
in High Energy Physics [72] (1993) (Online data filter and Level II trigger in H1 electron-proton collision
experiment using Adaptive Solutions CNAPS boards), adaptive control, and robotics. See Table 1 for more
examples.

With the advent of these technologies need of having timely surveys has also been felt. There are indeed
several surveys which have appeared from time to time in the past. We will briefly discuss these surveys
next.

Related Surveys: [214] (1989) by Mead, [172, Part IV] (1992) by Kung, and [105] (1994) by Glesner
and Poechmueller are some early references on the VLSI implementations of the ANN models. Lindsey
and Lindbad [195, 196] (1994,1995) present one of earliest detailed overviews of the field covering most
of electronic approaches as well as commercial hardware. Heemskerk [122] (1995) presents an overview of
Neurocomputers built from accelerator boards, general purpose processors, and neurochips coming out from
both industries and academia upto mid 90s. Ienne et al. [135] (1996) present a survey of digital implemen-
tations by considering two basic designs: Parallel systems with standard digital components and parallel
systems with custom processors. They also discuss their experience with running a small ANN problem
on two of the commercially available machines and conclude that most of the training times are actually
slower or only moderately faster than on a serial workstation. Aybay et al. [22] (1996) lay out a set of
parameters, which can be used to classify and compare digital neurocomputers and neurochips. Moerland
and Fiesler [221] (1997) present an overview of some of the important issues encountered while mapping
an ideal ANN model onto a compact and reliable hardware implementation, like quantization and associ-
ated weight discretizations, analog nonuniformities, and nonideal responses etc. They also discuss hardware

2



Applications Examples (HNN Types)

High Energy Physics [72] (1993) (Digital-neurochip)
Pattern Recognition [313] (2005)(FPGA), [31] (2003)(Digital)
Image/Object Recognition [7, 21] (1984,2005) (RAM based), [268] (2008) (Optical)
Image Segmentation [310] (1997) (FPGA), [279] (2002) (Digital), [103] (2006) (FPGA)
Generic Image/Video Processing [158] (1994) (RAM based), [54, 119] (1991,2004) (Analog),

[179] (1994) (Optical), [198](FPGA)
Intelligent Video Analytics [169, 321] (2003) (FPGA), [260, 327] (2004) (Hybrid)
Finger Print Feature Extraction [218] (2003) (Analog)
Direct Feedback Control [197] (2002) (Analog)
Autonomous Robotics [90] (2003) (Digital), [30] (2004) (FPGA),

[16, 17] (2005,2006) (Hybrid), [247] (2007)(DSP)
Sensorless Control [187] (2006) (FPGA)
Optical Character/Handwriting Recognition [160] (2005) (Digital)
Acoustic Sound Recognition [75] (2006) (DSP)
Adaptive Signal Processing [151]
System identification [85]
Adaptive Control [85]
Real-Time Embedded Control [53] (1995) (Digital)
Audio Synthesis [44] (1994) (Analog)
Assignment Solver [130] (2003) (Analog), [311] (1992) (Digital)
Olfactory Sensing [166] (2007)

Table 1: Examples of HNN Applications

friendly learning algorithms. Sundararajan and Saratchandran [295] (1998) discuss in detail various parallel
implementation aspects of several ANN models (Back Propagation (BP) based NNs, ART NN, recurrent NN
etc) using various hardware architectures including scalable general purpose parallel computers and MIMD
(multiple instruction multiple data) with MPI interface. Individual chapters discuss reviews, analysis, and
experimental case studies, e.g., on implementations for BP based NNs and associated analysis of network and
training set parallelisms. Burr [43, 42] (1992,1991) presents techniques for estimating chip-area, performance,
and power consumption in the early stages of architectural exploration for HNN designs. These estimation
techniques are further applied for predicting capacity and performance of some of the neuro architectures.
Hammerstrom [114] (1998) provides an overview of the research done in the digital implementations of ANNs
till late 90s. Reyneri [256] (2002) presents an annotated overview of the ANNs with “Pulse Stream” modu-
lations including a comparative analysis of various existing modulations in terms of accuracy, response time,
power, and and energy requirements. Zhu and Sutton [330] (2003) survey Field Programmable Gate Array
(FPGA) based implementations of ANNs discussing different implementation techniques and design issues.
Based upon the purpose of reconfiguration (prototyping and simulation, density enhancement, and topology
adaptation) as well as data representation techniques (integer, floating point, and bit stream arithmetic)
it provides taxonomy for classifying these implementations. Reyneri’s survey on neuro-fuzzy hardware sys-
tems [257] (2003) is an important paper discussing various technological aspects of hardware implementation
technologies with a focus on hardware/software co-design techniques. Diasa et al. [74] (2004) is one of the the
latest surveys with specific focus to commercially available hardware. Schrauwen and D’Haene [281] (2005)
provide a brief overview of some of the recent FPGA based implementations of Spiking Neural Networks
(SNN). Another more recent article by Maguire et al. [207] (2007) also presents a detailed overview of FPGA
based implementations of SNN models and brings out important challenges ahead. Bartolozzi and Indiveri
in [26] (2007) provide a comparative analysis of various hardware implementations for the spiking synaptic
models. Smith [292] (2006) surveys digital and analog VLSI implementation approaches for neuronal models
with or without explicit time. Probably the most recent survey of the field with very interesting critical
historical analysis of the major developments and limitations of digital, analog, and HNN approaches is
presented by Hammerstrom and Waser in [112] (2008). Also Indiveri et al. [137] (2009) present a survey
of the recent progress in the field of neuromorphic designs and discusses challenges ahead for augmenting
these systems with cognitive capabilities. Some of the HNN topics have found wider audience and there are
specialized volumes on these topics. An edited volume by Austin [20] (1998) provides a detailed glimpse on
the RAM based HNN designs. Similarly another edited volume [238] (2006) by Ormoindi and Rajapakse
presents a recent update on FPGA based ANN implementations including foundational issues, various im-

3



plementations, and lessons learned from a large scale project. An edited volume by Valle [303] presents
discussions on various approaches to build smart adaptive devices.

Even though there exist several reviews and edited volumes on the subject, most of these either focus
on specific aspects of HNN research or may not be so recent. This paper attempts to survey on all major
HNN design approaches and models discussed in literature and in commercial use. Primary objective is to
review the overall progress in the field of HNN over last two decades across all major ANN models, hardware
design approaches, and applications. We cover these topics by including most of the important works which
have appeared in the literature with an optimistic perspective. However, owing to space limitations, there
are topics, which will not be covered in this survey including hardware friendly learning algorithms (e.g.,
perturbation learning [148] (1992), constructive learning [291] (1993), cascade error projection learning [79,
80] (1995, 2000), and local learning [52] (2004) with its special case of spike based Hebbian learning [138]
(2007)), HNN designs focused on specific ANN models (e.g., MLP with back propagation [171, 69] (1994,
2000), radial basis function networks [306, 321, 84] (1994, 2003, 2004), and Neocognitron [245] (2001)), and
neurocomputers [105, 294] (1994,1996).

Rest of the paper is organized as follows: Issues related to the parameters used for evaluating an HNN
system are highlighted in Section 2. Section 2 also presents discussion on difficulties in HNN classification.
Section 4 deals with different electronic approaches to implement a single neuron, whereas Section 5 provides
a presentation on complete HNN models available as chips. CNN implementations are covered in Section 7.
Neumorphic systems including implementations for spiking NNs are covered in Section 8. A discussion on
optical neurocomputers appears in Section 10. Finally Section 12 concludes the article by outlining some of
the possible future research directions.

2 Evaluation Parameters and Classification

An ANN is generally specified in terms of the network topology, activation function (AF), learning algorithm,
number and type of inputs/outputs, number of processing elements (neurons) and synaptic interconnections,
number of layers etc. For a hardware implementation, in addition, specifications may include the technology
used (analog, digital, hybrid, or FPGA), data representation (fixed/floating-point), weight storage, bits of
precision, programmable or hardwired connections, on-chip learning or chip-in-the-loop training, on-chip or
off-chip transfer function, e.g., look–up table, and degree of cascadability.

Based upon these parameters, various figures of merit are derived to indicate the resultant hardware
performance. The most common performance ratings include

• Connections-Per-Second (CPS) for processing speed: Rate of multiplication/accumulate operations
and transfer function computation during testing phase. This indicates how well the specific algorithm
suits the architecture.

• Connection-Updates-Per-Second (CUPS) for learning speed: Rate of weight changes during learning,
involving calculation and update of weights. This measures how fast a system is able to perform
input-output mappings.

• Synaptic Energy Average energy required to compute and update each synapse. Measured as WCPS
(watt per connection-per-second) or J per connection [256] (2002).

Sometimes normalizing the CPS value by the number of weights on the chip (CPSPW, or CPS per weight)
can be a better way to indicate the processing power of the chip [105] (1994). Similar ratings could be defined
for CUPS. Although CUPS normally refers to BP learning, its value could be given for other algorithms as
well. However note that an algorithm such as Boltzmann learning [116] (1996) may only need a few passes
through the training set as compared to perhaps 1000’s of epochs for BP. So a Boltzmann chip may have a
lower CUPS value than a BP chip, and yet accomplish the learning in a shorter time. Keulen et al. [159]
(1994) propose an improved measure that also accounts for accuracy by defining bit connection primitives
per second: CPPS = bi× bw×CPS, with bi and bw denoting input and weight accuracy in bits respectively.
For RBF, instead of these, pattern presentation rate is actually used as a performance parameter.

4



Hardware constraints, such as weights/ states precision, finite arithmetic/ quantization effects caused by
discrete values of the channel length, width of MOS transistor geometries, and AF realization play a major
role in HNNs. Cornu and Ienne [65] (1994) introduce the notion of algorithmic efficiency for performance
measurement and evaluation of digital neurocomputers. Algorithmic efficiency is defined as a measure of the
effect of the hardware constraints on the convergence properties of various ANN models to be simulated on a
neurocomputer. They argue that comparing relative speeds in MCUPS is not sufficient and instead estimate
global speedup of a neurocomputer as a product of its raw hardware speedup (corresponding to MCUPS)
and the algorithmic efficiency (w.r.t. a specific ANN model).

The non-linearity associated with the AFs represents one of the major bottlenecks in digital VLSI im-
plementation of ANNs, involving large overheads in time and silicon area. Possible solutions include use of
look–up tables [113, 235] (1990,2003) and piecewise linear approximating functions [10] (1997). In case of
look–up table, table size again imposes an upper bound on the number of bits. A statistical study by Holt
and Hwang [129] (1993) on the precision requirements for a two layer MLP with BP learning showed that
under certain assumptions (e.g., uniformly distributed input variables) a fixed point encoding of 16 bit is
sufficient and at least 12 bits might be essential. A mathematical analysis of the effect of limited precision
in analog hardware for weight adaptation in on-chip learning for single layer feed-forward neural networks
is discussed by Annema et al. [14] (1994). The analysis is further applied for a worst-case estimation of the
minimum size of the weight storage capacitors. Vollmer and Strey [308] (1999) present the experimental
analysis on the precision requirements under RBF and other training algorithms and conclude that RBF
requires at least 20 bits of precision as compared to 16 bits for BP. Bieu [29] (1998) presents several upper
and lower bounds for the number-of-bits required for solving a classification problem using neural networks.
These bounds are in turn used to devise ways for efficiently building the hardware implementations. Use of
1st and 2nd order Taylor interpolation also provides relatively high accuracy (up to 16-20 bits) even with
very small look-up tables (256 words).

For large scale neural network, synaptic storage density is very important, and memory optimization
plays an important role. However there is a trade-off between the memory size and power consumption
in the memory - one transistor DRAM has the highest density, but consumes more power than SRAM, as
DRAM memory cells need to be refreshed due to leakage current, on the other hand six transistor SRAM
consumes the least power, but achieves density which is factor 4 worse than one transistor DRAM.

Hardware Neural Network Classification

Neural network hardware is becoming increasingly difficult to classify in a way that the classification yields
useful comparative information for practical purposes. Primary source of difficulty arises from the multitude
of characteristics associated with any such hardware implementation both arising from chosen hardware as
well as underlying ANN model. As mentioned before, Aybay et al. [22] (1996) list several classification
attributes including transfer function characteristics: on-chip/off-chip, analog/digital, threshold/look-up
table/computation; cascadibility, clock and data transfer rates. Based upon these attributes several HNN
chips and designs were classified. Though such a classification covers wide range of attributes, extracting
information for practical purposes using comparative analysis is relatively difficult. For these reasons, we
do not attempt here to present another classification, though instead structure the discussion under several
themes - starting with a discussion on basic neuronal level hardware designs, then progressing to the chip level
approaches for various ANN models, followed by a discussion on several parallel implementation of specific
ANN models including CNN, and finally focusing discussion on specific approaches including neuromorphic
designs, and optical neurocomputers. In Table 2, we present an overview of the examples of various HNN
implementations across wide range of ANN models. Forthcoming sections provide further details on these.

3 Hardware Friendly Neural Algorithms

HNNs involve a variety of implementations using digital, analog, optical, and hybrid techniques. A common
factor is the mapping of neural network algorithms onto a reliable, compact, low cost, and fast hardware,
optimizing certain constraints like accuracy, space, power, and processing speed. The design aspect is gov-
erned by a balance of these criteria. In this framework, hardware friendly learning algorithms offer significant
advantages in design and overall reduction in the manufacturing cost albeit at the slight compromise on the

5



HNN Digital Analog Hybrid Neuromorphic FPGA Optical
ANN

MLP [318](1990) [96](2000)
RBF [82](1997) [306](1994) [321](2003)

[84](2004)
SOFM [267](1994) [106](2003)

[82](1997)
Feed Forward [171](1994) [187](2006) [150](1993)
Network [82](1997) [233](2007) [275](1995)
Spiking NN [279](2002) [194](2005) [30](2004)

[276](2001) [276](2001)
[281](2005)

Pulse [240](1999) [240](1999) [206](2003)
Coded NN [162](1999) [125](2003)
CNN [273](1995) [118](1992) [16](2005) [198](2005) [300](2000)

[272](1999) [161](1995) [246](2007)
[17](2006) [2](2009)

Associative [266](1991) [123](2002) [313](2005) [1](1987)
Memory [144](1989)
Recurrent NN [39](2004) [322](1990)
Stochastic NN [68](1993)

[24](1994)
[233](2007)

Table 2: ANN-HNN Table

algorithmic performance (e.g., convergence rate). Some of the widely applied algorithms in HNN designs are
discussed below:

• Perturbation Algorithms: The general idea is to obtain a direct estimate of the gradients (in
multilayer BP networks) by a slight random perturbation of some network parameters, using the
forward pass of the network to measure the resulting network error. These onchip training techniques
not only eliminate the complex backward pass but are also likely to be more robust to any non-
idealities occurring in hardware. The two main variants of this class of algorithms are node perturbation
and weight perturbation [148] (1992). Their main disadvantage lies in the sequential weight update
calculation as opposed to the parallel calculations in the conventional BP algorithms.

• Local Learning Algorithms: The implementation of a learning rule can be greatly simplified if it
uses information that is locally available [242] (1993), thereby minimizing the amount of wiring and
communication involved. Several local learning algorithms, that avoid a global back propagation of
error signals, have been designed. An example is an antiHebbian learning algorithm that is suitable for
optical neural networks [249] (1993). The weight updates in this algorithm depend only on the input
and output of that layer and one global error signal. Although not a steepest descent rule, it is still
guaranteed that the weights are updated along the descent direction. A promising approach is taken
in the stochastic Alopex (ALgorithm Of Pattern EXtraction), based on the correlation between the
changes of the individual weights and the network’s error measure [220] (1996). The main advantage
of this approach is that the weights can be updated synchronously and no modeling of the multipliers
and AFs is needed. Chen et al. [52] (2004) present two novel Monte Carlo sampling-based Alopex for
training neural networks, combining the sequential Monte Carlo estimation and Alopex-like procedure
for gradient-free optimization, and the learning proceeds within the recursive Bayesian estimation
framework.

• Networks with Heaviside Functions: The design of a compact digital neural network can be
simplified considerably when Heaviside functions are used as AFs instead of differentiable sigmoidal
functions. One of the earliest examples of such a learning rule is Madaline2 [314] (1990). It is based
on node perturbation, but the training error is minimized by investigating the effect of an inversion of
the activation value of a neuron. If this inversion reduces the Hamming error on the output neurons,
the incoming weights of the inverted neuron are adapted with a perceptron training algorithm to
reinforce this inversion. There exist constructive algorithms [291] (1993), which gradually build a

6



Heaviside network by adding neurons and weights. These algorithms are often based on the perceptron
algorithm that is used to adapt the weights of the freshly added neurons.

• Cascade Error Projection Learning: Duong [79] (1995) presented a new learning algorithm, quite
suitable for VLSI implementations of ANNs. The algorithm was termed as Cascade Error Projec-
tion (CEP), which is based upon cascade correlation architecture developed earlier by Fahlman and
Lebiere [83] (1990), which incrementally adds new neurons as hidden units during training phase. A
detailed mathematical analysis of CEP was presented in [80] (2000). CEP involves fewer iterations
and is more tolerant of low resolution in the quantization of synaptic weights. Therefore, CEP learns
relatively quickly and the circuitry needed to implement it is also simple. At this point is useful to
distinguish between the number of weight bits stored (usually 16-32 bits) which affects training and
the number of bits (usually the MSBs) effectively used in multiplication (usually 8-16 bits) to reduce
the complexity of HW (or SW) multipliers.

• Cellular Neural Network: Chua and Yang [59, 58, 56] (1988,1993) introduced CNN as an regular
array of locally interconnected analog processing elements, or cells, operating in parallel, whose dynamic
behavior is determined by the cell connectivity pattern (neighborhood extent) and a set of configurable
parameters. CNN by its very design is a circuit oriented architecture and is conceptually suitable for
hardware implementation. This is of special interest for VLSI implementation owing to the sparse local
connectivity present in a CNN.

4 Hardware Approaches to Neuronal Design

The transmission of signals in biological neurons through synapses is a complex chemical process in which
specific neurotransmitter substances are released. Their effect is to change the electrical potential in the
receiving cell by changing the Osmotic and ionic equilibrium across the cell membrane. If this potential
reaches a threshold, the neuron fires. Artificial neuron models attempt to reproduce this phenomena at
varying levels of abstractions [121] (2008).

In this section we describe the basic structure of digital and analog neurons used for HNN implementa-
tions and briefly discuss the implementations of spiking neurons and their synaptic dynamics. An analog
implementation is usually efficient in terms of chip area and processing speed, but this comes at the price of
a limited accuracy of the network components. In a digital implementation, on the other hand, accuracy is
achieved at the cost of efficiency (e.g., relatively larger chip area, higher cost, and more power consumption).
This amounts to a trade off between the accuracy of the implementation and the efficiency of its performance.

It is also important to add at this point that the HW designs to be discussed throughout this paper
involve significant manual ad-hoc steps, which is a time-consuming and expensive operation and a major
factor in increasing ‘time-to-market’. We will have bit more to say on this in the conclusion section.

4.1 Digital Neuron

In a digital neuron, synaptic weights are stored in shift registers, latches, or memories. Memory storage
alternatives include one, two or three transistor dynamic RAM, or four or six transistor static RAM [105]
(1994). Adders, subtracters, and multipliers are available as standard circuits, and non-linear AFs can be
constructed using look-up tables or using adders, multipliers etc. A digital implementation entails advantages
like simplicity, high signal-to-noise ratio, easily achievable cascadability and flexibility, and cheap fabrication,
along with some demerits like slower operations (especially in the weight × input multiplication). Also
conversion of the digital representations to and from an analog form may be required since usually input
patterns are available in analog form and control outputs also often required to be in analog form.

In a recent work Muthuramalingam et al. [227] (2007) discuss in detail issues involved with the im-
plementation of a single neuron in FPGA including serial versus parallel implementation of computational
blocks, bit precision and use of look-up tables. Hikawa [125] (2003) describes digital pulse-mode neuron
which employs piecewise-linear function as its AF. The neuron is implemented on a FPGA rendering the
piecewise-linear function programmable and robust against the changes in the number of inputs. In [284, 67]
(1991,1994), Daalen et al. demonstrate through experiments how linear and sigmoid AFs can be generated

7



in a digital stochastic bit stream neuron. The AF of the neuron is not built in the hardware explicitly,
rather it is generated by the interaction of two probability distributions. Different AFs can be generated by
controlling the distribution of the threshold values provided to each neuron.

Skrbek [290] (1999) presents an architecture and overview of shift-add neural arithmetic, for an optimized
implementation of multiplication, square root, logarithm, exponent and nonlinear AFs at neuronal level for
fast perceptron and RBF models. Functions are linearly approximated, for example, 2x is be approximated
as 2int(x)(1 + frac(x)) where int(x) calculates the integral part of x and frac(x) is its fractional part. Shift
operation calculates 2int(x), whereas linear approximation (1 + frac(x)) approximates remaining 2frac(x).
Further an FPGA based implementation for the shift-add arithmetic is discussed involving only adders and
barrel shifters.

4.2 Analog Neuron

In an analog neuron weights are usually stored using one of the following: resistors [108] (1987), charge-
coupled devices [3] (1990), capacitors [224] (1992), and floating gate EEPROMS [128] (1990). In VLSI, a
variable resistor as a weight can be implemented as a circuit involving two MOSFETs [316] (2000). However,
discrete values of channel length and width of the MOS transistors may cause quantization effect in the values
of the weight. The scalar product and subsequent nonlinear mapping is performed by a summing amplifier
with saturation [332] (1992).

In the analog domain the characteristic nonlinear functionality of neuronal AF can sometimes be captured
directly (e.g., above saturation level current and voltage characteristics of transistors), yet a coherent set
of all the basic elements is difficult to achieve. As the AFs used in software ANN implementations cannot
be easily implemented in VLSI, some approximation functions are instead considered to act as AFs [316]
(2000). Also analog neuron implementations benefit by exploiting simple physical effects to carry out some
of the network functions [214] (1989). For example, the accumulator can be a common output line to sum
currents. Analog elements are generally smaller and simpler than their digital counterparts. On the other
hand, obtaining consistently precise analog circuits, especially to compensate for variations in temperature
and control voltages, requires sophisticated design and fabrication.

In analog modeling, signals are typically represented by currents [306] (1994) and/or voltages [128] (1990)
which work with real numbers. Current flow is preserved at each junction point by Kirchhoff’s Current Law,
and during multiplication various resistance values can be used for the weighting operation of the signal.
Thus a network of resistors can simulate the necessary network connections and their resistances are the
adaptive weights needed for learning. Besides, the non linear voltage-current response curve of field effect
transistors (FETs) makes them especially suitable for simulating neuronal AFs. However, the encoding
of signals as voltages makes certain operations like addition rather difficult to implement as compared to
multiplication and threshold activation. Also a major problem with this representation scheme is that before
performing any operation a signal needs to be held constant for some time. The current which flows between
the source and sink depends linearly on the potential difference between them, and the proportionality
constant is determined by the stored charge. Learning involves weight updates corresponding to changes
in the amount of charge stored. Even if the power source is disconnected, the magnitude of the weights
remains unchanged. A different approach [54] (1991), with charged coupled devices (CCDs), is used to store
the charge dynamically.

The main challenges for analog designs are the synapse multiplier over a useful range and the storage of
the synapse weights. Moreover, there are some characteristics inherent to analog computation like the spatial
non-uniformity of components (which are particularly troublesome when the training of the network is done
off-chip, without taking these component variations into account) and non-ideal responses (that particularly
affect the implementation of a linear multiplication and nonlinear AF, like the standard sigmoid).

There are also attempts for designing digitally programmable analog building blocks for ANN implemen-
tations. Almeida and Franca [9] (1996) propose a synapse architecture combining a quasi-passive algorithmic
digital to analog converter providing a 7-bit bipolar weight range and on-chip refreshing of the analog weight
followed by a four quadrant analog-digital multiplier with extended linear range. Hamid et al. [111] (2005)
discuss an approach of including the effect of Deep Sub-Micrometer (DSM) noise in MOSFETs for circuit-
level and architecture-level simulations. They show that that DSM noise has the potential to be exploited for
probabilistic neural computation architecture hardware implementation. For example, they tested the effect

8



of a noisy multiplier on the performance of Continuous Restricted Boltzmann Machine (CRBM) [48, 49]
(2002,2003) and result demonstrate that stochastic neuron implemented using noisy MOSFET can produce
performance comparable with that of a “perfect” CRBM with explicit noise injected into it.

4.3 Silicon Implementation of Spiking Neuron and its Synaptic Dynamics

Actual communication between biological neurons happens by short electrical pulses, which are known as
action potentials or spikes. Integrate and fire (I&F) neuron model is among the simplest models with spiking
dynamics. An I&F neuron model can handle continuously time varying signals, support synchronization, and
is computationally powerful as compared to non spiking neuron models [100] (2002). Leaky I&F model and
its generalization as spike response model, non-linear I&F model, Hodgkin-Huxley model, Mihalas-Niebur
model, and Morris-Lecar model are among the better known extensions of the basic I&F model. Networks of
I&F neurons exhibit a wide range of capabilities including feature binding, segmentation, pattern recognition,
onset detection, and input prediction [202] (2001). We will next briefly discuss some of the representative
hardware implementations (generally using mixed-mode circuits) for I&F model and some of its extensions
since they are often used while designing neuromorphic systems as discussed later in the Section 8.

For adequately realizing an I&F model in hardware, it is necessary that the realized hardware can set at
least an explicit threshold to define occurrence of a spike and implements spike-frequency adaptation. One of
the early designs meeting these requirements was proposed by Schultz and Jabri in [282] (1995) which can set
an explicit threshold voltage and can realize spike-frequency adaptation. Because these spiking neuron models
are capable of generating potentially varied functionalities, their detailed hardware realizations naturally tend
to consume relatively larger silicon area and power. For example, Rasche and Douglas [253] (2000) describe
an analog implementation of Hodgkin-Huxley model with 30 adjustable parameters, which required 4mm2

area for a single neuron. Therefore in order to be able to build larger neuromorphic systems using these
models, it is necessary that these designs are optimized for area and power requirements. Schaik [276] (2001)
presents a circuit design for generating spiking activity. The circuit integrates charge on a capacitor such
that when the voltage on the capacitor reaches a certain threshold, two consecutive feedback cycles generate
a voltage spike and then bring the capacitor back to its resting voltage. The size of the presented circuit
is small enough that it can be used in designing the larger systems on a single chip. Later, Indiveri and
Fusi [138] (2007) present a design employing 20 transistors and 3 capacitors for the leaky I&F model with
average power consumption in the range of [0.3–1.5]µW.

Models by Izhikevich [146] (2003) and Mihalas and Niebur [217] (2009) are one of the recent attempts
to define computationally simpler models of a spiking neuron having biological accuracy for spiking and
bursting activity. The silicon realization of the Izhikevich’s model has been presented in a recent work
by Wijekoon and Dudek [315] (2008). However since Izhikevich’s model does not land itself directly to
parametric biological interpretation, it is bit difficult to integrate in larger neuromorphic designs. Folowosele
et al. [91] (2009) on the other hand present the hardware realization of a simplified Mihalas and Niebur’s
model in terms of switched capacitor circuits fabricated using 0.15um CMOS technology, which could be
used in larger neuromorphic systems.

There have also been concentrated efforts in modeling and implementing temporal dynamics of synaptic
(ionic) current in a biological neuron enabling learning of neural codes and encoding of spatiotemporal spike
patterns. Synaptic circuits implementing synaptic dynamics operate by translating presynaptic voltage
pulses into postsynaptic currents injected in the membrane of the target neuron, with a gain corresponding
to the synaptic weight. Briefly the implementations for the synaptic models can be classified as presented
by Bartolozzi and Indiveri in [26] (2007):

• Multiplier Synapse: For models representing synaptic information in terms of mean firing rates, synapse
is usually modeled as a multiplier circuit.

• Pulsed Current-Source Synapse: Synapse is implemented in analog form using transistors operating
in subthreshold region such that an output pulsed current from the synapse circuit is generated for
the duration of the input voltage spike given to it digitally. The underlying model represents synaptic
information in terms of mean firing rates. See [214, 95] (1989, 2000).

9



• Reset-and-Discharge Synapse: Using 3 p-EFT transistors and a capacitor such implementation can
give rise to a postsynaptic excitatory current (EPSC), which can last longer then the input voltage
spike and decays exponentially with time. See [181] (1994).

• Linear Charge-and-Discharge Synapse: It is a variant of reset-and-discharge synapse, where first the
input voltage spike decreases linearly as the postsynaptic excitatory current increases exponentially.
After this, input voltage pulse increases to a reference power supply voltage and at the same time
postsynaptic current decreases. See [19] (2004).

• Current-Mirror-Integrator Synapse: It is a variant of linear charge-and-discharge synapse where 2
transistors and a capacitor form a current mirror integrator circuit. In contrast to linear charge-and-
discharge synapse, postsynaptic excitatory current increases in a sigmoidal fashion and later decreases
in a hyperbolic fashion with respect to time. See [139] (2000).

• Log-Domain Integrator (LDI) Synapse: It is another variant of linear charge-and-discharge synapse
which utilizes the logarithmic relationship between subthreshold MOSFET gate-to-source voltage and
the channel current. The resultant synaptic circuit works like a linear low-pass filter. However the
circuit area is relatively larger as compared to other models. See [216] (2004).

• Diff-pair Integrator (DPI) Synapse: Destexhe et al [73] (1998) proposed a macroscopic model for
synaptic transmission and the linear summation property of postsynaptic currents, for which Bartolozzi
and Indiveri [26] (2007) propose a VLSI synaptic circuit - the diff-pair integrator - that implements
this model as a log-domain linear temporal filter and supports synaptic properties including short-
term depression to conductance based EPSC generation. The synaptic circuit uses six transistors and
a capacitor and effectively works same as low-pass linear filter. However unlike LDI synapse, DPI
synapse can give rise to exponential dynamics for both excitatory as well as inhibitory postsynapptic
currents.

For further details, reader is suggested to refer to [26] (2007), where authors present an overview and
comparative analysis of existing synaptic circuits proposed in the literature, e.g., [131, 19, 18] (2006,2004),
including their own DPI circuit.

5 Hardware Neural Network Chips

This section provides an overview of HNNs implemented as chips, also known as neurochips, realizing com-
plete ANN models. These include digital neurochips, analog neurochips, hybrids, neuromorphic implemen-
tations, FPGA-based neurochips, RAM based neurochips, and neurochips for neural associative memories.
A general-purpose neurochip is capable of implementing more than one neural algorithm for a particular
application, while a special-purpose neurochip models a particular neural algorithm for many applications.

Typically an activation block, performing the weight × input multiplication and their summation, is
always on the neurochip, whereas other blocks, involving neuron state, weights, and activation function,
may be on/off the chip and some of these functions may even be performed by a host computer. Neuron
states and weights can be stored in digital/analog form, and the weights can be loaded statically or updated
dynamically.

5.1 Digital Neurochips

The majority of the available digital chips use CMOS technology. There are several categories of digital
chips, like bit-slice, single instruction multiple data (SIMD), and systolic arrays. The advantages of digital
technology include the use of well-understood fabrication techniques, RAM weight storage, and flexible
design. The biggest challenge for designers is the synapse multiplier, which normally is the slowest element
in the network processing.

In case of conventional bit-slice architectures, a processor is constructed from modules, each of which
processes one bit-field or “slice” of an operand. They provide simple and cheap building blocks (typically
single neurons) to construct networks of larger size and precision. An example is Micro Devices’ MD1220

10



Neural Bit Slice [66] (1990), one of the first commercial HNN chips. It has eight neurons with hard-limiting
thresholds and eight 16-bit synapses with 1-bit inputs. With bit-serial multipliers in the synapse, the chip
provides a performance of about 9 MCPS. Other examples of slice architectures are the Philips’ Lneuro
chip [211] (1992) and the Neuralogix’ NLX-420 Neural Processor[234] (1990). Slice architectures generally
include off chip learning.

In case of SIMD, each of the multiple PEs run the same instruction simultaneously, but on different data
sets [215] (1991). For a better match with ANN requirements one has to turn to programmable systems, and
most such designs are SIMD with minor variations. Instructions are often horizontally encoded, that is, each
field of the instruction word directly configures a part of the PE1. The two features, viz., no address/issue
logic and reduced instruction decoding, render the implementation suitable for the resources required by
general ANNs. In Adaptive Solutions’ N64000 [113] (1990) with 64 PEs, each PE holds a 9 × 16-bit integer
multiplier, a 32-bit accumulator, and 4 KB of on-chip memory for weight storage. Kim et al. [160] (2005)
propose a high performance neural network processor based on the SIMD architecture that is optimized
for image processing. The proposed processor supports 24 instructions, and consists of 16 Processing Units
(PUs) per chip. Each PU includes 24-bit 2K-word Local Memory and one PE.

In case of systolic array based designs, each PE does one step of a calculation synchronously with other
PEs and then passes its result to the next processor in the pipeline, thus making the architecture very
suitable for implementing efficient synapse multiplier. For example, in Siemens’ MA-16 [40] (1993), fast
matrix-matrix operations (multiplication, subtraction, or addition) are implemented with 16-bit elements
for 4 × 4 matrices. The multiplier outputs and accumulators have 48-bit precision. Weight storage is
off-chip RAM and neuron transfer functions are off-chip via look–up tables. Generally systolic arrays are
application specific processing arrays for problems displaying a large amount of fine-grained parallelism, and
thus they are well matched to ANNs having low data bandwidth and potentially high utilization ratio of the
processing units. Their disadvantage lies in the high complexity of the system controlling and interfacing the
array with a host system. Some further examples of systolic architectures for HNNs include vector processor
arrays [60] (1992), common bus architecture [105] (1994), ring architecture [134] (1995), and TORAN (Two-
in-One Ring Array Network) architecture [11] (1999). Eppler et al. [82] (1997) presented a cascadable,
systolic processor array called Simple Applicable Neural Device (SAND), designed for fast processing of
neural networks. The neurochip may be mapped on feed-forward networks, RBF, and Kohonen feature
maps. The chip is optimized for an input data rate of 50 MHz, 16 bit data and could be considered having
low cost at the time of its design. The performance of a single SAND chip that uses four parallel 16 bit
multipliers and 40 bit adders in one clock cycle is 200 MCPS. In early nineties, Wang proposed an analog
recurrent neural network [311] (1992) based on the deterministic annealing network for solving the assignment
problem. However, that analog implementation required mapping the massive number of interconnections
and programming the parameters. Later Hung and Wang [130] (2003) presented the digital realization of
the same by mapping it to a one dimensional systolic array with ring interconnection topology. A scaled
down version was realigned using FPGA based devices. Interestingly, they demonstrate that regularities
in the data for the assignment problem could be used to eliminate the need of multiplication and devision
operations.

Apart from the above, other digital HNN designs also exist. Bagging [38] (1996) is a technique for im-
proving classification performance by creating ensembles. Bagging uses random sampling with replacement
from the original data set in order to obtain different training sets. It is observed that bagging significantly
improves classifiers that are unstable in the sense that small perturbations in the training data may result in
large changes in the generated classifier. Bermak and Martinez [31] (2003) present a 3D circuit implemen-
tation of bagging ensembles for efficient pattern recognition tasks. Individual classifiers within the ensemble
are decision trees specified as threshold networks having a layer of threshold logic units (TLUs) followed by
combinatorial logic elements. The proposed architecture supports a variable precision computation (4/8/16–
bit) and configurable network structure w.r.t. number of networks per ensemble or the number of TLUs and
inputs per network.

1In a horizontally encoded instruction set, each field in an instruction word controls some functional unit or gate directly,
as opposed to vertical encoding where instruction fields are decoded (by hard-wired logic or microcode) to produce the con-
trol signals. A horizontally encoded instruction allows operation level parallelism by specifying more than one independent
operations and thus in a single cycle multiple operations can be performed simultaneously. Because an architecture using
horizontal encoding typically requires more instruction word bits it is sometimes known as a very long instruction word (VLIW)
architecture [89] (1983). These architectures are especially suitable for HNN implementations.

11



In self-organizing feature map (SOFM) the capability of calculating the exact equation of the learning
rule and the distance required by a PE has a direct bearing on the chip area. In particular, it becomes
too large when large number of PEs are to be considered. Rueping et al. [267] (1994) present a digital
architecture based on the idea that restriction on the learning algorithm may simplify the implementation.
In this architecture the Manhattan Distance and a special treatment of the adaptation factor are used to
decrease the necessary chip area so that a high number of PEs can be accommodated on a single chip. The
hardware is extendable and advantageous to realize map sizes of 10×10 in one chip with only 28 pins. With
binary data, even higher performance (> 25 GCPS for a 50× 50 map) can be achieved.

Recently, Dibazar et al. [75] (2006) discuss Texas instrument’s TMS320C6713 DSP Starter Kit (a floating
point DSP processor) based implementation of a Dynamic Synapse Neural Network model for acoustic sound
recognition in noisy environments. The developed hardware achieves an accuracy of 90% for classification
and localization task for gunshot recognition.

5.2 Analog Neurochips

Some of early fully developed analog chips include Intel’s ETANN and Synaptic’s Silicon Retina. Intel’s
Electrically Trainable Analog Neural Network (ETANN) 80170NX [128] (1990) is an elaborate analog chip
with 64 fully connected neurons. It is a general-purpose neurochip where analog non-volatile weights are
stored on-chip as electrical charge on floating gates, and Gilbert-multiplier synapses provide four-quadrant
multiplication. ETANN does not support on-chip learning and only a chip-in-the-loop mode using a host
computer is used so that at the end of the learning phase weights could be downloaded on the chip. The
chip is reported to achieve a calculation rate of 2 GCPS, accuracy of 4-bits with a 64-bit bus, and 10,240
programmable synapses. ETANN chips can be cascaded to form a network of upto 1024 neurons with upto
81,920 weights, by direct-pin/bus interconnection. The Mod2 Neurocomputer [226] (1992) is an early design
employing 12 ETANN chips for real-time image processing. Later many other systems utilized these ETANN
chips including MBOX II [44] (1994), an analog audio synthesizer with 8 ETANN chips.

Competition based ANNs such as Kohonen SOFM often need calculating distances between input vectors
and the weights. An analog implementation for an SOFM generally results into a compact circuit block that
accurately computes the distances. Common measures for calculating the distances include the Euclidean
distance function and the Manhattan distance function. Circuits for calculating distance by the method
of Euclidean distance function have been presented by Lanbolt et al. [178] (1992) and Churcher et al. [61]
(1993). In early 90s, Churcher et al. [61] (1993) presented circuits for calculating Euclidean distance measure.
Later, Gopalan and Titus [106] (2003) provide an analog VLSI implementation of a wide range of Euclidean
distance computation circuit which can be used as part of a high-density hardware implementation of a
SOFM.

Liu et al. [197] (2002) present a mixed signal CMOS feed-forward chip with on-chip error-reduction
hardware for real-time adaptation. The chip was fabricated through MOSIS in Orbit 2µm n-well process
and weights were stored in capacitors targeting oscillating working conditions. The implemented learning
algorithm is a genetic random search algorithm, known as Random Weight Change (RWC) algorithm, which
does not require a known desired neural-network output for error calculation and is thus suitable for direct
feedback control. In experiments, the RWC chip, as a direct feedback controller, could successfully suppress
unstable oscillations modeling combustion engine instability in real time. Nonetheless, volatile weight storage
remains an issue limiting the possible applications.

Ortiz and Ocasio [239] (2003), on the other hand, present a discrete analog hardware model for the
morphological neural network, which replaces the classical operations of multiplication and addition by
addition and maximum or minimum operations.

Milev and Hristov [218] (2003) present an analog-signal synapse model using MOSFETs in a standard
0.35-µm CMOS fabrication process to analyze the effect of the synapse’s inherent quadratic nonlinearity on
learning convergence and on the optimization of vector direction. The synapse design is then used in a VLSI
architecture consisting of 2176 synapses for a finger-print feature extraction application.

Brown et al. [39] (2004) describe the implementation of a signal processing circuit for a Continuous-Time
Recurrent Neural Network using subthreshold analog VLSI in mixed-mode (current and voltage) approach,
where state variables are represented by voltages while neural signals are conveyed as currents. The use
of current allows for the accuracy of the neural signals to be maintained over long distances, making this

12



architecture relatively robust and scalable.
Bayraktaroglu et al. [28] (1999) discuss - ANNSyS - a system for synthesizing analog ANN chips by

approximating on-chip training to provide the starting point for ‘chip-in-the-loop training’. The synthesis
system is based on SPICE circuit simulator and a silicon assembler and designed for analog neural networks
to be implemented in MOS technology.

5.3 Hybrid Neurochips

Hybrid Chips combine digital and analog technologies in an attempt to get the best of both. For example,
one can use analog internal processing for speed with weights being set digitally. As an example, consider the
hybrid Neuro-Classifier from the Mesa Research Institute at University of Twente [210] (1994), which uses 70
analog inputs, 6 hidden nodes, and one analog output with 5-bit digital weights achieving the feed-forward
processing rate of 20 GCPS. The final output has no transfer function, so that multiple chips can be added
to increase the number of hidden units. Similarly [186] (2004) presents a hardware efficient matrix-vector
multiplier architecture for ANNs with digitally stored synapse strengths.

Cortical neurons [77, 4] (1991,1994) whose major mode of operation is analog can compute reliably even
with the precision limitation of analog operations owing to their organization into populations in which
a signal at each neuron is restored to an appropriate analog value according to some collective strategy.
Douglas et al. [78] (1994) describe a hybrid analog-digital CMOS architecture for constructing networks of
cortical amplifiers using linear threshold transfer function. Romariz et al. [261] present a hybrid architecture
for neural co-processing in which a fixed set of analog multipliers and capacitors (analog memory) emulates
multilayer perceptions through digitally-controlled multiplexing, thus preserving parallelism partially without
direct analog implementation of the whole structure.

A hybrid architecture with on-chip learning has been presented in [278] (1999). The overall circuit
architecture is divided into two main parts with regard to their operating modes, viz., analog and digital.
The analog ANN unit executes the neural function processing using a charge based circuit structure. It is
composed of a 20 neuron layer, each with 10 bit vector inputs. The winner-takes-all unit is devoted to the
task of selecting one neuron as the winner on the criterion of the best degree of match between the stored
pixel pattern and the current input vector. On the other hand, the units for error correction, circuit control
and clock generation are kept purely digital.

5.4 FPGA Based Implementations

Reconfigurable FPGAs provide an effective programmable resource for implementing HNNs allowing different
design choices to be evaluated in a very short time. They are low cost, readily available, and reconfigurable
offering software like flexibility. Partial and online reconfiguration capabilities in the latest generation of
FPGAs offer additional advantages. However the circuit density using FPGAs is still comparably lower and
is limiting factors in the implementation of large models with thousands of neurons.

Krips et al. [169] (2002) present an FPGA implementation of a neural network meant for designing a real
time hand detection and tracking system applied to video images. Yang and Paindavoine [321] (2003) present
an FPGA based hardware implemented on an embedded system with 92% success rates of face tracking and
identity verification in video sequences.

Maeda and Tada [206] (2003) describe an FPGA realization of a pulse density NN using the simultaneous
perturbation method [205, 204] (1995,1997) as the learning scheme. The simultaneous perturbation method
is more amenable to a hardware realization than a gradient type learning rule, since the learning rule requires
only forward operations of the network to modify weights unlike the BP present in the gradient type rule.
Pulse density NN systems are also robust against noisy conditions.

In contrast to Custom VLSI, the FPGAs are readily available at a reasonable cost and have a reduced
hardware development cycle. Moreover, FPGA-based systems can be tailored to specific ANN configurations.
For example, Gadea et al. [96] (2000) present the implementation of a systolic array for a multilayer percep-
tron on a Xilinx Virtex XCV400 FPGA of a pipelined on-line BP learning algorithm. Huitzil and Girau [103]
(2006) map the integrate-and-fire LEGION (Local Excitatory Global Inhibitory Oscillator Network) spiking
neural model for image segmentation [299, 310] (1997) onto Xilinx Virtex XC2V1500FF896-4 device. How-
ever multiplication is bit costly using FPGAs since each synaptic connection in an ANN requires a single

13



multiplier, and this number typically grows as the square of the number of neurons. Mordern FPGAs, e.g.,
Xilinx’ Virtex II Pro [319] (2007) with embedded IBM PowerPC cores and Altera’s Stratix III [293] (2007),
though can have hundreds of dedicated multipliers.

In a relatively recent work Himavathi et al. [126] (2007) have used layer multiplexing technique to imple-
ment multilayer feed-forward networks into Xilinx FPGA XCV400hq240. The suggested layer multiplexing
involves implementing only the layer having the largest number of neurons. A separate control block is
designed, which appropriately selects the neurons from this layer to emulate the behavior of any other layer
and assigns the appropriate inputs, weights, biases, and excitation function for every neuron of the layer
that is currently being emulated in parallel. Each single neuron is implemented as a look-up table. To assess
the effectiveness of the design a flux estimator for sensorless drives [304] (1998) was used for testing with
reported 50% decrese in the number of neurons though adding an speed overhead of 17.7% because of the
control block.

Another recent study Rice et al. [258] (2009) reports that a FPGA based implementation of a neocortex
inspired cognitive model can provide an average throughput gain of 75 times over software implementation
on full Cray XD1 supercomputer. They use the hierarchical Bayesian network model based on the neocortex
developed by George and Hawkins [99] (2005). Their hardware-accelerated implementation on the Cray XD1
uses Xilinx Virtex II Pro FPGAs with off–chip SRAM memory and software implementation uses 5 dual
core 2.0 GHz Opteron processors.

An important problem faced by designers of FPGA based HNNs is to select the appropriate ANN model
for a specific problem to be implemented using optimal hardware resources. Simon Jothson and others
provide interesting insights in [154] (2005) for this purpose. They carried out a comparative analysis of
hardware requirements for implementing four ANN models onto FPGA. The selected models include MLP
with BP and RBF network as classical models, and two SNN models - leaky integrate and fire (LIF) and
spike response model. These models were then analyzed on a benchmark classification problem for FPGA
hardware resources. The results of the study suggest that LIF SNN model could be the most appropriate
choice for implementation for non-linear classification tasks.

FPGA Implementations of Stochastic ANN Models: Practical hardware implementations of large ANNs
critically demand that the circuitry devoted to multiplication is significantly reduced. One way to reduce
it is to use bit-serial stochastic computing [97] (1969). This uses relatively long, probabilistic bit-streams,
where the numeric value is proportional to the density of “1”s in it. For example, a real number r ∈ [−1, 1] is
represented as a binary sequence such that probability of a bit getting set to 1 is (r+1)/2. The multiplication
of two probabilistic bit-streams can be accomplished by a single two-input logic gate. This makes it feasible
to implement large, dense, fully parallel networks with fault tolerance. Even though stochastic computation
is simple, it may not always be efficient (see [256] (2002) for comparison.)

Most of the stochastic ANN models have been implemented in hardware using FPGAs [68, 24, 187, 233]
(1993,1994,2006,2007). Daalen et al. [68] (1993) describe an FPGA based expandable digital architecture
with bit serial stochastic computing to carry out the parallel synaptic calculations. Authors discuss that
fully connected multi-layered networks can be implemented with time multiplexing using this architecture.
FPGAs have also been used to implement stochastic computation with look–up table based architecture
for computing AF [24] (1994). Li et al. [187] (2006) discuss FPGA implementation of a feed forward
network employing stochastic techniques for computing the nonlinear sigmoid AFs. Further it is used to
design a neural-network based sensorless control of a small wind turbine system. Nedjah and Mourelle [233]
(2007) describe and compare the characteristics of two Xilinx VIRTEX-E family based FPGA prototype
architectures implementing feed-forward fully connected ANNs with upto 256 neurons. The first prototype
used traditional adders and multipliers of binary inputs while the second instead has stochastic representation
of the inputs with corresponding stochastic computations. They compare both prototypes in terms of space
requirements, network delays, and finally the time × area factor. As expected, stochastic representation
reduces space requirements to a good extent though resulting networks are slightly slower compared to
binary models.

5.5 Other Implementations

Szabo et al. [297] (2000) suggest a bit-serial/parallel neural network implementation method for pre-trained
networks using bit-serial distributed arithmetic for implementing digital filters. Their implementation of a

14



matrix-vector multiplier is based on an optimization algorithm, which utilizes CSD (Canonic Signed Digit)
encoding and bit-level pattern coincidences. The resulting architecture can be realized using FPGA or ASIC
and can be integrated into automatic neural network design environments. The suggested matrix multiplier
structure is useful for both in MLP designs as well as cellular neural networks (CNNs).

5.5.1 Implementations for Associative Neural Memories

Basic operation of an Associative Neural Memory (ANM) is to map between two (finite) pattern sets using
threshold operation. Palm et al. [241] (1993) studied a very simple model of a neural network performing this
task efficiently, where the input, output, and connection weights are binary. Ruckert et al. [266, 123] (1991,
2002) thereafter designed VLSI architectures for this model using analog, digital, and mixed signal circuit
techniques. Digital architecture is based on a 16-Kbit on-chip static RAM, a neural processing unit, a coding
block including input/output logic, and an on-chip controller providing 12 instructions for synchronizing,
controlling, and testing the modules. The learning rate estimated to be 0.48 GCUPS. The test chip contains
a 16 neuron × 16 synapse matrix using 1.2-µ CMOS technology. The designed chips can be scaled up, for
example, upto 4000 neurons, each having 16,000 inputs. Cascading such chips would further enlarge the
design. Willshaw et al. [317] (1969) define a type of ANM model called Correlation Matrix Memory (CMM),
where output pattern is a label associated with the most similar stored pattern to the input. Justin et al. [313]
(2005) discuss an FPGA based implementation of the pipelined binary-CMM with on-board training and
testing for high-performance pattern recognition tasks. For an accessible reference on various ANM models
the reader is referred to the edited volume by Hassoun [120] (1993) - Part IV discusses implementations of
several ANM models including an optical implementation.

5.5.2 RAM Based Implementations

First introduced by Bledsoe and Browning [32] (1959), RAM based NN (RNN) (also known as weightless
NN) [20, 200] (1998,1999) consists of PEs (neurons), which have only binary inputs and outputs and no
weight between nodes. Neuronal functions are stored into look-up tables, which can be implemented using
commercially available RAMs. Unlike other neural network models, they can be trained very rapidly and
can be implemented using simple hardware. Instead of adjusting weights in the conventional sense the RNNs
are trained by changing the contents of the look-up tables. RNNs have found applications including as a
class of methods for building pattern recognition systems. [20, 200] (1998,1999) provide detailed overview
on RNNs.

Aleksander et al. [7] (1984) provide the first hardware realization of a general purpose image recognition
system - WISARD, based on RAM circuits. In [62] (1992), hardware implementation of the probabilistic
RAM networks is presented, as well as the learning algorithm. Kennedy and Austin [158] (1994) describe
a SAT (Sum And Threshold) processor; a dedicated hardware implementation of a binary neural image
processor. The SAT processor is specifically aimed at supporting the Advanced Distributed Associative
Memory (ADAM) model. ADAM essentially is a two layered binary weighted neural network aimed at
recognizing and extracting features from images. Austin et al. further design C-NNAP (Cellular Neural
Network Associative Processor) [21] (1995), which is a MIMD array of ADAM based processors to provide
a distributed solution to the object recognition problems.

6 Parallel Implementations of Specific ANN Models

In this section we provide an overview of the mapping of some popular ANN models onto parallel hardware
architectures. These can also be categorized as special-purpose neurocomputers (ref. Section 9). The neural
algorithms considered here comprise BP in multilayer perceptron (MLP) [270] (1986), RBF network [223]
(1989). Although most neural learning algorithms typically involve a lot of local computations, the output
of an unit usually depends on the output of many other units. Hence, in the absence of a judicious mapping,
a parallel implementation can often spend the majority of its runtime in communication instead of actual
computation [288] (1990).

The key concepts of an efficient mapping are load balancing, and minimizing inter-PE communication
and the synchronization between them. Schoenauer et al. [280] (1998) examine basic strategies to map neural

15



networks on parallel computers. Based upon load balancing, inter-PE communication and synchronization,
and scalability, they discuss strategies for mapping with neuron-parallelism, synapse-parallelism, and input
pattern parallelism.

6.1 Back-propagation in MLP

There can be several forms of parallelism in the BP algorithm [236] (1992). For neuron level parallelism,
node-level calculations are viewed as matrix-vector products, and each row of the matrix is mapped onto
a processor, while for the synapse level parallelism each column of the matrix is mapped onto a processor.
When the learning is in batch-mode, a replica of the whole network and a partition of the training set patterns
are mapped on each processor. Each replica evaluates partial weight changes, that are then summed. In
layer forward-backward parallelism, the learning is in batch-mode and the forward and backward phases for
different training patterns can be pipelined.

When each processor simulates a single neuron or a connection, the hardware implementation is penalized
by the amount of communication required. Data partitioning has been implemented on the GF11 [318]
(1990), an SIMD parallel computer consisting of 556 processors capable of 20 MFLOPs (mega floating-point
operations per second) each. The NETTALK benchmark (203-60-26 with 12022 training patterns) provides
900 MCUPS with 356 processors. A modified version of BP has been implemented on the IPSC hypercube
[36] (1989). Each replica is trained i times in batch-mode using randomly selected examples. The weight
changes evaluated after i iterations are sent to a master that calculates the mean. The mean changes are
transmitted back to nodes that update weights, and the cycle restarts. A speed-up of 28.92 for i = 32 and
12.78 for i = 1 were obtained with 32 nodes, where speedup for n nodes is defined as the ratio of the time
for 1000 iteration on one node and the time for 1000 iterations on n nodes. Although the system allows fast
simulations, the user is constrained to batch-learning.

In network partitioning, the BP algorithm is viewed as a sequence of matrix-vector products that are
usually performed in a systolic fashion. A linear array of cascaded neural chips, HANNIBAL [232] (1995),
each with four PEs having local RAM storing 256 16-bit weights, has been used to implement the algorithm
in a pipeline. When a row of the weight matrix is mapped on each processor [174, 155] (1989,1994), the
elements of the input vector circulate through the processor network. As the ith element of the vector reaches
the jth processor, it is multiplied by the (i, j)th element of the matrix and the result is added to a partial
sum. On termination, the jth processor holds the jth element of the resulting vector. Since the elements of
the vector are transmitted unchanged, the computation can be easily overlapped with the communication.
On the other hand, when a column of the weight matrix and an element of the input vector are mapped
on each processor, the intermediate sums are moved between processors. In this case, the computation and
communication aspects cannot be overlapped [173] (1988). Typically when the sizes of the different layers
are not approximately equal, the mapping is not very efficient.

Feed-forward networks with BP learning have been mapped on p-processor hypercube [171] (1994) involv-
ing an embedding of

√
p×
√
p processor grid. Nodes of each layer are equally distributed among the diagonal

processors, while weights are equally distributed among all processors. This hypercube architecture employs
special partitioning scheme called checker–boarding, which allows concurrent non interfering communication
among processors. The communication aspect has been further explored in the context of vertical slicing
(neuron parallelism) [5, 163] (1997,1996). A communication-intensive batch version of the algorithm has
been implemented on Transputer arrays [248] (1989) as a sequence of matrix-matrix products [92] (1987).
Mapping of BP to various multiprocessor network topologies, like ring, hypercube, binary tree and extended
hypercube, have been evaluated [170] (1996). Second-order gradient-based learning has been developed on
pipeline and ring configurations [213] (1997).

Acierno [69] (2000) utilizes parallelism at the synaptic, neuronal, and training set levels to map the BP
algorithm to SIMD and ring-connected MIMD architectures. Communication involves all-to-one and one-to-
all broadcasting. Each processor is assumed to know all the training patterns and handles one hidden neuron.
Neuron parallelism is used to evaluate the activation values and error terms of the hidden neurons, while
synapse parallelism is used to evaluate the output node activations. The mapping is suitable for classification
problems, where output layer is smaller than other layers.

16



6.2 Radial Basis Function

RBF networks are conceptually much simpler to interpret and use, as compared to MLPs. While RBF
networks do not generalize that well, they can be trained very quickly especially if implemented in hardware.
The particular basis functions used for simulations can vary, but the signum (i.e., step function) or exponen-
tial functional are the favorites for the existing hardware. There are also numerous variations of the training
algorithms. IBM’s ZISC036 (Zero Instruction Set Computer) chip [132] (1994) is one such example. This
chip holds 36 prototypes, and can be easily cascaded to increase the available prototypes. The vectors con-
tain sixty four 8 bit elements, and the output classes can vary from 1 to 16383. The distance norm is either
the Manhattan block or the largest difference. This eliminates the need for multipliers, and hence achieves
greater speed and reduced circuit complexity. The basis functions are signum with radii ranging from 0
to 16383, while the learning algorithm is modified version of RCE. Maria et al. [209] (1994) discuss how
RBF networks can be efficiently implemented on 1D and 2D systolic arrays. Their proposed algorithms has
been useful for implementation in the MANTRA machine having 2D grid and the SMART Neuro-computer
with 1D ring. A parallel analog processor chip design for a RBF based portable kernel classifier has been
discussed by Verleysen et al. in [306] (1994).

A major factor that accounts for the advantages of RBFs or quadratic NNs (QNNs) [191] (1992) over
MLPs is related primarily to their closed-boundary discrimination property.Fakhraie et al. [84] (2004) demon-
strate the feasibility of the idea of using deep-submicron CMOS technology to implement closed-boundary
discriminators and efficient function-approximation building blocks. They showed that all important prop-
erties of QNNs in function approximation, pattern classification, and closed-boundary-region forming are
maintained in scaled submicron technologies. Yang and Paindavoine [321] (2003) describe a model that
allows detecting the presence of faces, to follow them, and to verify their identities in video sequences using
a RBF network. It also describes real time application using three hardware implementations on embedded
systems based on FPGA, ZISC chips, and DSP TMS320C62. The success rates and processing speeds for
images size of 288 × 352 for face tracking and identity verification were, respectively, 92% and 14 images/s
(FPGA), 85% and 25 images/s (ZISC), and 98.2% and 4.8 images/s (DSP).

6.3 Neocognitron

The Neocognitron [93, 199, 286] (1988,1997,2007) has a hierarchical structure oriented toward modeling the
human visual system. There are different layers composed of sets of planes, each plane consisting of a group of
cells. A two-dimensional image pattern applied at the first layer passes through the successive planes/layers
to the output layer, where it is recognized. The model is found to be position and size independent. A
parallel implementation of the Neocognitron has been made on a hypercube computer NCUBE [145] (1990).
Another approach to implementing incremental reinforcement of synaptic weights in the Neocognitron has
used a binary counter for digital storage of variable weights [141] (1990). Here FETs, ideally suited for
integrated circuit (IC) implementation, are controlled to provide variable weights. A mapping of the model
on a star topology is made in [245] (2001), using a parallel virtual machine with a linear speedup. Parallelism
is exploited at the planar level.

7 CNN Implementations

Chua and Yang [59, 58, 56] (1988,1993) introduced CNN as an regular array of locally interconnected
analog processing elements, or cells, operating in parallel, whose dynamic behavior is determined by the
cell connectivity pattern (neighborhood extent) and a set of configurable parameters. CNN by its very
design is a circuit oriented architecture and is conceptually suitable for hardware implementation. After the
inception of CNN, their implementations in hardware have attracted substantial interest covering different
types of CNN models differing in interaction type (e.g., linear, non linear, dynamic, or delay), modes of
operation (e.g., dense time versus discrete time, oscillating type versus dynamic), and grid topology (e.g.,
planar, polygonal, circular etc.) There exist analog [118, 161] (1992,1995), digitally programmable [273, 272]
(1995,1999), hybrid [16] (2005), FPGA [228, 198, 230, 246] (2003,2005,2007), as well as optical [300] (2000)
implementations for CNN. CNN implementations can achieve speeds upto several tera flops and are ideal for

17



the applications which require low power consumption, high processing speed, and emergent computation
e.g., real-time image processing [115] (2000). We will only briefly cover some of the recent representative
implementations here. For further details readers may look into the detailed overview [265] (2003) and
monographs [57, 115, 264] (2002,2000).

Rodriguez-Vazquez et al. [260] (2004) discuss ACE16k, a mixed-signal SIMD-CNN ACE (Analogic Cel-
lular Engine) chips as a vision system on chip realizing CNN Universal Machine (CNN-UM) [263] (1993).
ACE16k is designed using 0.35µm CMOS technology with 85% analog elements. Its design incorporates sev-
eral advancements over its predecessor ACE4k chip [192] (2002) including the use of local analog memories
and ACE-BUS enabling it to process complex spatio-temporal images in parallel through a 32-bit data bus
working at 120 MBPS with peak processing speed of 330 GOPS. The ACE16k chip consists of an array of
128×128 locally connected mixed-signal processing units operating under SIMD mode. Yalcin et al. in [320]
(2005) discuss the spatio-temporal pattern formation in ACE16k and Carranza et al. [45] (2005) present
design of a programmable stand-alone system ACE16k-DB for real-time vision pre-processing tasks using
ACE16k together with Xilinx XC4028XL FPGA. ACE16k chips have been used in commercial Bi-i [327]
(2005) speed vision system developped by AnaLogic Computers Ltd and MTA-SZTAKI. Also there exist
many recent topographic, sensory, and Cellular Wave Architectures and corresponding hardware implemen-
tations based upon CNN-UM. Zarandy et al. [167] (2005) present a brief overview of these implementations.
An FPGA based emulated-digital CNN-UM implementation using GAPU (Global Analogic Programming
Unit) as discussed by Voroshazi et al. [309] (2008) is a recent work in this direction. They discuss design
of an extended Falcon architecture using GAPU. Falcon was earlier proposed as a reconfigurable multi-layer
FPGA based CNN-UM implementation employing systolic array architecture by Nagy and Szolgay in [229]
(2003). In its original design, Falcon could compute result of only one iteration (e.g., only one image in a
vedio sequence) so in [309] (2008) a high level embedded control and arithmetic logic block (GAPU) is used
which could support several interation together. Actual design of the GAPU employs Xilinx MicroBlaze
arcchitecture. The comparitive tests revealed that in comparision to software based implmentation using
Intel core2 Duo T7200 processor with optimized C++ code, the FPGA based hardware implementation
could acheive 47 times speed up in time.

Arena et al. [16, 17] (2005,2006) discuss design of a CNN-based analog VLSI chip for real-time locomo-
tion control in legged robots. The analog chip core solves the gait generation task whereas digital control
modulates the behavior to deal with sensory feedback. An experimental six cell CNN chip is designed using
a switched capacitors in CMOS AMS 0.8- µm technology.

Anguita et al. [13] present implementations of fixed-template CNN’s with reduced circuit complexity using
single-polarity signals reducing the number of transistors required for signal replication and simple current-
mode circuits to implement the output pseudo-linear function and application specific network parameter
configurations Experimental results for a CCD-CNN chip prototype with a density of 230 cells per mm2 are
also reported.

One of the more recent works include the design of a stochastic bit-stream CNN model by A. Rak et
al. [2] (2009), which is implemented using FPGA. Also Ho et al. [127] (2008) suggest design of a CNN
simulator using graphics processing unit (GPU) [124] (2008) consisting of high performance parallel graphics
accelerators, by parallezing the CNN computations so that they can be executed concurrently.

8 Neuromorphic HNNs

Neuromorphic refers to a circuit that closely emulates the biological neural design. The processing is mostly
analog, although outputs can be digital. Examples include Silicon Retina [214] (1989) and Synaptic Touch-
pad [296]. Another important category of neuromorphic HNNs is Pulse Coupled Neural Networks (PCNNs)
[240, 162] (1999). These have been designed after the mammalian visual system, and further implemented
in hardware. Like many other NN models, PCNNs can perform image preprocessing, such as edge finding
and segmentation. The time series output is invariant to scaling, rotation and translation. A compact
architecture for analog CMOS hardware implementation of voltage-mode PCNNs is presented by Ota and
Wilamowski in [240] (1999), which shows inherent fault tolerance and high speed compared to its software
counterpart.

An important aspect of neuromorphic designs is the address event representation protocol (AER). There

18



has been a considerable effort to create larger neuromorphic neural networks with point-to-point pulse/spike
communication between neural assemblies. AER is used to emulate the point-to-point connections for SNNs
of considerable size. They are now quite popular in the neuromorphic community. This work was initiated by
Mahowald [208] (1994) and Mortara [225] (1994). Over the last years AER has been perfected by Boahen [34]
(2004) and a large AER neuromorphic network system in hardware for visual processing has been presented in
Serrano-Gotarredona et al. [107] (2005), claimed to be the most complex neuromorphic pulse communication
network yet. In a more recent work Bamford et al. [25] (2008) discuss design of a distributed and locally
reprogrammable address event receiver, which could allow for arbitrarily large axonal fan-out.

Selective attention is a mechanism used to sequentially select and process only relevant subregions of
the input space, while suppressing other irrelevant inputs arriving from other regions. By processing small
amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in
parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory
inputs. Indiveri [139, 140] (2000,2003) presents a 2-D neuromorphic hardware model called attention chip,
which implements a real-time model of selective attention, for sequentially selecting the most salient locations
of its inputs space. It is implemented on an analog VLSI chip using spike-based representations for receiving
input signals, transmitting output signals and for shifting the selection of the attended input stimulus over
time. Experiments were carried out using a 8× 8 grid, demonstrating how the chip’s bias parameters could
be used to impose different behaviors of the system. Also we should add the recent convolusion chip by
Serrano Gotarredona et al. [283] (2006), which can implement many classical NN computations, specifically
feature-maps.

The silicon retina are an important class of neuromorphic hardware with a potential to have commercial
success beyond pure research. The earliest electronic retina was proposed by Fukushima et al. [94] (1970)
in 1970 itself and was subsequently integrated onto an ASIC by Mahowald [208] (1994) in early nineties.
Besides spatial contrast/derivative retina, later focus has been turned towards temporal contrast/derivative
retina [168, 188] (2002,2007). However unlike the spatial contrast retina they do not communicate with
their neighbors to attain a collective computation. Recent and relatively popular studies on the design of a
neuromorphic model for mammalian retina include those by Boahen’s group [324, 325, 326, 33] (2004,2006).
In these studies both outer and inner retina were modeled such that outer retina model performs linear band-
pass spatiotemporal filtering and inner retina model performs high-pass temporal filtering and can realize
non linear temporal frequency adaptation as well as contrast gain control [324] (2004). The presented model
was fabricated as actual chip having 90×60 photoreceptor, 3.5×3.3 mm2 surface area using 0.35µm-CMOS
technology [325] (2004). As authors report, the chip has photoreceptor density only 2.5 times sparser that
the human cone density. However in contrast to actual mammalian retina, such designed retina chip does
not respond at high temporal frequencies (10 Hz and above) [326] (2006).

Another important topic of Neuromorphic hardware are the silicon cochleae. The network aspect is
somewhat weak for them, although the sensor nodes do have connections to one neighbour but more in
the manner of a processing chain than a network. Initial work in this direction was reported by Lyon and
Mead [201] (1988) and J. Lazzaro and Mead [180] (1989). Recent improvements have been reported by
Sarpeshkar et al. [274] (1998) and Chan et al. [47] (2007).

Indiveri et al. [137] (2009) present current state of the are in the field of neuromorphic engineering [177]
(1998) and discuss the challenges for designing cognitive–neuromorphic systems.

8.1 Spiking Neural Network Hardware

Spiking (or pulsed) ANNs (SNNs), a class of ANNs, model neurons on a level relating more closely to biology
and have attracted attention in many bio-sensing areas including image processing applications [194] (2005)
and olfactory sensing [166] (2007). They incorporate computation of membrane potentials, synaptic time
delays, and dynamical thresholds, in addition to the prevalent synaptic weighting, postsynaptic summation,
static threshold, and saturation. A SNN model synchronizes by taking into account the precise timing of
spike events. A noteworthy characteristics of SNNs is that they have been proven to be computationally
more powerful than classical ANN models with sigmoidal neurons [203] (1997). However, computing large
networks of complex neuron models is a computationally expensive task and leads to longer execution delays
even with high-performance workstations [149] (1997). Hardware implementations of a single spiking neuron
model has been discussed in the Section 4.3. We next consider relatively recent efforts on designing low

19



power compact VLSI architectures for large scale implementations of SNN models.
Schoenauer et al. [279] (2002) present a neuro-processor, called NeuroPipe-Chip, as part of an accelerator

board, which approaches real-time computational requirements for SANNs in the order of 106 neurons. For
a simple SNN benchmark network for image segmentation, the simulation of the accelerator suggested nearly
two orders of magnitude faster computation time than a 500 MHz Alpha workstation and a performance
comparable to dedicated accelerator architecture consisting of 64 high-performance DSPs. The NeuroPipe-
Chip comprising 100 K gate equivalents is fabricated in an Alcatel five-metal layer 0.35-µm digital CMOS
technology. To improve the speed of computations weight caches are used to accumulate all weighted
spikes occurring in one time slot. To further speed up the performance, the NeuroPipe-Chip design was
augmented with additional on-chip inhibition unit, which would apply equally distributed negative potential
to a large set of spikes. Floriano et al. [90] (2003) also demonstrate the usefulness of hardware SANNs
in designing embedded microcontrollers for autonomous robots which can evolve the ability to move in a
small maze without external support. More recently, Bellis et al. [30] (2004) report using an FPGA based
implementation of SNN for building collaborative autonomous agents.

Ros et al. [262] (2006) present a HW/SW codesign approach, where the spike response model for a neuron
is implemented in hardware and the network model of these neurons and the learning are implemented in
software with a support for an incremental transition of the software components into hardware. Neuronal
synapses are modeled as input-driven conductances and various stages of the temporal dynamics of the
synaptic integration process are executed in parallel. Multiple PEs process different neurons concurrently.
Effectiveness of the proposed architecture is tested with a prototype system using FPGA board and a host
computer interacting with each other using PCI bus on a real–time visual data with a time resolution
of 100µs. Similarly Zou et al. [331] (2006) also present real–time simulation architecture for networks of
Hodgkin–Huxley spiking neurons using a mix of analog circuits and a host computer.

Vogelstein et al. in [307] (2007) describe a mixed signal VLSI chip with on–chip learning for emulating
larger SNN models. The experimentally designed chip consists of 60 × 40 array of I&F neuron with recon-
figurable synaptic connectivity allowing arbitrary number of synaptic connections to exist between neurons.
The synaptic connections are actually implemented using digital RAM enabling reconfiguration of these
connections and associated parameters (e.g., conductance value, post synaptic address) on-the-fly. The ac-
tual neuron and its membrane dynamics are implemented in an analog VLSI using a conductance based
modeling. The chip has an area of 9mm2 with 645µW of power consumption on 10 MCUPS activity. The
chip was demonstrated to emulate attractor dynamics observed in the neural activity in rat hippocampal
“place cells” [328] (1998).

Koickal et al. [165] (2009) present a spike–timing based reconfigurable single chip architecture for neuro-
morphic designs. The presented architecture uses only one type of event block designed as an analog circuit,
which can be configured to model the functionality of a leaky I&F neuron, a summing exponential synapse, a
spike time dependent learning window, and for adaptively generating a compensating current at the neuron
input so that neuron firing synchronizes with the timing of a target signal. The configurable event block uses
a programmable capacitor array designed earlier by the same authors in [164] together with an operational
transconductor, and a comparator and occupies an area of 0.03mm2.

Spiking models have also received a lot of attention in the context of learning rules. Traditional ANNs
process real-numbers that are inspired by average spiking frequency of real neurons. A fully represented
spike train from a neuron, however, can potentially convey much more information content. Some neuro-
physiological experiments investigating synaptic change, i.e. learning, for example, indicate that relative spike
timing of single spike pairs influences direction and magnitude of change of synaptic efficacy, i.e., average
spiking frequencies are insufficient to describe the learning behavior of real neurons. This was implemented
in neuromorphic on-chip learning synapses by Hafliger et al. [110] (1996) and recently advanced by Fusi et
al. [95] (2000) and Chicca et al. [55] (2003). The latest publications by these groups [136, 109] (2006) also
describe network experiments with those synapses.

Attempts to realize (multiplier-less) SNN models include works of Chen et al. [50, 51] (2006) and of Ghani
et al. [101] (2006). A recent article by Maguire et al. [207] (2007) presents a detailed overview of conventional
simulation based approaches to implement SNNs and further details various FPGA based implementations
of SNNs.

20



9 Neurocomputers

Neurocomputers [105] (1994) are defined as stand-alone systems with elaborate hardware and software. They
are intended for large scale processing applications like high throughput Optical Character Recognition. The
Siemens’ Synthesis of Neural Algorithms on a Parallel Systolic Engine (SYNAPSE) 1 is an early general-
purpose neurocomputer [252, 251] (1993,1994), using eight MA-16 systolic array chips in a pipelined array of
16 and controlled by two MC68040 processors. It resides in its own cabinet and communicates via Ethernet
to a host workstation. Storage of weights are off–chip. Peak performance is of the order of 3.2 billion
multiplications (16x16-bits) and additions (48-bits) per sec., at 40 MHz clock rate with 5.1 MCPS. Several
ANNs like BP and Hopfield nets have been mapped onto SYNAPSE 1.

Adaptive Solutions’ Connected Network of Adaptive Processors (CNAPS) [212] (1991) is a general-purpose
digital neurocomputer that uses VME boards in a custom cabinet running from a UNIX host via an ethernet
link. N6400 chips can be cascaded as a linear array. Upto two boards with 1-4 chips each, give a total of 512
PEs. Information is broadcast between the blocks in an SIMD mode by two 8-bit buses. Software includes
a C-language library, assembler, compiler, and a package of ANN algorithms including BP and Kohonen’s
SOFM. One of the advantages of the CNAPS architecture is its scalability to the incorporation of additional
N6400 chips.

Another approach to dealing with the personal computer is to work with it in partnership using HNN
Accelerator cards, which reside in the expansion slots and are used to speedup the neural computations.
These are cheaper than fully dedicated neurocomputers and are usually based on HNN chips, but some
just use fast DSPs for multiply and accumulate operations. Examples include IBM ZISC ISA and PCI
Cards [105] (1994). An California Scientific’s CNAPS accelerators run with the popular BrainMaker neural
network software using either 4 or 8 chips (16 PE/chip), to give a total of 64 or 128 PEs. Upto 2.27 GCPS
speeds can be achieved, depending on transfer rates of particular machines. The Intel MMX Pentiums [142]
(2007) have built-in parallel processing. MMX Pentiums have four extra PEs with instruction set to execute
in parallel on the individual bytes, words (16 bits), or doublewords (32 bits) contained in vector registers of
64 bits. Each of the PEs can do a 32-bit integer multiplication and addition operations in one clock cycle in
parallel.

The Intel SSE (Streaming SIMD Extensions) instruction set for Pentium III processors offer significant
extensions of MMX Pentiums with expanded set of SIMD instructions with 32-bit (single precision) floating
point support and an additional set of 128-bit vector registers to perform SIMD and FPU operations at the
same time. A further SSE2 extension supports double precision floating point arithmetic. SSE4 [143] (2007)
is yet another major recent enhancement, adding a dot product instruction and many additional integer and
bitwise instructions.

A parallel neurocomputer architecture, based on a configurable neuroprocessor design, is suggested
in [294] (1996). The suggested neuroprocessor dynamically adapts its internal parallelism to the required
data precision for achieving an optimal utilization of the available hardware resources by encoding a variable
number of different data elements in one very long I/O data word.

10 Optical Neural Networks

In this section we provide a brief overview on optical neural networks (ONNs), designed on the principles
of optical computing. Optical technology (see [46] (2003)) utilizes the effect of light beam processing that
is inherently massively parallel, very fast, and without the side effects of mutual interference. Optical
transmission signals can be multiplexed in time, space, and wavelength domains, and optical technologies may
overcome the problems inherent in electronics. The results range from the development of special-purpose
associative memory systems through various optical devices (e.g., holographic elements for implementing
weighted interconnections) to optical neurochips. Optical techniques ideally match with the needs for the
realization of a dense network of weighted interconnections.

Optical technology has a number of advantages for making interconnections, specifically with regard to
density, capacity and 2D programmability. One of the early ONN design using optical vector matrix product
processor or crossbar interconnection architecture is discussed in [88, 86] (1987). Similarly a spatial coding
method of dealing with input/output patterns as 2D information is used to develop a neural network system
with learning capabilities in [144] (1989). However, the lack of efficient optical switches and high capacity

21



erasable optical memories has been the cause of a bottleneck in the growth of ONNs. Typically such optical
switch or spatial light modulator is designed as a set of movable mirrors, called a Deformable Mirror Device
(DMD), which is inherently difficult to design on large scale.

Hopfield networks are widely used for exemplifying optical implementations. An optical 2D NN has been
developed [322] (1990) using a liquid-crystal television (LCTV) and a lenslet array for producing multiple
imaging under incoherent illumination. Multilayer feedforward/feedback networks have also been optically
implemented with the threshold function getting evaluated electronically [150] (1993) or approximately real-
ized by optical devices [275] (1995). In the second approach, the architecture employs LCTVs to implement
the inputs and the weights, while liquid crystal light valves are used to implement the nonlinear thresh-
old [222] (1996).

An example of optical neurocomputer is the Caltech “Holographic Associative Memory” presented in [1]
(1987). The goal of the system is to find the best match between an input image and a set of holographic
images that represent its memory. Neurons are modeled by non-linear optical switching elements (optical
transistors) that are able to change their transmittance properties as the brightness of a light beam changes.
Weighted interconnections are modeled by holograms, which are able to record and reconstruct the intensity
of light rays. A 1 inch planar hologram, produced on a tiny photographic film, can fully interconnect 10,000
light sources with 10,000 light sensors making 100 million interconnections. The whole system, consisting
of a set of lenses and mirrors, a pinhole array, two holograms and an “optical transistor”, is realized as an
optical loop.

As Lange et al. [179] (1994) discuss, both electronic and optical technology could be useful to solve
problems in real time image processing applications. They fabricated an optical neurochip for fast analog
multiplication with weight storage elements and on-chip learning capability. The chip can hold upto 128 fully
interconnected neurons. They have also developed the “artificial retina chip”, a device that can concurrently
sense and process images for edge enhancement or for feature extraction. Applications of these optical
devices are in the domains of image compression and character recognition. Silveira [287] (2003) presents
recent review on various issues and design approaches related to these optoelectronic NN implementations.

Burns et al. [41] presented an experimental implementation of a modest layered network where the input
layer is optical and the output layer is electronic. Direct optical input systems use a sensor array for image
capture, with subsequent electronic processing. They also presented a simple technique to significantly
reduce photo-induced charge leakage of the neuron activations stored dynamically on capacitors.

Lack of effective programmability is one of the major limitation in optical implementations. Burns et
al. [41] (1994) describe an optoelectronic design to overcome this limitation using a combination of optics and
electronics with high fan-in and temporal multiplexing of the weights. The layered network design consists
of electronically controlled optical input layer using spatial light modulation with subsequent electronic
processing, though the multiplication of input pattern with interconnection weight was still carried out using
software. Their design significantly reduced the photo-induced charge leakage of the neuron activations
stored dynamically on capacitors.

Skinner et al. [289] (1994) proposed an optical implementation of a feed-forward ANN using Kerr-type
nonlinear optical material which has ultra-fast response time and allows both weighted connections and non-
linear neuron processing to be implemented using only thin material layers separated by free space. This
layered network can process both forward calculation signals and backward error propagation simultaneously.

Tokes et al. discuss in [300] (2000) an optical CNN device, also known as Programmable Optical Ar-
ray/Analogic Computer (POAC), which is based on modified Joint Fourier Transform Correlator and Bacte-
riorhodopsin as a holographic optical memory. Later Moagar-Poladian and Bulinski [219] (2002) presented
a type of reconfigurable optical neuron, in which weights can be dynamically changed. Once a weight is
set, it is memorized for a period of few days. The optical neuron comprises a photoelectret as the recording
medium of the weights and an optical nonlinear crystal with transverse Pockels effect. First described in
1906 by the German physicist Friedrich Pockels, Pockels effect is a linear electrooptical effect, in which,
the application of an electric field produces a birefringence which is proportional to the field. To achieve,
transverse Pockels effect, the electro-optic crystal is used in the transverse mode, i.e. the optic axis is set
perpendicular to the direction of propagation of the light. Shortt et al. [285] (2005) demonstrate a bipolar
matrix vector multiplier based optical implementation of the Kak neural network [157] (1994) . For this, the
CC4 algorithm was modified on the training phase for implementing N-Parity problem. First proposed by
Kak and Tang [298] (1998), CC4 is a corner classification training algorithm for three-layered feed-forward

22



neural networks. A very recent work in this direction include optical implementation of SNN using a thin
film of electron-trapping material by Pashaie and Farhat [244] (2007).

Llata and Rivera [175, 269, 176] (2003,2005,2007) have proposed design of vision system based upon
a CMOS image sensor and a hybrid optoelectronic hardware architecture called optical broadcast neural
network (OBNN). An OBNN processor classifies input patterns using Hamming classification using a set of
reference patterns. The input signals are sent in their temporal order to an array of PEs for computing weight
updates by means of an global optical broadcasting, thus taking advantage of fast optical communication
as well as electronic computational processing. The downside of the architecture is that it is sensitive to
rotation, translation, and scaling of the input images. To overcome these limitations, recently in [268] (2008),
they extend the design by introducing PCNN preprocessor stage, which converts an 2D input image into a
temporal pulsed pattern. These pulses are then applied as inputs to the OBNN processor. The combined
system is reported to achieve the rate of 104 classifications per second on binary input images of size 128×128
pixels.

Articles by Yu and Uang [323] (2003) and by Ahmed et al. [23] (2004) are interesting reviews on the
later advancements in the design and implementation of ONNs. [23] (2004) has additional discussion on the
design of a portable POAC and optical template library.

11 Neuro-Fuzzy Hardware

Fuzzy systems are another important class of design models for intelligent systems, which can represent
linguistic knowledge and perform reasoning by means of rules. However, in contrast to ANN models, fuzzy
systems do not have a mechanism to automatically acquire new rules or adapt the existing ones. In recent
years, there has been substantial research to combine these two approaches primarily to overcome the lim-
itations of the ANN models, namely, the inability to process linguistic information and extract the learned
knowledge. Such combination has been achieved in two different ways: one by introducing the fuzzification
into the neural-network structure (e.g., at neuronal level or in aggregation function), which gives rise to fuzzy
neural-networks [237] (2006) and secondly by providing the fuzzy systems with learning ability by means
of neural-network algorithms, i.e., neural-network-driven fuzzy reasoning techniques [152, 147] (1993,2000).
Neuro Fuzzy systems (NFSs) have found applications in many areas including [151, 250, 85] (1997,2003,2006):
adaptive control, real-time embedded control (e.g., CINTIA [53] (1995)), robotics, adaptive signal processing,
pattern recognition, and system identification.

Adaptive-Network-based Fuzzy Inference System (ANFIS) [152, 243] (1993,2005) is one of the earliest
and very well known example of ANN based fuzzy inference systems. An ANFIS system is a fuzzy inference
system whose parameters are trained by means of neural-network training algorithms. This training process
adjusts the parameters of the fuzzy system, such as membership functions (MFs), strength of the rules,
consequents, etc. The algorithm is composed of a forward pass which is carried out by a least squares
estimator (LSE) process, followed by a backward pass which is carried out by a BP algorithm. In a recent
work, Echanobe et al. [81] (2008) present a restricted model of ANFIS with reduced complexity to make it
amenable for hardware implementation using “Altera” Stratix II (EP2S15) FPGA, achieving efficiency upto
29 M inferences per second.

Generating well-approximated and smooth nonlinear functions for digital neuro-fuzzy hardware (NFH)
usually requires relatively large storage or the use of complex circuits that occupy large silicon areas and
drastically reduce system operation speed. Here Analog designs offer natural advantage with several existing
analog CMOS implementations for NFSs [231, 312] (2003,2006). These implementations primarily vary
with the number of fuzzy rules, fabrication technology, power consumption, degree of programmability, I/O
interface and delay. See Table 1 in [312] (2006) for relative comparison. Most of these designs use Gaussian
membership function. In a recent work, Basterretxea et al. [27] (2007) have argued that smoothness of the
nodal functions may affect the general properties and capabilities of NFSs such that smooth, nonlinear AFs
and MFs are capable of compressing more information than simple peice-wise linear functions as triangles,
trapezoids, step functions, bounded ramps, etc. They conduct extensive experimental studies to determine
the effect of non linear activation and membership functions on the performance of ANFIS with BP/RBF
neural architectures.

Owing to the increasing speeds in general purpose hardware as well as high degree of flexibility offered by

23



the software, HW/SW codesign approaches have been recently favored for implementing neuro-fuzzy hard-
ware [257, 71, 81] (2003,2008). Reyneri [257] (2003) presents interesting comparative analysis of different
approaches for implementation of NFSs concluding that HW/SW codesign can often outperform homoge-
neous solutions based either on HW or SW. In particular, he suggests that to take full advantage of HW/SW
solutions, it would be desirable for all the parts of the adaptive NFS to be integrated in a single chip. Tak-
ing this idea further Campo et al. [71, 81] (2008) present a system-on-a-programmable-chip (SOPC) based
implementation of an special type of ANFIS architecture termed piecewise multilinear ANFIS with four
layers. An SOPC contains a full FPGA board and a core processor on a single chip. An Alteras Excalibur
family based SPOC with 32-bit ARM922T processor is used for the implementation. Both off-line learning
based high speed parallel architecture and a pipeline architecture for online learning are proposed. It is also
important to add the work on unification of common ANN frameworks and Fuzzy systems by Reyneri [255]
(1999). Reyneri introduced weighted RBF (or NF−n) as a unified paradigm for the NFSs and demonstrated
how common ANN and Fuzzy models could be expressed as WRBF (NF − n). As stated in [254] (2001)
- “NF unification allows to mix together the various paradigms within the same project or system and to
implement all of them on similar pieces of HW (or even on a single one)”.

12 Conclusions and Discussion

HNN research and applications have witnessed a slow and incremental progress in last two decades. Even
though ANN hardware has been there for more than last two decades, the rapid growth in general purpose
hardware (microprocessors, DSPs, etc.) did not let most of these implementations to outperform to the
extent of becoming commercially successful. Nonetheless, novel application areas have steadily started
appearing, e.g., embedded microcontroller for autonomous robots [90, 259] (2003,2007), autonomous flight
control [15, 98] (1999,2006), proposed silicon model of the cerebral cortex - neurogrid [35] (2007) (also see
[153] (2007)), and silicon retina [33, 326] (2006). In recent years several special issues dedicated to HNN
implementations have been published [271, 193, 12] (1999,2003,2004) as well as a steady stream of Ph.D
theses have appeared [37, 301, 104] (2002,2007,2008) indicating the growing interest in the area.

However in spite of the presence of expressive high-level hardware description languages and compilers,
efficient neural-hardware designs still demand ingenious ways to optimally use the available resources for
achieving high speed and low power dissipation. Judicious mapping of ANN models onto parallel architec-
tures, entailing efficient computation and communication, is thus a key step in any HNN design and there
is a need to design tools for automatically translating high level ANN models onto hardware [102, Sec. 5.5]
(2006).

As noted in [280] (1998), digital neurohardware tends to be more algorithm specific requiring a good
knowledge about algorithms as well as system design that eventually results into a high time-to-market as
compared to conventional hardware. In this respect general-purpose hardware seems more user-friendly,
offering more flexibility with uniform programming interfaces, and can therefore profit more from advances
in technology and architectural revisions. However, many of the applications involving ANNs often demand
computational capabilities exceeding of workstations or personal computers available today. For example,
a typical real-time image processing task may demand 10 teraflops 2, which is well beyond the current
capacities of PCs or workstations today. In such cases neurohardware appears attractive choice and can
provide a better cost-to-performance ratio even when compared to supercomputers because many aspects of
user friendliness vanish for the supercomputers which are also relatively expensive.

Since currently many ANN applications use networks with less than 104 neurons and/or inputs and only
need occasional training, software simulation is usually found to be sufficient in such situations. But when
ANN algorithms develop to the point where useful things can only be done with 106 − 108 of neurons and
1010−1014 of synapses between them [76, 70] (2008), high performance neural hardware will become essential
for practical operations. It is important to add that such large scale neural network hardware designs might
not be a distant reality as is apparent from the recent work of Schemmel et al. on wafer-scale integration of
large SNN models [87, 277] (2008).

2Assuming the frame-rate of 100 fps, frame size of 1280 × 1024 pixels with 3 bytes per pixel, and average number of basic
imaging operation having computational complexity of O(N), (N is the frame-size) with 105 such operations to be performed
on each frame.

24



It is observed that presently it is not always possible to exploit the entire parallelism inherent in the
ANN topology along with a good cost-performance ratio, mainly due to the cost associated with the im-
plementation of the numerous interconnections, control and mapping involved. In this scenario, optical
implementations add a different dimension. Multi-Chip Modules or Wafer-Scale Integration hold further
promise for implementing such large networks. IBM cell processor [156] (2005) with nine processor cores or
its recent variant QS22 PowerXCell 8i [133] (2008) with their powerful vector processing capabilities hold
good promise for highly parallel large scale ANN implementations or their fast emulations for comparative
analysis. Also using 3D VLSI packaging technology [6] (1998), large number of synaptic connection could
possibly be realized in small space. 3D VLSI classifier [31] (2003) as discussed before in Section 5.1 is an
example at hand.

CMOS/nanowire/nanodevice (“CMOL”) technology [190, 189] (2005,2008), which combines both CMOS
and nanotechnology, is one of the important emerging technologies with high potential for large scale HNN
implementations. The basic idea of CMOL circuits is to combine the advantages of CMOS technology
including its flexibility and high fabrication yield with the high potential density of molecular-scale two-
terminal nanodevices. Neuromorphic Mixed-Signal CMOL Circuits (known as “CrossNets”) [302, 183, 184,
185, 182] (2005,2006,2007) are the first results of an active research by K. Likharev’s Nanotechnology Research
Group at Stony Brook University. In a “CrossNet”, CMOS subsystem realizes the neuron core, whereas
crossbar nanowires play the roles of axons and dendrites (connections), and crosspoint latching switches
serve as elementary (binary-weight) synapses enabling very high cell connectivity (e.g., 104) in quasi-2D
electronic circuits.

Molecular technology is another relatively new approach for possible hardware implementation. It com-
bines protein engineering, biosensors, and polymer chemistry in the efforts to develop a molecular com-
puter [63] (1988). The computation uses the physical recognition ability of large molecules, like proteins,
which can change their shape depending on the chemical interactions with other molecules. Molecular com-
puting is still in its infancy. The major problem is to develop appropriate technology that would allow for
construction of bio equivalents of transistors. However inherently parallel generalization and adaptation ca-
pabilities perfectly match the needs of neural networks implementations. Research in this direction appears
promising [64, 117] (2000) and, in the future, molecular computers with neural architectures appear to have
a potential to become a reality. In a recent work Alibart et al. [8] report feasibility of designing a hybrid
nanoparticle-organic device, a nanoparticle organic memory FET, which uses the nanoscale capacitance of
the nanoparticles and the transconductance gain of the organic transistor to mimic the short-term plastic-
ity of a biological synapse. Dan Ventura [305] (2001) presents an interesting discussion on the possibility
designing quantum neural computing devices utilizing quantum entanglement effects.

HNN models hopefully will have the respected place in coming years when industry will face demands im-
posed by ubiquitous computing with learning and autonomous decision making capabilities e.g., autonomous
robotics and assistive technologies. These applications demand dealing with large amounts of real-time mul-
timedia data from interacting environment, using lightweight hardware with strict power constraints, without
letting the computational efficiencies go down. The DARPA initiative [70] (2008) - ‘Systems of Neuromor-
phic Adaptive Plastic Scalable Electronics’ - towards building cognitive-neuromorphic systems [137] (2009)
is indicative of such emerging directions.

References

[1] Y. S. AbuMostafa and D. Psaltis. Optical neural computers. Scientific American, 255:88–95, 1987.

[2] Gyorgy Cserey Adam Rak, Balazs Gergely Soos. Stochastic bitstream-based CNN and its implemen-
tation on FPGA. International Journal of Circuit Theory and Applications, 37(4):587–612, 2002.

[3] A. J. Agranat, C. F. Neugebauer, and A. Yariv. A CCD based neural network integrated circuit with
64k analogprogrammable synapses. In International Joint Conference on Neural Networks (IJCNN),
pages 551–555, 1990.

[4] B. Ahmed, J. C. Anderson, R. J. Douglas, K. A. Martin, and C. Nelson. Polyneuronal innervation of
spiny stellate neurons in cat visual cortex. Comparative Neurology, 341(1):39–49, 1994.

25



[5] E. Ahmed and K. Priyalal. Algorithmic mapping of feedforward neural networks onto multiple bus
systems. IEEE Transactions on Parallel and Distributed Systems, 8:130–136, 1997.

[6] SF Al-Sarawi, D. Abbott, and PD Franzon. A review of 3-D packaging technology. IEEE Transactions
on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, 21(1):2–14,
1998.

[7] I. Aleksander, W. V. Thomas, and P. A. Bowden. WISARD: a radical step forward in image recognition.
Sensor Review, 4(3):120–124, 1984.

[8] F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat, and D. Vuil-
laume. An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse. Advanced
Functional Materials, 20(2):330–337, 2009.

[9] A. P. Almeida and J. E. Franca. Digitally programmable analog building blocks for the implementation
of artificial neural networks. IEEE Transactions on Neural Networks, 7(2):506–514, 1996.

[10] H. Amin, K. M. Curtis, and B. R. Hayes-Gill. Piecewise linear approximation applied to nonlinear
function of a neural network. In IEE Proceedings of Circuits, Devices and Systems, pages 313–317,
1997.

[11] H. Amin, K. M. Curtis, and B. R. Hayes-Gill. Two-ring systolic array network for artificial neural
networks. In IEE Proceedings of Circuits, Devices and Systems, pages 225–230, 1999.

[12] D. Anguita, I. Baturone, and J. Miller, editors. Special issue on hardware implementations of soft
computing techniques: Applied Soft Computing, volume 4(3), Aug 2004.

[13] M. Anguita, FJ Pelayo, I. Rojas, and A. Prieto. Area efficient implementations of fixed-template CNN’s.
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(9):968–973,
1998.

[14] A.J. Annema, K. Hoen, and H. Wallinga. Precision requirements for single-layer feed forward neu-
ral networks. In Proceedings of the Fourth International Conference on Microelectronics for Neural
Networks and Fuzzy Systems, pages 145 – 151, Turin, Italy, 1994.

[15] Annon. The intelligent flight control: Advanced concept program final report. Technical report, The
Boeing Company, 1999.

[16] P. Arena, L. Fortuna, M. Frasca, and L. Patane. A CNN-based chip for robot locomotion control.
IEEE Transactions on Circuits and Systems I: Regular Papers, 52(9):1862–1871, 2005.

[17] P. Arena, L. Fortuna, M. Frasca, L. Patane, and M. Pollino. An autonomous mini-hexapod robot
controlled through a CNN-based CPG VLSI chip. In 10th International Workshop on Cellular Neural
Networks and Their Applications, pages 1–6, 2006.

[18] J. Arthur and K. Boahen. Learning in silicon: Timing is everything. Advances in neural information
processing systems, 18:75, 2006.

[19] JV Arthur and K. Boahen. Recurrently connected silicon neurons with active dendrites for one-
shot learning. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks,
volume 3, pages 1699–1704, 2004.

[20] J. Austin, editor. RAM-Based Neural Networks. World Scientific, Farrer Road, Singapore, 1998.

[21] J. Austin, S. Buckle, J. Kennedy, A. Moulds, R. Pack, and A. Tumer. The Cellular Neural Network
Associative Processor (C-NNAP). Associative processing and processors, pages 284–299, 1997.

[22] I. Aybay, S. Cetinkaya, and U. Halici. Classification of neural network hardware. Neural Network
World, 6(1):11–29, 1996.

26



[23] Ahmed Ayoub, Szabolcs Tks, and Lszl Orz. Evolution of the programmable optical array computer
(POAC). In Proceedings of IEEE International Workshop on Cellular Neural Networks and their
Applications, pages 64–69, Budapest, Hungary, July 2004.

[24] S. L. Bade and B. L. Hutchings. FPGA-based stochastic neural networks - implementation. In Pro-
ceedings of IEEE Workshop on FPGAs for Custom Computing Machines Workshop, pages 189–198,
Napa, CA, April 1994.

[25] S.A. Bamford, A.F. Murray, and D.J. Willshaw. Large developing axonal arbors using a distributed
and locally-reprogrammable address-event receiver. In Proceedings of the IEEE International Joint
Conference on Neural Networks, pages 1464–1471, 2008.

[26] C. Bartolozzi and G. Indiveri. Synaptic dynamics in analog VLSI. Neural Computation, 19(10):2581–
2603, 2007.

[27] Koldo Basterretxea, José Manuel Tarela, Inés del Campo, and G. Bosque. An experimental study
on nonlinear function computation for neural/fuzzy hardware design. IEEE Transactions on Neural
Networks, 18(1):266–283, 2007.

[28] S Bayraktaroglu, A. S. Ogrenci, G. Dundar, S. Balkr, and E. Alpaydin. ANNSyS: An analog neural
network synthesis system. Neural Networks, 12:325–338, 1999.

[29] Valeriu Beiu. How to build VLSI-efficient neural chips. In E. Alpaydin, editor, Proceedings of the
International ICSC Symposium on Engineering of Intelligent Systems, pages 66 – 75, Tenerife, Spain,
1998.

[30] S. Bellis, K.M. Razeeb, C. Saha, K. Delaney, C. Mathuna, A. Pounds-Cornish, G. de Souza, M. Colley,
H. Hagras, G. Clarke, V. Callaghan, C. Argyropoulos, C. Karistianos, and G. Nikiforidis. FPGA
implementation of spiking neural networks - an initial step towards building tangible collaborative
autonomous agents. In Proceedings of the IEEE International Conference on Field-Programmable
Technology, pages 449–452, 2004.

[31] Amine Bermak and Dominique Martinez. A compact 3-D VLSI classifier using bagging threshold
network ensembles. IEEE Transactions on Neural Networks, 14(5):1097–1109, 2003.

[32] W. Bledsoe and I. Browning. Pattern recognition and reading by machine. In Proceedings of Eastern
Joint Computer Conference, volume II, pages 225–232, Boston, 1959.

[33] K. Boahen. Neuromorphic microchips. Special Editions, 16(3):20–27, 2006.

[34] Kwabena Boahen. A burst-mode word-serial address-event channel-i: Transmitter design. IEEE
Transactions on Circuits and Systems I, 51(7):1269–1280, July 2004.

[35] Kwabena Boahen. Neurogrid: Emulating a million neurons in the cortex. In Grand Challenges in
Neural Computation, page 6702, 2006.

[36] J. Bourrely. Parallelization of a neural learning algorithm on a hypercube. In F. Andre and J. P.
Verjus, editors, Hypercube and Distributed Computers, pages 219–229, North-Holland, 1989. Elsevier
Science B. V.

[37] D. Braendler. Implementing Neural Hardware with On Chip Training on Field Programmable Gate
Arrays. PhD thesis, Swinburne University of Technology, Melbourne, Australia, 2002.

[38] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[39] B.E. Brown, X. Yu, and S.L. Garverick. Mixed-mode analog VLSI continuous-time recurrent neural
network. In Proceedings of International Conference on Circuits, Signals and Systems, pages 104 –
108, 2004.

27



[40] N. Bruels. MA16 - programmable VLSI array processor for neuronal networks and matrix-based signal
processing, user description. Technical Report 1.3, Siemens AG, Corporate Research and Development
Division, Munich, Germany, October 1993.

[41] D. C. Burns, I. Underwood, A. F. Murray, and D. G. Vass. An optoelectronic neural network with
temporally multiplexed grey-scale weights. In Proceedings of the Fourth International Conference on
Microelectronics for Neural Networks and Fuzzy Systems, pages 3–7, 1994.

[42] James B. Burr. Energy, capacity, and technology scaling in digital VLSI neural networks. NIPS’91
VLSI Workshop, May 1991.

[43] James B. Burr. Digital neurochip design. In K. Wojtek Przytula and Viktor K. Prasanna, editors,
Parallel Digital Implementations of Neural Networks, pages 223–281. Prentice Hall, Upper Saddle
River, NJ, USA, 1992.

[44] Camalie. Box 2 - an analog audio synthesizer: Architecture and procedures guide, 1994.

[45] L. Carranza, F. Jimenez-Garrido, G. Linan-Cembrano, E. Roca, S.E. Meana, and A. Rodriguez-
Vazquez. ACE16k based stand-alone system for real-time pre-processing tasks. In Proceedings of
SPIE, volume 5837, page 872, 2005.

[46] H. John Caulfield. Optical computing. In Ronald G. Driggers, editor, Encyclopedia of Optical Engi-
neering 1:1, pages 1613–1620. CRC Press, 270 Madison Avenue, New York, NY, USA, 2003.

[47] V. Chan, S. Liu, and A. van Schaik. AER EAR: A matched silicon cochlea pair with address event
representation interface. IEEE Transactions on Circuits and Systems I, 54(1):48–59, 2007.

[48] H. Chen and A. Murray. A Continuous Restricted Boltzmann Machine with a hardware-amenable
learning algorithm. In Proceedings of the International Conference on Artificial Neural Networks,
Lecture notes in computer science, pages 358–363. Springer, 2002.

[49] H. Chen and A.F. Murray. Continuous restricted boltzmann machine with an implementable training
algorithm. In IEE Proceedings - Vision Image and Signal Processing, volume 150, pages 153–159. The
Institution of Electrical Engineers., 2003.

[50] Y. Chen, S. Hall, L. McDaid, O. Buiu, and P. Kelly. On the design of a low power compact spiking neu-
ron cell based on charge coupled synapses. In Proceedings of the IEEE International Joint Conference
on Neural Networks (IJCNN), pages 1511–1517, Vancouver, Canada, 2006.

[51] Y. Chen, S. Hall, L. McDaid, O. Buiu, and P. Kelly. A silicon synapse based on a charge transfer
device for spiking neural network applications. In Proceedings of the 3rd International Symposium on
Neural Networks(ISNN), pages 1366–1373, Chengdu, China, 2006.

[52] Z. Chen, S. Haykin, and S. Becker. Theory of monte carlo sampling-based alopex algorithms for
neural networks. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 17 – 21, 2004.

[53] Marcello Chiaberge and Leonardo M. Reyneri. Cintia: A neuro-fuzzy real-time controller for low-power
embedded systems. IEEE Micro, 15(3):40–47, 1995.

[54] A. M. Chiang and et al. A CCD programmable image processor and its neural network applications.
IEEE Journal of Solid State Circuits, 26:1894–1901, 1991.

[55] E. Chicca, G. Indiveri, and R. Douglas. An adaptive silicon synapse. In Proceeding of the IEEE
International Symposium on Circuits and Systems (ISCAS), volume V, pages 81–84, Bangkok, 2003.

[56] L. O. Chua and T. Roska. The CNN paradigm. IEEE Transactions on Circuits and SystemsI: Funda-
mental Theory and Applications, 40:147–156, 1993.

28



[57] L.O. Chua and T. Roska. Cellular Neural Networks And Visual Computing: Foundation And Appli-
cations. Cambridge University Press, Trumpington Street, Cambridge, UK, 2002.

[58] LO Chua and L. Yang. Cellular neural networks: Applications. IEEE Transactions on Circuits and
Systems, 35(10):1273–1290, 1988.

[59] LO Chua and L. Yang. Cellular neural networks: Theory. IEEE Transactions on Circuits and Systems,
35(10):1257–1272, 1988.

[60] Jai Hoon Chung, Hyunsoo Yoon, and Seung Ryoul Maeng. A systolic array exploiting the inherent
parallelisms of artificial neural networks. Microprocess. Microprogram., 33(3):145–159, 1992.

[61] S. Churcher, A. F. Murray, and H. M. Reekie. Programmable analogue VLSI for radial basis function
networks. Electronic Letters, 29:1603–1605, 1993.

[62] T. G. Clarkson, C. K. Ng, D. Gorse, and J. G. Taylor. Learning probabilistic RAM nets using VLSI
structures. IEEE Transactions on Computers, 41(12):1552–1561, 1992.

[63] M. Conrad. The lure of molecular computing. IEEE Spectrum, 23:55–60, 1988.

[64] M. Conrad and K.-P. Zauner. Molecular computing with artificial neurons. Communications of the
Korea Information Science Society, 18(8):78–89, 2000.

[65] T. Cornu and P. Ienne. Performance of digital neuro-computers. In Proceedings of the Fourth Inter-
national Conference on Microelectronics for Neural Networks and Fuzzy Systems, pages 87–93, 1994.

[66] Micro Devices Corp. MD1220 neural bit slice, data sheet, March 1990. Lake Mary.

[67] M. Daalen, T. Kosel, P. Jeavons, and J. Shawe-Taylor. Emergent activation functions from a stochastic
bit stream neuron. Electronic Letters, 30(4):331–333, February 1994.

[68] Max V. Daalen, Peter Jeavons, and John Shawe-Taylor. A stochastic neural architecture that ex-
ploits dynamically reconfigurable FPGAs. In Duncan A. Buell and Kenneth L. Pocek, editors, IEEE
Workshop on FPGAs for Custom Computing Machines, pages 202–211, Los Alamitos, CA, 1993. IEEE
Computer Society Press.

[69] A. d’Acierno. Back-propagation learning algorithm and parallel computers: The CLEPSYDRA map-
ping scheme. Neurocomputing, 31:67–85, 2000.

[70] DARPA. Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE).
http://www.darpa.mil/dso/solicitations/BAA08-28.pdf (Last Accessed on Jan 20, 2010), 2008.

[71] I. del Campo, J. Echanobe, G. Bosque, and J. M. Tarela. Efficient hardware/software implementation
of an adaptive neuro-fuzzy system. IEEE Transactions on Fuzzy Systems, 16(3):761–778, June 2008.

[72] B. Denby. The use of neural networks in high energy physics. Neural Computation, 5:505–549, 1993.

[73] A. Destexhe, Z.F. Mainen, and T.J. Sejnowski. Kinetic models of synaptic transmission. Methods in
neuronal modeling, pages 1–25, 1998.

[74] Fernando Morgado Diasa, Ana Antunesa, and Alexandre Manuel Motab. Artificial neural networks: a
review of commercial hardware. Engineering Applications of Artificial Intelligence, 17:945–952, 2004.

[75] Alireza A. Dibazar, Abhijith Bangalore, Hyung O. Park, Sageev T. George, Walter M. Yamada, and
Theodore W. Berger. Hardware implementation of dynamic synapse neural networks for acoustic sound
recognition. In Proceedings of the International Joint Conference on Neural Networks, pages 2015 –
2022, Vancouver, BC, Canada, 2006.

[76] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, ö Ekeberg, and A. Lansner. Brain-scale simulation
of the neocortex on the IBM Blue Gene/L supercomputer. IBM Journal of Research and Development,
52(1):31–41, 2008.

29



[77] R. Douglas and K. Martin. A functional microcircuit for cat visual cortex. Phisiology, 440:735–769,
1991.

[78] R. J. Douglas, M. A. Mahowald, and K. A. C. Martin. Hybrid analog-digital architectures for neuro-
morphic systems. In International Conference on Neural Networks, pages 1848–1853, 1994.

[79] Tuan A. Duong. Cascade error projection: an efficient hardware learning algorithm. In Proceedings of
the IEEE International Conference on Neural Networks, volume 1, pages 175–178, Perth, Australia,
1995.

[80] Tuan A. Duong and Allen R. Stubberud. Convergence analysis of cascade error projection: An efficient
hardware learning algorithm. International Journal of Neural System, 10(3):199–210, 2000.

[81] J. Echanobe, I. del Campo, and G. Bosque. An adaptive neuro-fuzzy system for efficient implementa-
tions. Information Sciences, 178(9):2150–2162, 2008.

[82] W. Eppler, T. Fischer, H. Gemmeke, T. Becher, and G. Kock. High speed neural network chip on
PCI-board, 1997.

[83] Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In Advances
in neural information processing systems 2, pages 524–532, San Francisco, CA, USA, 1990. Morgan
Kaufmann Publishers Inc.

[84] S. M. Fakhraie, H. Farshbaf, and K. C. Smith. Scalable closed-boundary analog neural networks. IEEE
Transactions on Neural Networks, 15:492 – 504, 2004.

[85] Arash Fanaei and Mohammad Farrokhi. Robust adaptive neuro-fuzzy controller for hybrid posi-
tion/force control of robot manipulators in contact with unknown environment. J. Intell. Fuzzy Syst.,
17(2):125–144, 2006.

[86] N. H. Farhat. Optoelectronic analogs of self-programming neural nets: Architectures and methodologies
for implementing fast stochastic learning by simulated annealing. Applied Optics, 26:5093–5103, 1987.

[87] J. Fieres, J. Schemmel, and K. Meier. Realizing biological spiking network models in a configurable
wafer-scale hardware system. In Proceedings of IEEE International Joint Conference on Neural Net-
works (IJCNN), pages 969–976. IEEE World Congress on Computational Intelligence, 2008.

[88] A. D. Fisher, W. L. Lippincott, and J. N. Lee. Optical implementations of associative networks with
versatile adaptive learning capabilities. Applied Optics, 26:5039–5052, 1987.

[89] Joseph A. Fisher. Very long instruction word architectures and the ELI-512. In Proceedings of the
10th annual international symposium on Computer architecture, pages 140–150, New York, NY, USA,
1983. ACM.

[90] Dario Floreano, Nicolas Schoeni, Gilles Caprari, and Jesper Blynel. Evolutionary bits‘n’spikes. In
Proceedings of the eighth international conference on Artificial life, pages 335–344, Cambridge, MA,
USA, 2003. MIT Press.

[91] F. Folowosele, A. Harrison, A. Cassidy, A.G. Andreou, R. Etienne-Cummings, S. Mihalas, E. Niebur,
and T.J. Hamilton. A switched capacitor implementation of the generalized linear integrate-and-fire
neuron. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), May
2009.

[92] G. Fox, S. Otto, and A. Hey. Matrix algorithm on a hypercube matrix multiplication. Parallel
Computing, 4:17–31, 1987.

[93] K. Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern recognition.
Neural Networks, 1:119–130, 1988.

30



[94] K. Fukushima, Y. Yamaguchi, M. Yasuda, and S. Nagata. An electronic model of the retina. Proceedings
of the IEEE, 58(12):1950–1951, 1970.

[95] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D.J.Amit. Spike-driven synaptic plasticity:
theory, simulation, VLSI implementation. Neural Computation, 12:2227–2258, 2000.

[96] R. Gadea, J. Cerda, F. Ballester, and A. Macholi. Artificial neural network implementation on a single
FPGA of a pipelined on-line back-propagation. In Proceedings of the 13th International symposium on
system synthesis, pages 225–230, 2000.

[97] B. R. Gaines. Stochastic computing systems. Advances in Information Systems Science, 2:37–172,
1969.

[98] Wang Geng, Sheng Huanye, and Lu Tiansheng. Development of an embedded intelligent flight control
system for the autonomously flying unmanned helicopter sky-explorer. In Embedded Systems Modeling,
Technology, and Applications, pages 121–130. Springer Netherlands, 2006.

[99] D. George and J. Hawkins. A hierarchical bayesian model of invariant pattern recognition in the visual
cortex. In Proceedings of the IEEE International Joint Conference on Neural Networks, volume 3,
pages 1812–1817, 2005.

[100] W. Gerstner. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University
Press, Trumpington Street, Cambridge, UK, 2002.

[101] A. Ghani, T. Martin McGinnity, and L.P. Maguire. Area efficient architecture for large scale imple-
mentation of biologically plausible spiking neural networks on reconfigurable hardware. In Proceedings
of the International Conference on Field Programmable Logic and Applications, pages 1–2, Madrid,
Spain, 2006.

[102] Bernard Girau. Activity report - neuromimetic intelligence. Technical report, INRIA, Project Team
CORTEX, 2006.

[103] Bernard Girau and Cesar Torres-Huitzil. Massively distributed digital implementation of an integrate-
and-fire legion network for visual scene segmentation. Neurocomputing, 70(7-9):1186–1197, 2007.

[104] Massimiliano Giulioni. Networks of spiking neurons and plastic synapses: implementation and control.
PhD thesis, Universit degli Studi di Roma ‘La Sapienza’, Italy, 2008.

[105] M. Glesner and W. Poechmueller. Neurocomputers: An Overview of Neural Networks in VLSI. Chap-
man and Hall, London, 1994.

[106] A. Gopalan and A. H. Titus. A new wide range euclidean distance circuit for neural network hardware
implementations. IEEE Transactions on Neural Networks, 14:1176–1186, 2003.

[107] Rafael Serrano Gotarredona, Matthias Oster, Patrick Lichtsteiner, Alejandro Linares Barranco,
Rafael Paz Vicente, Francisco Gamez Rodraguez, Havard Kolle Riis, Tobi Delbrck, and Shih Chii Liu.
AER building blocks for multi-layer multi-chip neuromorphic vision systems. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 1217–1224. MIT
Press, Cambridge, MA, 2006.

[108] H P Graf, L D Jackel, R E Howard, B Straughn, J S Denker, W Hubbard, D M Tennant, and
D Schwartz. VLSI implementation of a neural network memory with several hundreds of neurons. In
AIP Conference Proceedings 151 on Neural Networks for Computing, pages 182–187, Woodbury, NY,
USA, 1987. American Institute of Physics Inc.

[109] P. Häfliger. Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Transactions on
Neural Networks, 18(2):551–572, 2007.

[110] P. Häfliger, M. Mahowald, and L. Watts. A spike based learning neuron in analog VLSI. Advances in
neural information processing systems, 9:692–698, 1996.

31



[111] NH Hamid, AF Murray, D. Laurenson, S. Roy, and B. Cheng. Probabilistic computing with future
deep sub-micrometer devices: a modeling approach. In IEEE International Symposium on Circuits
and Systems, pages 2510–2513, 2005.

[112] D. Hammerstrom and R. Waser. A Survey of Bio-Inspired and Other Alternative Architectures.
Nanotechnology: Information Technology-II, 4:251–285, 2008.

[113] Dan Hammerstrom. A VLSI architecture for high-performance, low-cost, on-chip learning. In Pro-
ceedings of the International Joint Conference on Neural Networks, pages 537 – 544, San Diego, Ca,
1990.

[114] Dan Hammerstrom. Digital VLSI for neural networks. The handbook of brain theory and neural
networks, pages 304–309, 2003.

[115] M. Hänggi and G.S. Moschytz. Cellular Neural Networks: Analysis, Design, and Optimization. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[116] L.K. Hansen, L. N. Andersen, U. Kjems, and J. Larsen. Revisiting boltzmann learning: parameter
estimation in markov random fields. In Proceedings of International Conference on Acoustics, Speech,
and Signal Processing, pages 3394–3397, 1996.

[117] D. Haronian and A. Lewis. Elements of a unique bacteriorhodopsin neural network architecture.
International Journal of Neural Systems, 10(3):191–197, 2000.

[118] H. Harrer, JA Nossek, and R. Stelzl. An analog implementation of discrete-time cellular neural net-
works. IEEE Transactions on Neural Networks, 3(3):466–476, 1992.

[119] Reid R. Harrison. A low-power analog VLSI visual collision detector. In Sebastian Thrun, Lawrence
Saul, and Bernhard Scholkopf, editors, Advances in Neural Information Processing Systems 16. MIT
Press, Cambridge, MA, 2004.

[120] Mohamad H. Hassoun, editor. Associative Neural Memories. Oxford University Press, Inc., New York,
NY, USA, 1993.

[121] S. Haykin. Neural Networks: a Comprehensive Foundation. Prentice Hall, Upper Saddle River, NJ,
USA, 3rd edition, 2008.

[122] J. Heemskerk. Overview of neural hardware, 1995. In: Neurocomputers for Brain-Style Processing.
Design, Implementation and Application.

[123] A. Heittmann and U. Ruckert. Mixed mode VLSI implementation of a neural associative memory.
Analog Integrated Circuits and Signal Processing, 30(2):159–172, 2002.

[124] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, San Francisco,
CA, USA, 2008.

[125] Hiroomi Hikawa. A digital hardware pulse-mode neuron with piecewise linear activation function.
IEEE Transactions on Neural Networks, 14(5):1028– 1037, 2003.

[126] S. Himavathi, D. Anitha, and A. Muthuramalingam. Feedforward neural network implementation
in FPGA using layer multiplexing for effective resource utilization. IEEE Transactions on Neural
Networks, 18(3):880–888, 2007.

[127] T.Y. Ho, P.M. Lam, and C.S. Leung. Parallelization of cellular neural networks on GPU. Pattern
Recognition, 41(8):2684–2692, 2008.

[128] M. Holler, S. Tam, H. Castro, and R. Benson. An Electrically Trainable Artificial Neural Network
(ETANN) with 10240 “Floating Gate” Synapses,. IEEE Computer Society Neural Networks Technology
Series, pages 50–55, 1990.

32



[129] Jordan Holt and Jeng-Neng Hwang. Finite precision error analysis of neural network hardware imple-
mentations. IEEE Transactions on Computers, 42(3):281–290, 1993.

[130] Donald L. Hung and Jun Wang. Digital hardware realization of a recurrent neural network for solving
the assignment problem. Neurocomputing, 51:447–461, April 2003.

[131] KM Hynna and K. Boahen. Neuronal ion-channel dynamics in silicon. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), pages 3614–3617, 2006.

[132] IBM. Ibm microelectronics ZISC zero instruction set computer: Preliminary information. In Sup-
plement to Proceedings of World Congress on Neural Networks, pages 31 – 39, San Diego, CA, June
1994.

[133] IBM. IBM Cell Broadband Engine technology, 2008.

[134] P. Ienne. Digital hardware architectures for neural networks. Speedup Journal, 9(1):18–25, 1995.

[135] Paolo Ienne, Thierry Cornu, and Gary Kuhn. Special-purpose digital hardware for neural networks:
an architectural survey. J. VLSI Signal Process. Syst., 13(1):5–25, 1996.

[136] G. Indiveri, E. Chicca, and R. Douglas. A VLSI array of low-power spiking neurons and bistable
synapses with spike-timing dependent plasticity. IEEE Tran. on Neural Networks, 17:211–221, Jan.
2006.

[137] G. Indiveri, E. Chicca, and R.J. Douglas. Artificial Cognitive Systems: From VLSI Networks of Spiking
Neurons to Neuromorphic Cognition. Cognitive Computation, 1(2):119–127, 2009.

[138] G. Indiveri and S. Fusi. Spike-based learning in VLSI networks of integrate-and-fire neurons. In
Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), volume 2007, pages
3371–3374, 2007.

[139] Giacomo Indiveri. Modeling selective attention using a neuromorphic analog VLSI device. Neural
computation, 12(12):2857–2880, 2000.

[140] Giacomo Indiveri. A neuromorphic VLSI device for implementing 2-D selective attention systems.
IEEE Transactions on Neural Networks, 12(6):1455–1463, 2003.

[141] R. M. Inigo, A. Bonde, and B. Holcombe. Self adjusting weights for hardware neural networks. Elec-
tronics Letters, 26:1630–1632, 1990.

[142] Intel. Intel pentium processors with MMXTM technology, 2007.

[143] Intel. Intel Streaming SIMD Extensions 4 (SSE4) Instruction Set Innovation, 2007.

[144] M. Ishikawa, N. Mukouzaka, H. Toyoda, and Y. Suzuki. Optical association: A simple model for
optical associative memory. Applied Optics, 28:291–301, 1989.

[145] T. Ito, K. Fukushima, and S. Miyake. Realization of neural network model Neocognitron on a hypercube
parallel computer. International Journal of High Speed Computing, 2:1–10, 1990.

[146] E.M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks, 14(6):1569–
1572, 2003.

[147] Kuo R. J., Wu P. C., and Wang C. P. Fuzzy neural networks for learning fuzzy if-then rules. Applied
Artificial Intelligence, 14:539–563, 2000.

[148] M. Jabri and B. Flower. Weight perturbation: An optimal architecture and learning technique for
analog VLSI feeforward and recurrent multilayer networks. Neural Computation, 3(4):546–565, 1991.

[149] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz, and H. Klar. Simulation of spiking neural networks
on different hardware platforms. In Proceedings of ICANN, pages 1187–1192, 1997.

33



[150] J. -S. Jang, S. G. Shin, S. W. Yuk, S. Y. Shin, and S. Y. Lee. Dynamic optical interconnections using
holographic Lenslet arrays for adaptive neural networks. Optical Engineering, 32:80–87, 1993.

[151] Jyh-Shing Roger Jang, Chuen-Tsai Sun, and Eiji Mizutani. Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence. Prentice Hall, 1997.

[152] Jyh Sing Roger Jang. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions
on Systems, Man, and Cybernetics, 23:665–684, 1993.

[153] Christopher Johansson and Anders Lansner. Towards cortex sized artificial neural systems. Neural
Networks, 20(1):48–61, 2007.

[154] Simon Johnston, Girijesh Prasad, Liam P. Maguire, and T. Martin McGinnity. Comparative investi-
gation into classical and spiking neuron implementations on FPGAs. In ICANN (1), pages 269–274,
2005.

[155] S. R. Jones, K. M. Sammut, and J. Hunter. Learning in linear systolic neural network engines: Analysis
and implementation. IEEE Transactions on Neural Networks, 5:584–593, 1994.

[156] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and D. Shippy. Introduction to the
Cell multiprocessor. IBM Journal of Research and Development, 49(4/5):589, 2005.

[157] Subhash Kak. New algorithms for training feedforward neural networks. Pattern Recogn. Lett.,
15(3):295–298, 1994.

[158] J. V. Kennedy and J. Austin. A hardware implementation of a binary neural image processor. In
Proceedings of the IV International Conference on Microelectronics for Neural Networks and Fuzzy
Systems, pages 178–185, Torino, Italy, 1994.

[159] E. V. Keulen, S. Colak, H. Withagen, and H. Hegt. Neural network hardware performance criteria. In
Proceedings of the IEEE International Conference on Neural Networks, pages 1885–1888, 1994.

[160] D. Kim, H. Kim, H. Kim, G. Han, and D. Chung. A SIMD neural network processor for image
processing. Advances in Neural Networks, 3497:665–672, 2005.

[161] P. Kinget and MSJ Steyaert. A programmable analog cellular neural network CMOS chip for high-
speed image processing. IEEE Journal of Solid State Circuits, 30(3):235–243, 1995.

[162] J. M. Kinser and T. Lindblad. Implementation of pulse-coupled neural networks in a CNAPS environ-
ment. IEEE-NN, 10(3):584–597, 1999.

[163] H. Klapuri, T. Hamalainen, J. Saarinen, and J. Kaski. Mapping artificial neural networks to a tree
shape neurocomputer. Microprocessors Microsystems, 20:267–276, 1996.

[164] TJ Koickal, LC Gouveia, and A. Hamilton. A programmable time event circuit block for reconfigurable
neuromorphic computing. Lecture Notes in Computer Science, 4507:430–437, 2007.

[165] T.J. Koickal, L.C. Gouveia, and A. Hamilton. A programmable spike-timing based circuit block for
reconfigurable neuromorphic computing. Neurocomputing, 72(16-18):3609–3616, 2009.

[166] T.J. Koickal, A. Hamilton, S.L. Tan, J.A. Covington, J.W. Gardner, and T.C. Pearce. Analog VLSI
circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Transactions on Circuits
and Systems I: Regular Papers, 54(1):60–73, 2007.

[167] kos Zarndy, Pter Fldesy, Pter Szolgay, Szabolcs Tks, Csaba Rekeczky, and Tams Roska. Various
implementations of topographic, sensory, cellular wave computers. In IEEE International Symposium
on Circuits and Systems - ISCAS (6), pages 5802–5805, Piscataway, N.J., USA, 2005. IEEE Computer
Society.

[168] J. Kramer. An on/off transient imager with event-driven, asynchronous read-out. In IEEE International
Symposium on Circuits and Systems, volume II, pages 165–168, Phoenix, AZ, USA, 2002.

34



[169] M. Krips, T. Lammert, and A. Kummert. FPGA implementation of a neural network for a real-time
hand tracking system. In Proceedings of 1st IEEE International Workshop on Electronic Design, Test
and Applications, pages 313–317, 2002.

[170] J. M. Kumar and L. M. Patnaik. Mapping of artificial neural networks onto message passing systems.
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26:822–835, 1996.

[171] V. Kumar, S. Shekhar, and M. B. Amin. A scalable parallel formulation of the back-propagation
algorithm for hypercubes and related architectures. IEEE Transactions on Parallel and Distributed
Systems, 5(10):1073–1090, 1994.

[172] S. Y. Kung. Digital Neural Networks. Prentice-Hall, Upper Saddle River, NJ, USA, 1993.

[173] S. Y. Kung and J. N. Hwang. Parallel architectures for artificial neural nets. In Proceedings of
International Conference on Neural Networks, volume II, pages 165–172, San Diego, CA, 1988.

[174] S. Y. Kung and J. N. Hwang. A unified systolic architecture for artificial neural networks. Journal of
Parallel Distributed Computing, 6:358–387, 1989.

[175] H. Lamela, M. Ruiz-Llata, and C. Warde. Optical broadcast interconnection neural network. Optical
Engineering, 42:2487–2488, 2003.

[176] Horacio Lamela and Marta Ruiz-Llata. Optoelectronic neural processor for smart vision applications.
Imaging Science Journal, 55(4):197–205, 2007.

[177] Tor Sverre Lande, editor. Neuromorphic Systems Engineering: Neural Networks in Silicon. Kluwer
Academic Publishers, Norwell, MA, USA, 1998.

[178] O. Landolt, E. Vittoz, and P. Heim. CMOS self biased euclidean distance computing circuit with high
dynamic range. Electronics Letters, 28:352–354, 1992.

[179] E. Lange, Y. Nitta, and K. Kyuma. Optical neural chips. IEEE Micro, 14:29–41, 1994.

[180] J. Lazzaro and C. Mead. A silicon model of auditory localization. Neural Computation, 1:41–70, 1989.

[181] J. Lazzaro and J. Wawrzynek. Low-power silicon neurons, axons and synapses. Silicon implementation
of pulse coded neural networks, pages 153–164, 1994.

[182] J. H. Lee. CMOL CrossNets ad Defect-Tolerant Classifiers. PhD thesis, Stony Brook University, NY,
2007.

[183] Jung Hoon Lee and Konstantin Likharev. CMOL crossnets as pattern classifiers. In Proceedings of 8th
International Work-Conference on Artificial Neural Networks: Computational Intelligence and Bioin-
spired Systems, volume 3512 of Lecture Notes in Computer Science, pages 446–454, Berlin, Heidelberg,
Germany, 2005. Springer.

[184] Jung Hoon Lee and Konstantin Likharev. In situ training of CMOL crossnets. In Proceedings of the
International Joint Conference on Neural Networks, pages 5026–5034, 2006.

[185] Jung Hoon Lee, Xiaolong Ma, and Konstantin Likharev. CMOL crossnets: Possible neuromorphic
nanoelectronic circuits. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 755–762. MIT Press, Cambridge, MA, 2006.

[186] T. Lehmann, E. Bruun, and C. Dietrich. Mixed analog/digital matrix-vector multiplier for neural
network synapses. Analog Integrated Circuits and Signal Processing, 9(1):55–63, 2004.

[187] H. Li, D. Zhang, and S.Y. Foo. A stochastic digital implementation of a neural network controller for
small wind turbine systems. IEEE Transactions on Power Electronics, 21(5):1502–1507, Sept. 2006.

[188] P. Lichtsteiner, C. Posch, and T. Delbruck. An 128x128 120dB 15us-latency temporal contrast vision
sensor. IEEE Journal of Solid State Circuits, 43(2):566–576, 2007.

35



[189] Konstantin K. Likharev. CMOL: Second life for silicon? Journal of Microelectronics, 39(2):177–183,
2008.

[190] Konstantin K. Likharev and D. B. Strukov. CMOL: Devices, Circuits, and Architectures, chapter 16,
pages 447–477. Springer, Berlin, Heidelberg, Germany, 2005.

[191] G. S. Lim, M. Alder, and P. Hadingham. Adaptive quadratic neural nets. Pattern Recognition Letters,
13:325–329, 1992.

[192] G. Linan, S. Espejo, R. Dominguez-Castro, and A. Rodriguez-Vazquez. ACE4k: An analog I/O 64x64
visual microprocessor chip with 7-bit analog accuracy. International Journal of Circuit Theory and
Applications, 30(2-3):89–116, 2002.

[193] B. Linares-Barranco, A. G. Andreou, G. Indiveri, and T. Shibata, editors. Special Issue on Neural
Networks Hardware Implementation: IEEE Transactions on Neural Networks, volume 14(5), 2003.

[194] T. Lindblad and J. M. Kinser. Image Processing Using Pulse-Coupled Neural Networks. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005.

[195] C. Lindsey and T. Lindblad. Review of hardware neural networks: A user’s perspective. In Proceedings
of 3rd Workshop on Neural Networks: From Biology to High Energy Physics, pages 195–202, Isola
d’Elba, Italy, September 1994.

[196] C.S. Lindsey and T. Lindblad. Survey of Neural Network Hardware. In Proceedings of the 1st Inter-
national Conference on Applications and Science of Artificial Neural Networks, volume 2492, pages
1194–1205. the Society of Photo-Optical Instrumentation Engineers (SPIE), 1995.

[197] Jin Liu, Martin A. Brooke, and Kenichi Hirotsu. A CMOS feed-forward neural network chip with
on-chip parallel learning for oscillation cancellation. IEEE Transactions on Neural Networks, 13:1178–
1186, 2002.

[198] JC Lopez-Garcia, MA Moreno-Armendariz, J. Riera-Babures, M. Balsi, and X. Vilasis-Cardona. Real
time vision by FPGA implemented CNNs. In Proceedings of the 2005 European Conference on Circuit
Theory and Design, volume 1, pages 281 – 284, 2005.

[199] D. R. Lovell, T. Downs, and A. C. Tsoi. An evaluation of the neocognitor. IEEE Transactions on
Neural Networks, 8(5):1090–1105, September 1997.

[200] Teresa B. Ludermiry, Andre de Carvalhoz, Antonio P. Bragax, and Marclio C. P. de Souto. Weightless
neural models: A review of current and past works. Neural Computing Surveys, 2:41–61, 1999.

[201] R. F. Lyon and C. Mead. An analog electronic cochlea. IEEE Trans. on Acoustics, Speech, and Sig.
Proc., 36(7):1119–1133, July 1988.

[202] W. Maass and C.M. Bishop. Pulsed Neural Networks. The MIT Press, Cambridge, MA, USA, 2001.

[203] Wolfgang Maass. Noisy spiking neurons with temporal coding have more computational power than
sigmoidal neurons. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Advances in
Neural Information Processing Systems, volume 9, pages 211–217, Cambridge, MA, USA, 1997. The
MIT Press.

[204] Y. Maeda and R. J. P. de Figueiredo. Learning rules for neuro-controller via simultaneous perturbation.
IEEE Transactions on Neural Networks, 8:1119–1130, 1997.

[205] Y. Maeda, H. Hirano, and Y. Kanata. A learning rule of neural networks via simultaneous perturbation
and its hardware implementation. Neural Networks, 8(2):251–259, 1995.

[206] Y. Maeda and T. Tada. FPGA implementation of a pulse density neural network with learning ability
using simultaneous perturbation. IEEE transaction on Neural Networks, 14(3):688–695, 2003.

36



[207] L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin. Challenges for
large-scale implementations of spiking neural networks on FPGAs. Neurocomput., 71(1-3):13–29, 2007.

[208] M. Mahowald. An Analog VLSI System for Stereoscopic Vision. Kluwer Academic Publishers, Norwell,
MA, USA, 1994.

[209] N. Maria, A. Guerin-Dugue, and F. Blayo. 1d and 2d systolic implementations for radial basis func-
tion networks. In Proceedings of the Fourth International Conference on Microelectronics for Neural
Networks and Fuzzy Systems, pages 34–45, Turin, Italy, 1994.

[210] P. Masa, K. Hoen, and H. Wallinga. A high-speed analog neural processor. IEEE Micro, pages 40–50,
1994.

[211] N. Mauduit, M. Duration, and J. Gobert. Lneuro 1.0: A piece of hardware LEGO for building neural
network systems. IEEE Transactions on Neural Networks, 3:414–422, 1992.

[212] H. McCartor. Back propagation implementation on the Adaptive Solutions CNAPS neurocomputer
chip. In R. Lippmann and et al., editors, Advances in Neural Information Processing Systems, pages
1028–1031. Morgan Kaufmann, 1991.

[213] S. McLoone and G. W. Irwin. Fast parallel off-line training of multilayer perceptrons. IEEE Transac-
tions on Neural Networks, 8:646–653, 1997.

[214] Carver Mead. Analog VLSI and Neural Systems. Addison-Wesley, Boston, MA, USA, 1989.

[215] R. W. Means and L. Lisenbee. Extensible linear floating point SIMD neurocomputer array processor.
In Proceedings of International Joint Conference on Neural Networks, volume I, pages 587–592, Seattle,
Washington, July 1991.

[216] P. Merolla and K. Boahen. A Recurrent Model of Orientation Maps with Simple and Complex Cells.
Advances in Neural Information Processing Systems, pages 995–1002, 2004.

[217] S. Mihalas and E. Niebur. A generalized linear integrate-and-fire neural model produces diverse spiking
behaviors. Neural Computation, 21(3):704–718, 2009.

[218] Momchil Milev and Marin Hristov. Analog implementation of ANN with inherent quadratic nonlin-
earity of the synapses. IEEE Transactions on Neural Networks, 14(5):1187 – 1200, 2003.

[219] G. Moagar-Poladian and M. Bulinski. Reconfigurable optical neuron based on the transverse pockels
effect. Journal of Optoelectronics and Advanced Materials, 4(4):929–936, 2002.

[220] P. D. Moerland and E. Fiesler. Hardware friendly learning algorithms for neural networks: An
overview. In Proceedings of the Fifth International Conference on Microelectronics for Neural Networks
and Fuzzy Systems, pages 117–124, Lausanne, Switzerland, February 1996.

[221] P. D. Moerland and E. Fiesler. Neural Network Adaptations to Hardware Implementations. In E. Fiesler
and R. Beale, editors, Handbook of Neural Computation, pages E1.2:1–13, New York, NY, USA, 1997.
Institute of Physics Publishing and Oxford University Publishing.

[222] P. D. Moerland, E. Fiesler, and I. Saxena. Incorporation of liquidcrystal light valve nonlinearities in
optical multilayer neural networks. Applied Optics, 35:5301–5307, 1996.

[223] J. Moody and C. J. Darken. Fast learning in networks of locally tuned processing units. Neural
Computation, 1:281 – 294, 1989.

[224] T. Morishita, Y. Tamura, T. Otsuki, and G. KANO. A BiCMOS analog neural network with dynam-
ically updated weights. IEICE TRANSACTIONS on Electronics, 75(3):297–302, 1992.

[225] A. Mortara and E. A. Vittoz. A communication architecture tailored for analog VLSI artificial neural
networks: intrinsic performance and limitations. IEEE Trans. on Neural Networks, 5:459–466, 1994.

37



[226] ML Mumford, DK Andes, LL Kern, U.S.N.W. Center, and C. Lake. The Mod 2 neurocomputer system
design. IEEE Transactions on Neural Networks, 3(3):423–433, 1992.

[227] A. Muthuramalingam, S. Himavathi, and E. Srinivasan. Neural network implementation using FPGA:
Issues and application. International Journal of Information Technology, 4(2):2–12, 2007.

[228] Z. Nagy and P. Szolgay. Configurable multilayer CNN-UM emulator on FPGA. IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications, 50(6):774–778, 2003.

[229] Z. Nagy and P. Szolgay. Configurable multilayer CNN-UM emulator on FPGA. IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications, 50(6):774–778, 2003.

[230] Z. Nagy, Z. Voroshazi, and P. Szolgay. An emulated digital retina model implementation on FPGA.
In 9th International Workshop on Cellular Neural Networks and Their Applications, pages 278–281,
2005.

[231] R. Navas, F. V. Verd, and A.R. Vzquez. Neuro-fuzzy chip to handle complex tasks with analog
performance. IEEE Transactions on Neural Networks: Special Issue on Neural Networks Hardware
Implementations, 14(5):1375–1392, 2003.

[232] D. Naylor, S. Jones, and D. Myers. Backpropagation in linear arrays – A performance analysis and
optimization. IEEE Transactions on Neural Networks, 6:583–595, 1995.

[233] Nadia Nedjah and Luiza de Macedo Mourelle. Reconfigurable hardware for neural networks: binary
versus stochastic. Neural Computing and Applications, 16(3):249–255, 2007.

[234] Neurologix. NLX420 data sheet, 1992. Neurologix, Inc., 800 Charcot Av., Suite 112, San Jose, Ca.
USA.

[235] B. Noory and V. Groza. A reconfigurable approach to hardware implementation of neural networks. In
Proceedings of Canadian Conference on Electrical and Computer Engineering, pages 1861–1864, 2003.

[236] T. Nordstrom and B. Svensson. Using and designing massively parallel computers for artificial neural
networks. Journal of Parallel Distributed Computing, 14:260–285, 1992.

[237] Sung-Kwun Oh, W. Pedrycz, and Ho-Sung Park. Genetically optimized fuzzy polynomial neural
networks. IEEE Transactions on Fuzzy Systems, 14(1):125–144, 2006.

[238] A. R. Ormondi and J. C. Rajapakse, editors. FPGA Implementations of Neural Networks. Springer-
Verlag, Dordrecht, Germany, 2006.

[239] J.L. Ortiz and C.T. Ocasio. Analog hardware model for morphological neural networks. In Proceedings
of the IASTED International Conference on Neural Networks and Computational Intelligence, pages
40 – 44, Anaheim, CA, USA, 2003. ACTA Press.

[240] Y. Ota and B. M. Wilamowski. Analog implementation of pulse-coupled neural networks. IEEE
Transactions on Neural Networks, 10:539–544, 1999.

[241] G. Palm, F. Kurfess, F. Schwenker, and A. Strey. Neural associative memories. Associative Processing
and Processors, pages 284–306, 1997.

[242] F. Palmieri, J. Zhu, and C. Chang. AntiHebbian learning in topologically constrained linear networks:
A tutorial. IEEE Transactions on Neural Networks, 4:748–761, 1993.

[243] M. Panella and A.S. Gallo. An input-output clustering approach to the synthesis of ANFIS networks.
IEEE Transactions on Fuzzy Systems, 13(1):69–81, 2005.

[244] Ramin Pashaie and Nabil H. Farhat. Optical realization of bio-inspired spiking neurons in the electron
trapping material thin film. Applied Optics, 46(35):8411–8418, 2007.

38



[245] L. M. Patnaik and R. N. Rao. Parallel implementation of neocognitron on star topology: Theoretical
and experimental evaluation. Neurocomputing, 41:109–124, 2001.

[246] G.E. Pazienza, J. Bellana-Camanes, J. Riera-Babures, X. Vilasis-Cardona, M.A. Moreno-Armendariz,
and M. Balsi. Optimized cellular neural network universal machine emulation on FPGA. In Proceedings
of the 18th European Conference on Circuit Theory and Design, pages 815–818, 2007.

[247] G.E. Pazienza, X. Ponce-Garcia, M. Balsi, and X. Vilasis-Cardona. Robot vision with cellular neural
networks: a practical implementation of new algorithms. International Journal of Circuit Theory and
Applications, 35(4):449 – 462, 2007.

[248] A. Petrowski, L. Personnaz, G. Dreyfus, and C. Girault. Parallel implementations of neural network
simulations. In F. Andre and J. P. Verjus, editors, Hypercube and Distributed Computers, pages 205–
218, North-Holland, 1989. Elsevier Science B. V.

[249] D. Psaltis and Y. Qiao. Adaptive multilayer optical networks. In E. Wolf, editor, Progress in Optics,
volume 31, pages 227–261, Amsterdam, 1993. Elsevier Science.

[250] Babuska R. and Verbruggen H. Neuro-fuzzy methods for nonlinear system identification. Annual
Reviews in Control, 27:73–85, 2003.

[251] U. Ramacher. Neurocomputers: Towards a new generation of processors. Siemens Review, 61(3):26–29,
1994.

[252] U. Ramacher, W. Raab, J. Anlauf, U. Hachmann, and M. Wesseling. SYNAPSE-1 - A general purpose
neurocomputer. Siemens AG Proprietary Information Manual, Corporate Research and Development
Division, Siemens AG, Munich, February 1994.

[253] C. Rasche and R. Douglas. An improved silicon neuron. Analog Integrated Circuits and Signal Pro-
cessing, 23(3):227–236, 2000.

[254] Leonardo Maria Reyneri. Design and Codesign of Neuro-Fuzzy Hardware. In Proceedings of the 6th
International Work-Conference on Artificial and Natural Neural Networks: Bio-inspired Applications
of Connectionism-Part II, pages 14–30. Springer-Verlag London, UK, 2001.

[255] LM Reyneri. Unification of neural and wavelet networks and fuzzy systems. IEEE Transactions on
neural networks, 10(4):801–814, 1999.

[256] L.M. Reyneri. On the performance of pulsed and spiking neurons. Analog Integrated Circuits and
Signal Processing, 30(2):101–119, 2002.

[257] L.M. Reyneri. Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign. Neural
Networks, IEEE Transactions on, 14(1):176–194, Jan 2003.

[258] K.L. Rice, T.M. Taha, and C.N. Vutsinas. Scaling analysis of a neocortex inspired cognitive model on
the Cray XD1. The Journal of Supercomputing, 47(1):21–43, 2009.

[259] Patrick Rocke, Brian McGinley, Fearghal Morgan, and John Maher. Reconfigurable hardware evolution
platform for a spiking neural network robotics controller. In Pedro C. Diniz, Eduardo Marques, Koen
Bertels, Marcio Merino Fernandes, and João M. P. Cardoso, editors, ARC, volume 4419 of Lecture
Notes in Computer Science, pages 373–378, Berlin, Heidelberg, Germany, 2007. Springer.

[260] A. Rodriguez-Vazquez, G. Linan-Cembrano, L. Carranza, E. Roca-Moreno, R. Carmona-Galan,
F. Jimenez-Garrido, R. Dominguez-Castro, and SE Meana. ACE16k: the third generation of mixed-
signal SIMD-CNN ACE chips toward VSoCs. IEEE Transactions on Circuits and Systems I: Regular
Papers, 51(5):851–863, 2004.

[261] A.R.S. Romariz, P.U.A. Ferreira, J.V. Campelo, M.L. Graciano, and J.C da Costa. Design of a hybrid
digital-analog neural co-processor for signal processing. In Proceedings of the 22nd EUROMICRO
Conference, pages 513 – 519, 1996.

39



[262] E. Ros, E.M. Ortigosa, R. Agis, R. Carrillo, and M. Arnold. Real-time computing platform for spiking
neurons (RT-spike). IEEE transactions on Neural Networks, 17(4):1050, 2006.

[263] T. Roska and LO Chua. The CNN universal machine: an analogic array computer. IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing, 40(3):163–173, 1993.

[264] T. Roska and A. Rodriguez-Vazquez. Towards the Visual Microprocessor: VLSI Design and the Use
of Cellular Neural Network Universal Machines. John Wiley & Sons Ltd., Chichester, West Suzzex,
England, 2000.

[265] T. Roska and J. Vandewalle. Cellular neural networks, chapter 39, pages 1075–1092. The circuits and
filters handbook. CRC Press Boca Raton, FL, second edition, 2003.

[266] Ulrich Ruckert. An associative memory with neural architecture and its VLSI implementation. In
Proceedings of Hawaii International Conference on System Sciences, pages 212–218, 1991.

[267] S. Rueping, K. Goser, and U. Ruckert. A chip for self-organizing feature maps. In Proceedings of
Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, pages
26–33, 1994.

[268] Ruiz-Llata and H. Lamela-Rivera. Image identification system based on an optical broadcast neural
network and a pulse coupled neural network preprocessor stage. Applied Optics, 47:47–10, 2008.

[269] M. Ruiz-Llata and H. Lamela-Rivera. Image identification system based on an optical broadcast neural
network processor. Applied optics, 44(12):2366–2376, 2005.

[270] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Distributed representations. Parallel Distributed
Processing, pages 77 – 109, 1986.

[271] F. M. Salam and T. Yamakawa, editors. Special Issue on Micro-Electronic Hardware Implementation
of Soft Computing: Neural and Fuzzy Networks with Learning, volume 25, 1999.

[272] M. Salerno, F. Sargeni, and V. Bonaiuto. A dedicated multi-chip programmable system for cellular
neural networks. Analog Integrated Circuits and Signal Processing, 18(2):277–288, 1999.

[273] F. Sargeni and V. Bonaiuto. A fully digitally programmable CNN chip. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, 42(11):741–745, 1995.

[274] R. Sarpeshkar, R.F. Lyon, and C. Mead. A low-power wide-dynamic-range analog VLSI cochlea.
Analog integrated circuits and signal processing, 16(3):245–274, 1998.

[275] I. Saxena and E. Fiesler. Adaptive multilayer optical neural network with optical thresholding. Optical
Engineering, 34:2435–2440, 1995.

[276] A.V. Schaik. Building blocks for electronic spiking neural networks. Neural Networks, 14:617–628,
2001.

[277] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog neural networks. In IEEE
International Joint Conference on Neural Networks (IJCNN), pages 431–438. IEEE World Congress
on Computational Intelligence, 2008.

[278] A. Schmid, Y. Leblebici, and D. Mlynek. A mixed analog digital artificial neural network with on chip
learning. IEE Proceedings - Circuits, Devices and Systems, 146:345, 1999.

[279] T. Schoenauer, S. Atasoy, N. Mehrtash, and H. Klar. NeuroPipe-Chip: A digital neuro-processor for
spiking neural networks. IEEE transaction on Neural Networks, 13(1):205–213, 2002.

[280] T. Schoenauer, A. Jahnke, U. Roth, and H. Klar. Digital neurohardware: Principles and perspectives.
In Proceedings of Neuronal Networks in Applications, pages 101–106, Magdeburg, Germany, 1998.

40



[281] Benjamin Schrauwen and Michiel D‘Haene. Compact digital hardware implementations of spiking
neural networks. In J. Van Campenhout, editor, Sixth FirW PhD Symposium, page on CD, 2005.

[282] SR Schultz and MA Jabri. Analogue VLSI ‘integrate-and-fire’ neuron with frequency adaptation.
Electronics Letters, 31(16):1357–1358, 1995.

[283] A. Serrano-Gotarredona, T. Serrano-Gotarredona, A. J. Acosta-Jiménez, and B. Linares-Barranco.
An arbitrary kernel convolution AER-transceiver chip for real-time image filtering. In Proceedings of
the IEEE International Symposium on Circuits and Systems (ISCAS), pages 3145–3148, Kos, Greece,
2006.

[284] J. Shawe-Taylor, P. Jeavons, and M. Daalen. Probabilistic bit stream neural chip: Theory. Connection
Science, 3(3):317–328, 1991.

[285] A. Shortt, J. G. Keating, L. Moulinier, and C. N. Pannell. Optical implementation of the Kak neural
network. Inf. Sci. Inf. Comput. Sci., 171(1-3):273–287, 2005.

[286] H. Shouno. Recent Studies Around the Neocognitron. Lecture Notes In Computer Science, pages
1061–1070, 2007.

[287] Paulo E. X. Silveira. Optoelectronic neural networks. In Ronald G. Driggers, editor, Encyclopedia of
Optical Engineering 1:1, pages 1887 – 1902. CRC Press, 270 Madison Avenue, New York, NY, USA,
2003.

[288] A. Singer. Implementations of artificial neural networks on the connection machine. Parallel Comput-
ing, 14:305–315, 1990.

[289] S. R. Skinner, J. E. Steck, and E. C. Behrman. Optical neural network using kerr-type nonlinear
materials. In Proceedings of Fourth International Conference on Microelectronics for Neural Networks
and Fuzzy Systems, pages 12–15, 1994.

[290] Miroslav Skrbek. Fast neural network implementation. Neural Network World, 5:375–391, 1999.

[291] F. J. Smieja. Neural network constructive algorithms: Trading generalization for learning efficiency?
Circuits, Systems, and Signal Processing, 12:331–374, 1993.

[292] L.S. Smith. Implementing neural models in silicon. Handbook of Nature-Inspired And Innovative
Computing: Integrating Classical Models with Emerging Technologies, page 433, 2006.

[293] Stratix. Stratix III FPGA device family overview, 2007.

[294] A. Strey and N. Avellana. A new concept for parallel neurocomputer architectures. In Proceedings of
EuroPar’96, pages 470–477, Lyon, France, August 1996.

[295] N. Sundararajan and P. Saratchandran. Parallel Architectures for Artificial Neural Networks:
Paradigms and Implementations. IEEE Computer Society Press, Los Alamitos, CA, USA, 1998.

[296] Synaptics. Synaptic touch pad, last accessed at Nov 22, 2009.

[297] T. Szabo, L. Antoni, G. Horvath, and B. Feher. A full-parallel digital implementation for pre-trained
NNs. In IEEE-INNS-ENNS International Joint Conference on Neural Networks, volume 2, page 2049,
2000.

[298] K. W. Tang and S. Kak. A new corner classification approach to neural network training. Circuits,
Systems, and Signal Processing, 17(4):459–469, 1998.

[299] David Terman and DeLiang Wang. Global competition and local cooperation in a network of neural
oscillators. Physica D, 81(1-2):148–176, 1995.

41



[300] Sz. Tokes, L. Orzò, Gy. Vr, and T. Roska. Bacteriorhodopsin as an analog holographic memory for joint
fourier implementation of CNN computers. Technical Report DNS-3-2000, Computer and Automation
Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary, 2000.

[301] O. Turel. Devices and Circuits for Nanoelectronic Implementation of Artificial Neural Networks. PhD
thesis, Stony Brook University, NY, 2007.

[302] Ö. Türel, J.H. Lee, X. Ma, and K.K. Likharev. Architectures for nanoelectronic implementation of
artificial neural networks: New results. Neurocomputing, 64:271–283, 2005.

[303] M. Valle. Smart Adaptive Systems on Silicon. Kluwer Academic Publishers, 3300 AA Dordrecht, The
Netherlands, 2005.

[304] P. Vas. Sensorless Vector and Direct Torque Control. Oxford University Press, USA, 1998.

[305] D. Ventura. On the utility of entanglement in quantum neural computing. In Proceedings of the
International Joint Conference on Neural Networks, volume 2, pages 1565–1570, 2001.

[306] Michel Verleysen, Lean luc Voz, and Jordi Madrenas. An analog processor architecture for a neural
network classifier. IEEE Micro, 14:16–28, 1994.

[307] R.J. Vogelstein, U. Mallik, J.T. Vogelstein, and G. Cauwenberghs. Dynamically reconfigurable silicon
array of spiking neurons with conductance-based synapses. IEEE Transactions on Neural Networks,
18(1):253, 2007.

[308] U. Vollmer and A. Strey. Experimental study on the precision requirements of RBF, RPROP and
BPTT training. In Proceedings of the Ninth International Conference on Artificial Neural Networks,
pages 239 – 244, London, UK, 1999.

[309] Z. Voroshazi, A. Kiss, Z. Nagy, and P. Szolgay. Implementation of embedded emulated-digital CNN-
UM global analogic programming unit on FPGA and its application. International Journal of Circuit
Theory and Applications, 36(5-6):589–603, 2008.

[310] DeLiang Wang and David Terman. Image segmentation based on oscillatory correlation. Neural
Computation, 9(4):805–836, 1997.

[311] Jun Wang. An analog neural network for solving the assignment problem. Electronic Letters,
28(11):1047 – 1050, 1992.

[312] Weizhi Wang and Dongming Jin. Neuro-fuzzy system with high-speed low-power analog blocks. Fuzzy
Sets and Systems, 157(22):2974–2982, 2006.

[313] Michael Weeks, Michael Freeman, Anthony Moulds, and Jim Austin. Developing hardware-based
applications using PRESENCE-2. In Perspectives in Pervasive Computing, pages 469 – 474, Savoy
Place, London, 2005.

[314] B. Widrow and M. A. Lehr. Thirty years of adaptive neural networks: Perceptron, Madaline, and
Backpropagation. Proceedings of the IEEE, 78:1415–1442, 1990.

[315] J.H.B. Wijekoon and P. Dudek. Compact silicon neuron circuit with spiking and bursting behaviour.
Neural Networks, 21(2-3):524–534, 2008.

[316] B. M. Wilamowski, J. Binfet, and M. O. Kaynak. VLSI implementation of neural networks. Interna-
tional Journal of Neural Systems, 10(3):191197, 2000.

[317] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory.
Nature, 222:960 – 962, 1969.

[318] M. Witbrock and M. Zagha. An implementation of back-propagation learning on GF11, a large SIMD
parallel computer. Parallel Comput., 14:329–346, 1990.

42



[319] Xilinx. Virtex-ii pro and virtex-ii pro x platform fpgas: Complete data sheet, 2007.

[320] ME Yalcin, JAK Suykens, and J. Vandewalle. Spatiotemporal pattern formation in the ACE16k CNN
chip. In In proceedings of the IEEE International Symposium on Circuits and Systems, pages 5814–
5817, 2005.

[321] F. Yang and M. Paindavoine. Implementation of an RBF neural network on embedded systems: Real-
time face tracking and identity verification. IEEE Transaction on Neural Networks, 14(5):1162–1175,
2003.

[322] F. T. S. Yu, T. Lu, X. Yang, and D. A. Gregory. Optical neural network with pocketsized liquidcrystal
televisions. Optics Letters, 15:863–865, 1990.

[323] Francis T. S. Yu and Chii Maw Uang. Optical neural networks. In Ronald G. Driggers, editor,
Encyclopedia of Optical Engineering 1:1, pages 1763–1777. CRC Press, 270 Madison Avenue, New
York, NY, USA, 2003.

[324] KA Zaghloul and K. Boahen. Optic nerve signals in a neuromorphic chip I: Outer and inner retina
models. IEEE Transactions on Biomedical Engineering, 51(4):657–666, 2004.

[325] K.A. Zaghloul and K. Boahen. Optic nerve signals in a neuromorphic chip II: Testing and results.
IEEE Transactions on Biomedical Engineering, 51(4):667–675, 2004.

[326] K.A. Zaghloul and K. Boahen. A silicon retina that reproduces signals in the optic nerve. Journal of
Neural Engineering, 3(4):257–267, 2006.

[327] A. Zarandy and C. Rekeczky. Bi-i: a standalone ultra high speed cellular vision system. IEEE Circuits
and Systems Magazine, 5(2):36–45, 2005.

[328] K. Zhang, I. Ginzburg, B.L. McNaughton, and T.J. Sejnowski. Interpreting neuronal population
activity by reconstruction: unified framework with application to hippocampal place cells. Journal of
Neurophysiology, 79(2):1017, 1998.

[329] Lei Zhang, Yinhe Han, Huawei Li, and Xiaowei Li. Fault tolerance mechanism in chip many-core
processors. Tsinghua Science & Technology, 12(Supplement 1):169 – 174, 2007.

[330] Jihan Zhu and Peter Sutton. FPGA implementations of neural networks - a survey of a decade of
progress. In Field-Programmable Logic and Applications, volume 2778, pages 1062–1066, 2003.

[331] Q. Zou, Y. Bornat, J. Tomas, S. Renaud, and A. Destexhe. Real-time simulations of networks of
Hodgkin–Huxley neurons using analog circuits. Neurocomputing, 69(10-12):1137–1140, 2006.

[332] J.M. Zurada. Analog implementation of neural networks. IEEE Circuits and Devices Magazine, vol.8,
(no.5):36–41, 1992.

43

View publication statsView publication stats

https://www.researchgate.net/publication/223938078

