
23

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-7998-2112-0.ch002

ABSTRACT

Deep learning on edge has been attracting the attention of researchers and companies looking to provide
solutions for the deployment of machine learning computing at the edge. A clear understanding of the
design challenges and the application requirements are fundamental to understand the requirements of the
next generation of edge devices to run machine learning inference. This chapter reviews several aspects
of deep learning: applications, deep learning models, and computing platforms. The way deep learning
is being applied to edge devices is described. A perspective of the models and computing devices being
used for deep learning on edge are given, as well as what challenges face the hardware designers to
guarantee the vast set of tight constraints like performance, power consumption, flexibility, etc. of edge
computing platforms. Finally, a trends overview of deep learning models and architectures is discussed.

INTRODUCTION

Machine learning algorithms and, in particular, deep learning brought Artificial Intelligence to many
application domains. In a deep learning workflow data is gathered and prepared for training the machine
learning model. In the training step, deep learning models are trained with a large set of known instances
so that they can classify new inputs not used during the training step. These trained models are then
deployed for inference. Inference is when the trained model is used to classify new and unknown data
instances.

Training is computationally heavy and requires high-performance computing platforms that still take
hours or even days to train large deep learning models. Inference is orders of magnitude less demanding
in terms of computation and can also be deployed in the same computing platform used for training.
The common process is to use the high-performance computing platform for both training and infer-
ence. In many cases, data to be processed by the deep neural model is received from an edge device (any

Deep Learning on Edge:
Challenges and Trends

Mário P. Véstias
 https://orcid.org/0000-0001-8556-4507

INESC-ID, ISEL, Instituto Politécnico de Lisboa, Portugal

https://orcid.org/0000-0001-8556-4507

24

Deep Learning on Edge
﻿

hardware device that serves as an entry point of data and may store, process and/or send the data to a
central server) and the inference result is sent back to the edge device. However, in a vast set of applica-
tions (security, surveillance, facial recognition, autonomous car driving, industrial, etc.) this round-trip
method of doing inference is inefficient or unfeasible. Running the inference near the source of data is
advantageous and in some cases necessary so that important information can be extracted in site and
if necessary at real-time instead of sending data to the cloud and wait for the inference classification.
Whenever the communication latency and data security violations are undesirable, like autonomous
vehicles, local processing at the sensor is a requirement. In these cases, inference is done at the edge
avoiding long data communications and high computing latencies. For these reasons, many deep learn-
ing tasks are migrating from the cloud of high-performance computing platforms to the low cost, low
density embedded devices at the edge.

This brings new problems and open issues to the design of machine learning models at edge devices
since running deep learning on edge is subject to different performance, memory and cost requirements
then those considered by cloud computing design processes. Cloud inference is focused on delivering
high performance inference with the highest model accuracy. Edge inference benefits from high accuracy
models but achieving the highest accuracy is not the main metric. Cost, performance, energy, real-time,
size are some of the most important design parameters considered when implementing computing plat-
forms for edge inference on edge.

Deep learning on edge has been attracting the attention of researchers and companies looking to pro-
vide solutions for the deployment of machine learning computing at the edge. A clear understanding of
the design challenges and the application requirements are fundamental to understand the requirements
of the next generation of edge devices to run machine learning inference.

In this chapter several aspects of deep learning: applications, deep learning models and comput-
ing platforms, will be reviewed. Then the way deep learning is being applied to edge devices will be
describes. A perspective of the models and computing devices that are being used for deep learning on
edge will be given, what challenges are facing the hardware designers to guarantee the vast set of tight
constraints like performance, power consumption, flexibility, etc. of edge computing platforms. Finally,
a trends overview of deep learning models and architectures will be discussed.

BACKGROUND

Machine learning is a subfield of artificial intelligence whose objective is to give systems the capacity
to learn and improve by its own without being explicitly programmed to do it. Machine learning algo-
rithms extract features from data and build models from it so that new decisions and new outcomes are
produced without being programmed a priori with these models and rules.

There are many types of machine learning algorithms with different approaches and application
targets: Bayesian (Barber, 2012), clustering (Bouveyron et al., 2019), instance-based (Keogh, 2011),
ensemble (Zhang, 2012), artificial neural network (Haykin, 2008), deep learning network (Patterson &
Gibson, 2017), decision tree (Quinlan, 1992), association rule learning (Zhang & Zhang, 2002), regu-
larization (Goodfellow et al., 2016), regression (Matloff, 2017), support-vector machine (Christmann
& Steinwart, 2008) and others.

Different problems require different models and algorithms and so each of these algorithms apply
to different types of data sets and applications. All these algorithms can be broadly classified accord-

25

Deep Learning on Edge
﻿

ing to the learning style: supervised, unsupervised and semi-supervised. Supervised machine learning
algorithms (e.g., regression, artificial neural network and deep learning network) train the model of the
algorithm with training data. Each instance of the training data has an associated label that identifies
the expected result for each particular input. In the training process, the model is corrected and adjusted
according to the expected outcomes. In the unsupervised class of algorithms (e.g., dimensionality reduc-
tion, k-means clustering, etc.), the training data do not have an expected outcome. The algorithms in this
class try to extract features from the input data and cluster input data according to these features without
any previous knowledge of the input data characteristics. The semi-supervised algorithms mixes both
previous classes, that is, there is a desired outcome but the model must learn features to classify data.

Among the many machine algorithms this chapter is concerned with deep learning algorithms whose
ground are artificial neural networks (ANN). ANNs are inspired by the structure of the human brain
consisting of interconnected neurons. Theoretically, an ANN is a universal model capable to learn any
function (Hornik et al., 1989). Deep learning is basically deep artificial neural networks with several
and more complex layers designated deep neural networks. Since the introduction of deep learning that
several models have been proposed, like convolutional neural network, recurrent neural network, deep
belief network, deep Boltzmann machine, Kohonen self-organizing neural network, modular neural
network and stacked auto-encoder.

Deep Learning

The grounds of deep learning models are artificial neural networks. Before proceeding with a description
of deep neural networks the following section describes the fundamentals of ANNs

Figure 1. Artificial neural network

26

Deep Learning on Edge
﻿

Artificial Neural Network

An artificial neural network (Haykin, 2008) consists of a basic structure known as perceptron or neuron
organized in a series of layers. The first layer is the input layer, the last one is the output layer and all the
other layers between the input and the output layer are known as hidden layers (see figure 1).

Neurons in the input layer receive input data and generate outcomes for the neurons of the first hidden
layer, while the output layer receives the outcomes from the last hidden layer and produces the clas-
sification associated with the input data. These are feedforward networks which the underlying graph
contains no feedback connections or cycles and are the focus of this chapter. Each neuron of an artificial
neural network generate an output which is a function of all its inputs and sends it to all nodes of the
next layer, except the output layer that does not have a next layer and so the outcomes of the neuron are
the output results. The first artificial neural networks had only one hidden layer. Recently, this number
has increased considerably and according to (Bengio, 2009) when a neural network has more than three
layers is referred to as deep neural network.

A perceptron encodes n inputs, {x1, x2, x3,…, xn}, from neurons of the previous layer using a vector of
weights or parameters {w1, w2, w3,…, wn} associated with the connections between previous perceptrons
and the target perceptron that determines the importance of the corresponding input to the perceptron
being calculated. Each perceptron still has an additional bias value that is used to shift the output to
better fit the data (see figure 2).

The output of a perceptron, y, its prediction value, is computed as a function of the weights and the bias:

y f b w x
k

n

k k� �
�

�
�

�

�
�

�

�

�
0

1

	

Figure 2. Perceptron or neuron

27

Deep Learning on Edge
﻿

Function f(.) referred to as activation function determines the output of the neuron. In its simplest form
the activation function is binary, that is, the output is inactive, ‘0’, or active, ‘1’. While simple, requires
that many neurons are used for a non-linear separation of classes. A linear function can be used instead
that linearly rates the output between two values. These functions exhibit similar problems of a binary
function and since the output is unbounded, it leads to an unstable convergence. Instead, normalized
functions are used with better properties for classification and learning stability (Nwankpa et al, 2018).

One of the first activation functions was the sigmoid given by
1

1� �e z that predicts the probability

of the output with values between 0 and 1, and the hyperbolic tangent, (ex – e-x)/(ex + e-x) that increases
the output range to]-1, 1[. Many other activation functions were proposed during the last decades but
one of the most recently used is the ReLU (Rectified Linear Unit) that is 0 if the output is less or equal
than 0, and 1 otherwise. In (Glorot et al., 2011) it was shown that ReLU leads to better training of deep
neural networks. Previous activation functions apply to a single set. In many models, the output layer
provides outputs for multiple classes. To associate values to multiple classes the softmax function is
used. This function takes as input a vector of k values and normalizes it into a probability distribution
of k probabilities as follows:

f x e
e

i

x

j

K x

i

j
� � �

�� 1

	

The weights of a neural network model must be adjusted for each specific problem and for the best
network accuracy. Determining all weights of the network for best accuracy is known as the training
step. Training can be supervised, unsupervised or semi-supervised. In the supervised training the set
of weights, W, is found with the help of an objective function that quantifies the error, E, between the
measured outputs for a particular set of weights, ym, and the expected outputs, tm, through all N data
inputs, xn. The error is calculated as the sum of the squared error:

E W y x W t
n

N

m

M

m n m� � � � � �� �
� �
��
1 1

2

, 	

The training algorithm iteratively runs the forward propagation and the backpropagation steps. Starting
with an initial set of weights, an input is applied at the input layer of the network and propagated until
the output layer to find an output classification. The loss function, E(W), is then applied to determine
the mean squared error between the obtained output and the required output. This finishes the forward
propagation step.

Then the backpropagation step starts with the objective to adjust the weights to minimize the error
function. This is achieved by propagating backwards the value of the loss function to all neurons that
contribute to each output neuron. Neurons with a higher contribution to the loss function value of an
output neuron receive a higher fraction of this value. When all neurons have received its loss fraction,
weights are adjusted to reduce the loss. The adjustment of weights is done with the gradient descent
(Ruder, 2016) technique as follows:

28

Deep Learning on Edge
﻿

�W[i]=-³
�
� � �
�

�
��

�

�
��

E
w i

n 	

In gradient descendent, weights are incrementally changed based on the derivative of the loss func-
tion and a learning rate, γ. It means that the loss function must be differentiable.

Unless the network is very simple, the model do not achieve 100% accuracy. Therefore, a criteria
must be used to stop the training process. Normally the process stops when the accuracy improvement
between two training iterations is below a certain threshold.

Gradient descent is an heuristic method and so it does not guarantee the global minimum. Finding a
good local minimum depends on weight initialization. Some works have shown that better results can
be achieved if the initial weights are randomly chosen within specific ranges (Glorot & Bengio, 2010).

Unsupervised training follows a different process since there are no expected outputs. The model is
trained using extracted features from the input data. Semi-supervised training is a mix of both techniques
where training is done with some labeled data and some unlabeled data.

Deep Neural Network

Deep neural networks (DNN) are an extension of the traditional artificial neural networks with more layers
and different types of layers. Therefore in DNN each layer is trained with the output features extracted
by the previous layer. So as the data progress through the network model more features are aggregated
that represent more complex representations, like a hierarchy of features.

Unlike most traditional machine learning algorithms, deep learning is able to extract features from
the input data without being explicitly programmed to do it. An important fact about deep learning is
that the more data is used to train the network the better the accuracy, contrary to other machine learn-
ing algorithms. Since the size of the DNN can be freely increased it means that it can be applied to any
complex classification problem with a high dimensionality of features.

The concept of a DNN with multiple layers is not new but its feasibility is recent. A neural network
with many layers requires intensive computations to be trained. The required computational power is now
possible with the recent high-performance computing platforms. To achieve high accuracy DNN also
need a large set of data instances to train the network and it is a fact that today designers and developers
have access to huge amounts of data to do it.

So, the accuracy of deep neural networks gets better with larger models and when trained with more
data. The consequence is that both training and inference of DNN requires high memory size to store
weights and feature maps and computational capacity to train it in reasonable times.

Since its introduction as a machine learning model, several types of deep neural networks were pro-
posed differing mainly on how neurons are interconnected. In the following the most important types
of DNNs will be briefly explained.

Types of Deep Neural Networks

Feed-Forward Neural Network is the traditional neural network model as explained in the previous
section. All layers are dense and have the same structure. Dense layers means that all neurons of a layer
connect to all neurons of the previous layer, except the first layer that receives inputs. Theoretically these

29

Deep Learning on Edge
﻿

networks can model any relationship between inputs and outputs with enough hidden neurons but this
may lead to impractical implementations and so different neural networks models are adopted.

Convolutional neural networks (CNN) were introduced in (LeCun et al., 1989) to image classification.
A feed-forward neural network can be naturally applied to classify image. The problem is that input

pixels are modeled with input neurons and so, for reasonably sized images the number of neurons of the
input layer is large which requires many parameters from the input to the first hidden layer. Considering
images of size 128 × 128, the first layer would have 214 neurons. Assuming the next layer with the same
number of nodes, the first hidden layer would require 228 weights. Since a deep neural networks is being
used, this number easily increases to an order that turns the training process too hard.

Instead of using a neural network with dense layers, the interconnections between layers take into
consideration the type of input data (LeCun, 1989). CNNs takes advantage of the spatial correlation
between neighbor pixels to establish dependencies between neurons of different layers, that is, the output
of a neuron is the result of the convolution between a small window of weights and the respective output
of neurons of the input map. These layers are therefore designated convolutional layers. A CNN contains
one or more convolutional layers. Each convolutional layer identify features of the image which are then
correlated by the next convolutional layer to learn complex features.

The set of convolutional layers may be followed by one or more fully connected layers which are
dense layers identical to those used in feed-forward layers. Since these layers interconnect all neurons
of previous layers the complex features extracted so far are globally correlated.

Recurrent neural networks (RNN) were introduced in (Elman, 1990) and are basically dense net-
works with state. RNNs have a hidden state distributed through all neurons that allows them to store
information of previous data. State information is updated in a non-linear way which permits the model
to follow complex state sequences. This type of networks is very powerful but must be carefully designed
to avoid the vanishing problem where weights converge to extreme values loosing previous information.
RNNs have a vast set of applications including also those without an explicit association with a sequence
of events. A picture, for example, can be processed as a sequence of pixels. A common application of
RNNs is autocompletion where the information of a sequence is automatically determined.

The vanishing problem of RNNs happens because the state of the network is hard to keep for a long
time. The long-short term memory network – LSTM - (Hochreiter, 1998; Hochreiter & Schmidhuber,
1997) reduces the vanishing problem of RNNs with the introduction of gates and an explicit memory to
store states. The memory stores the state until a gate cell tells the memory to forget a state. LSTMs add
a cell layer to remember information from a previous iteration of the model. With these improvements
LSTM networks were able to execute complex tasks, like music composition.

RNN and LSTM networks may have an unpredictable behavior by following a non-deterministic
path or oscillating. To overcome this instability problems the Hopfield network (HN) introduced in
(Hopfield, 1982) can be used. The HN is the densest neural network since all neurons connect to all other
neurons. The network is trained for a set of patterns and only these can be identified by the network, that
is, for a particular input the network will converge to one of the stable patterns learned during training.
The HN has been shown to be very limited in the number of patterns (15% of the number of neurons)
it can learn because of the spurious minima. This limitation is associated with the fact that if two local
minima correspondent to two training patterns are too close it may create a single local minima for both
and therefore none of the two patterns will be memorized.

The Boltzmann Machine (BM) network is an unsupervised model that was introduced in (Hinton
& Sejnowski, 1986). His model is similar to the Hopfield network but only considers input and hidden

30

Deep Learning on Edge
﻿

neurons. After a network update during training the input neurons become output neurons. During the
learning process, the BM maximizes the product of probabilities assigned to the elements of the training
set. BM are used for dimensionality reduction, classification, feature learning, among others.

Deep Belief Network (DBN) introduced in (Bengio et al., 2006) are probabilistic generative models
with multiple layers of the so called latent variables. The first two layers have undirected connections
while the next layers have directed connections between layers. This type of networks is used recognize
and generate images and videos.

The autoencoder (AE) network model was designed for unsupervised learning and is used to encode
an input with a representation with less number of dimensions (Bourlard & Kamp, 1988). A decoder is
then used to decode the data and obtain the original data. So they are basically used to reduce the size
of the inputs into a compact representation.

Deep Neural Networks in Practice

From among the many different neural network models, CNNs have gained most of the attention due to
its good image classification results better than other deep neural networks and because there has been
an exponential increase of applications requiring image classification. In the following, some of the most
known CNN for its results and novelty will be described.

LeNet (LeCun et al., 1995) proposed one of the first convolutional neural network for hand digit
classification with high accuracy. The model accepts and classifies grayscale images of size 32×32
according to ten different classes representing the ten possible digits. The network has a total of 60K
weights and an overall accuracy above 99%.

AlexNet was the first large CNN (Krizhevsky, 2012) with very good results for image classification.
Compared to LeNet, AlexNet is deeper and has 1000× more weights than LeNet. The input images are
also larger (227×227×3). AlexNet has top-5 error rates around 17.0% and a top-1 error rate of 37.5%
when used to classify images from ImageNet.

In 2013 a multiplayer deconvolutional neural network – ZefNet - was proposed in (Zeiler & Fergus,
2013). The authors propose a methodology to help in the design of the network based on a process to
observe the network activity of neurons (Erhan, 2009; Le, 2013). Following the methodology, they were
able to improve AlexNet to a top-5 error rate of 11.2%.

One year later the VGG neural network (Simonyan & Zisserman, 2014) increased the size of CNNs
published so far with 138 million parameters. VGG improved previous year top-5 error rate to 7.3%.
In spite of several filter size improvements to reduce the number of parameters, VGG still have a huge
number of parameters requiring long training times and high inference times.

In the same year, a new CNN - GoogleNet (Szegedy et al., 2014; Szegedy, 2016) - introduced a new
layer that has groups of convolutions running in parallel within a module designated Inception. In the
inception module, several convolutional layers run in parallel like a small neural network inside a larger
model. With 6.8 million parameters GoogleNet achieved a top-5 error rate of 6.7% for ImageNet.

A very deep neural network - ResNet (He et al., 2015) - has increased the number of layers to 152
and achieved a top-5 error rate of 3.6% in the ImageNet contest. Similar to GoogleNet, ResNet includes
a new block named Residual Block where the output map of a series of two convolutional layers are
added to the input of the block. An optimization of ResNet was proposed in (Xie et al., 2017) with the
ResNeXt CNN with a top-5 error of 3.03%. Another improvement of ResNet was proposed in (Huang,

31

Deep Learning on Edge
﻿

2018) - DenseNet - with a similar accuracy but with about half of the parameters. This was possible with
a modification of the residual block where a layer has dependencies with all previous layers.

Recently, SENet (Hu, Shen & Sun, 2018) introduced a new network block based on the residual
block – squeeze-and-excitation that emphasizes important features and cancel less useful ones. SENet
won the ILSVRC competition in 2017 with a top-5 error rate of 2.25%.

Deep Learning on Edge

Deep learning algorithms are very demanding in terms of memory resources to store weights and comput-
ing power for training and inference. For these reasons, deep learning networks run of high-performance
computing platforms. Data collected from edge sensors are sent to high-performance computing centers
to be processed and when required the result is sent back to the edge to be presented or to help taking
decisions.

Today edge devices are almost everywhere in a large set of applications in industrial environments,
automotive, surveillance and security cameras, drones, satellites, medical equipment and new applications
appear every day. All these devices collect an enormous amount of data to be processed by the central
high-performance computing platform. This reduces the complexity and the energy required for edge
devices. However, for an increasing set of applications, the processing of collected data to take decisions
has to be done near the sensor for several reasons: unreliable channel transmission, large communication
round-trip delay, real-time processing, security and privacy of data.

Hence, data processing algorithms and decision taking is migrating from the cloud to the edge, in
particular deep learning models. The problem is that to run an inference of a deep learning network
requires high computing and memory resources, scarce resources on an edge computing device. Even
with the increasing capacity of edge and mobile devices, it is still a challenge to run deep neural networks
within the embedded constraints of the device.

Until recently, the main concern of DNN designers was to achieve the best accuracy. With the advent
of deep learning on edge, in the design and development of DNN accuracy is traded-off by energy, cost,
computing resources and several other metrics associated with edge computing devices.

Two lines of research are being followed for the optimization of deep neural networks on edge: model
optimization and optimized computing platforms for edge deep learning.

Model Optimization

As became evident from the neural networks describe above, the trend is to consider more layers and more
weights. Sometimes, a new neural network is proposed that optimizes a previous one with the reduction
of parameters but without ever reducing accuracy. DNN for edge and mobile processing reduces the
number of computations and weights with eventually a slight reduction in accuracy. MobileNet (Howard
et al, 2017) is a CNN for mobile devices that reduces the number of parameters by manipulating the
kernels. It applies a single kernel to each input map and then combines the convolution outputs with
a pointwise convolution. This leads to a reduction in the number of parameters and consequently the
number of computations. Other optimizations were considered, like reducing the number of input and
output maps and the image resolution. Different networks with different trade-offs were implemented
achieving accuracies from 50% to 70%, a number of parameters from 0.5 to 4.2 millions and a number
of multiply-accumulate (MAC) operations ranging from 41 to 559 millions. MobileNetv2 (Sandler et

32

Deep Learning on Edge
﻿

al., 2018) is an optimization of MobileNet that introduced some optimizations that reduce the number
of parameters about 30% and the number of operations about 50% and still achieving higher accuracy.

ShuffleNet (Zhang et al., 2018) is another CNN proposed for mobile devices. Different convolu-
tions are applied to separate parts of the input maps to reduce the number of operations. The output of
convolutions are then shuffled so that the information from different groups can be mixed. The model
has a complexity similar to MobileNetV2 but with better accuracy.

The optimizations proposed in the previous neural network models somehow changes the deep
learning algorithm by considering different number and types of layers trying to reduce the number of
parameters while keeping the accuracy. A different approach consists of reducing the complexity of the
model at a lower level. In this approach, two types of techniques have been considered: data quantization
and data reduction. Data quantization consists of techniques to reduce the arithmetic complexity and
the number of bits used to represent parameters and activations. Data reduction is the set of techniques
used to reduce the number of parameters or the volume of data transferred to the computing platform.

A commonly used data quantization technique is the conversion from single-precision floating-point
representations to half-precision floating-point (Micikevicius et al., 2017) or 8-bit floating-point (Wang
et al., 2018), fixed-point or integer representation. One advantage of this conversion is that the new
representations are easier to implement and calculate than single-precision floating-point arithmetic.
Also, with data represented with less bits the arithmetic operators are also less complex and so many
operators can be implemented with the same silicon area.

Several works have shown that neural network models can use weights and activations represented
with only 16 or even 8 bits and still keep accuracies close to the accuracy obtained with data represented
with single-precision floating-point (Gysel et al., 2016), (Gupta et al., 2015), (Anwar et al., 2015), (Lin
et al., 2016). Neural network models with weights and activations represented with a single bit have
also been proposed - BNN (Binary Neural Networks) (Courbariaux et al., 2016; Umuroglu et al., 2016).
BNN reduce considerably the bitwidth of data at the cost of some accuracy degradation. To reduce the
impact of binarization over the network accuracy the number of weights must be considerably increased.
Also, instead of using a binary representation, some works consider 2-bits to reduce the impact of the
representation over the accuracy (Ubara et al., 2016).

A different approach to reduce the data volume of the network is to remove and compress data. In
(Han et al., 2015) a DNN is compressed with punning and Huffman coding. Pruning is a process that
removes some connections between neurons. For example, a reduction of about 90% of the weights be-
longing to the dense layers have a very small impact over accuracy. The disadvantage of pruning is that
it introduces sparsity in the matrix of weights which complicates its implementation in hardware. When
applied to dense layers, pruning is more efficient then when applied to convolutional layers, because
the number of weights in dense layers is generally much higher than the set of all remaining weights.

Another technique to reduce the effects of large transfers of weights in fully connected layers is batch-
ing (Zhang et al., 2016). The batching technique stores several output feature maps of the last non-dense
layers before being executed. It permits to reuse the same kernel for different input images.

Computing Platforms for Edge Deep Learning

Different technologies are available to deploy deep learning algorithms on edge devices. The right device
depends on the design requirements, including delay, latency, area, energy, cost, flexibility, etc. Chips
or devices for artificial intelligence at the edge try to optimize energy and performance efficiencies,

33

Deep Learning on Edge
﻿

that is, get the lowest energy consumption and enough performance to run a DNN model within design
constraints.

General-purpose processors (CPU) can run any deep learning model and their programmability permits
them to run any new DNN model without any modifications to the computing platform. The problem
with CPUs is that they have a low energy and performance efficiency. GPUs (Graphics Processing Unit)
are one of the most used platforms for training DNN because they are a many-core architecture with
massive computing parallelism offering high-performance computing and at the same time offer a high
level of programmability. They are energy and performance efficient but have high energy consump-
tion which is infeasible for most edge platforms due to their restrictions on available energy. The high-
est performance and best energy efficiency is achieved with ASICs (Applications Specific Integrated
Circuit). ASICs have limited programmability because the algorithm implementation is hardwired in
silicon. Some hardware programmability can be considered at the cost of extra silicon to implement
extra computing modules that are chosen according to the target algorithm to be implemented. FPGAs
(Field-Programmable Gate Array) are more flexible than ASICs since the hardware can be reconfigured
for new and different functions but are harder to reprogram than CPUs or GPUs. SoCs (Sytem-on-
Chip) FPGAs are an attractive option to run deep learning models since they contain a general-purpose
processor tightly connected to reprogrammable logic. The reprogrammable logic is used to design and
implement the most time-consuming operations of DNNs, while the CPU is used to control the system,
to run the less frequent operations and allowing the implementation of new functions whose hardware
implementation is inefficient.

Most commercial solutions are based on ASICs since they provide the best solutions in terms of
performance and energy consumption. Some companies provide IP (Intellectual Property) cores as DNN
accelerators to be integrated in a computing system, while others provide full SoC solutions implemented
on chip.

High-performance IP processors are common approaches to run machine learning algorithms. Design-
Ware EV6x (Synopsis, 2017) is an IP processor for vision processing on embedded devices. It consists
of a 32-bit processor, a vector DSP and a dedicated accelerator for CNNs. The accelerator supports many
CNN models, including regular and irregular CNNs, like GoogleNet, and supports 8 and 12 bits data
quantization. The whole core has a peak performance of 4.5 TMACs with 2 TMACs/W.

DNA (Cadence, 2017) is another IP SoC processor from Cadence designed for the acceleration of
deep neural networks on edge devices. The core integrates a Tensilica DSP, and the DNN accelerator. The
architectures optimize the execution of the algorithm using techniques like zero-skipping (multiplications
with zero are not computed), pruning, data compression and decompression. The core can be configured
with different number of MACs and each MAC can be configured with different data representations (8
or 16 bits integer or 16-bits floating-point). The configuration with the highest performance has a peak
performance of 12 TMACs with 3.7 TMACs/W.

NeuPro (Linley Group., 2018) is also an IP core for machine learning to be deployed in embedded
devices for advanced driver-assistance systems, surveillance systems, among others. The core is a SoC
with an accelerator that can execute any layer of a CNN and a vector processing unit and to control the
accelerator and to run other functions not supported by the accelerator. The IP core is configurable in
terms of number of MACs. MACs are configurable for the execution of MACs with different data sizes
(8 or 16). The smallest configuration of the IP has a performance of 2 TOPs and the larger one has a
performance of 12.5 TOPs.

34

Deep Learning on Edge
﻿

In (Gyrfalcon Technology - 2018) a many core architecture with 168 processing units, each with
local memory and a MAC unit, was proposed for audio and video processing, including deep learning
networks. The core element of the architecture is an engine to speed-up matrix processing. With an opera-
tion frequency of 300 MHz the chip delivers 16.8 TOPs with a consumption of 700 mW corresponding
to a power efficiency of 24 TOPs/W.

Movidius Myriad X processor (Intel, 2017) is a SoC vector processor with an accelerator for DNN
inference at the edge. The MAC units support 16-bit fixed- and floating-point operations and 8-bit
fixed-point. The accelerator has a peak performance of 1 TOPs and the whole processor has a total peak
performance of 4 TOPs.

ASIC offer the best solutions but with a reduced flexibility. Deep learning networks are still in its
infancy and therefore are constantly being modified and improved. Therefore, deploying an ASIC solu-
tion for deep learning is always a risk. Turning the ASIC architecture more flexibility reduces its silicon
efficiency which reduces performance and increases energy consumption. These aspects open the set
of available platforms for edge computing to reconfigurable devices. Coarse and fine-grained solutions
were already proposed to run inference in low cost devices.

Eyeriss (Chen et al., 2017) is a coarse-grained reconfigurable accelerator for CNNs. It contains 168
processing elements connected with a network-on-chip (NoC). The NoC is configurable to adapt the
dataflow of the architecture to the dataflow of the model to run. The architectures uses compression
and decompression to reduce the data volume between the chip and external memory. With an operating
frequency, the accelerator was tested with the inference of AlexNet with data quantized to 16-bits fixed-
point has an energy efficiency of 166 GOPs/W with a measured average power of 278 mW.

DNPU is another coarse-grained reconfigurable processor (Shin et al., 2017) for CNNs and RNNs.
The chip has dedicated units to the execution of convolutional layers. Pooling and activation function
are executed by a centralized module shared by all convolution modules. Dense layers are implemented
with a dedicated unit for matrix multiplications and multipliers can be configured (4, 8 or 16 bits fixed-
point). The architecture with 4-bit multipliers has a peak performance of 1.2 TOPs with an energy ef-
ficiency of 3.9 TOPs/W.

DRP is a dynamically coarse-grained reconfigurable core to accelerate embedded machine learning
algorithms (Fujii et al., 2018). The core has an array of dynamically reconfigurable processing elements.
Both 16-bit fixed- and floating-point and binary precisions are supported. Dynamic reconfigurability is
used to support large networks by reconfiguring the architecture for different layers at execution time.
The chip achieved a performance near 1 TOPs.

Fine-grained reconfigurable devices, FPGAs, permit to optimize the hardware architecture for each
particular deep learning model (Sze et al., 2017). The first FPGA implementations had the sole objec-
tive of improving performance and therefore considered high density FPGA devices (Shawahna et al.,
2019). Now, with the necessity to deploy DNNs on edge devices, small to medium density FPGAs are
also considered (Guo et al., 2018; Venieris et al., 2018). Recently, a solution was proposed to execute
large CNNs in low density FPGAs (ZYNQ XC7Z020) with a peak performance of 400 GOPs (Véstias
et al., 2018). With 8-bit fixed-point quantization, the architecture explores several levels of parallelism
and proposes a method to run convolutions independently of the size of the convolution window. With
all these optimizations, the architecture has a peak performance around 400 GOPs and an energy ef-
ficiency near 50 GOPs/W.

35

Deep Learning on Edge
﻿

FUTURE RESEARCH DIRECTIONS

Deep learning models have improved during the last years. Typically, good accuracies are only achieved
with large models. However, the evolution of DNN models have shown that with appropriate techniques
it is possible to reduce the complexity of the models with a negligible accuracy loss. New models are
needed that emphasize performance and energy efficiency. Binary neural networks are promising
solutions with a great impact over hardware complexity and memory storage but still requires a lot of
improvements to avoid large accuracy degradations.

Training and inference are still two separated steps. Training is done in high-performance computing
platforms and the results are used by the same platform or by an edge device. Considering that an edge
device is constantly receiving new data, these could be used to dynamically train the network to keep
improving accuracy. Incremental training is executed on high-performance platforms, but the process
could be also implemented in the edge device for the same reasons enumerated before.

Designing neural network models for specific problems is still an empirical process that leads to over-
sized networks with redundant parameters. It is important to better understand how particular layers and
neurons influence the final accuracy and how to redesign the model so that the best accuracy is achieved.
This will help to tailor models for specific applications, which is particularly important for edge devices.

Concerning the computing platforms, its design is somehow influenced by the fact that DNNs are
still under constant research and evolution. Several ASIC solutions already exist but the risk is high
since the architectures are optimized for particular neural networks. Any improvements or changes to
the original network model reduces the efficiency of the ASIC solution since new functions or modules
have to be executed by general purpose processors.

Reconfigurable architectures help us to overcome some of the limitations of ASICs since the hard-
ware architecture can be upgraded on-board with new modules and/or operations. It is the only platform
whose hardware can follow the constant evolution of DNNs. FPGAs allow optimized implementations
of binary neural networks contrary to architectural solutions based only on CPUs or GPUs. A major
problem of FPGA devices is that it is difficult to design them compared to implementations based on
software only. Specific frameworks to automatically map neural networks on FPGA already exist but the
results suffer some degradation compared to a hand-made design. The proliferation of reconfigurable
devices as solutions for deep learning on edge depends on the availability of tools to automatically map
neural network models on FPGA.

Given the heterogeneity of layers in high accuracy neural network models, it is important to consider
flexible architectures with dedicated accelerators for the common operations requiring massive parallel-
ism integrated with a high-performance processor that can execute the remaining operations or functions
whose execution cannot be done by the accelerator. SoCs with a processor and dedicated hardware are the
most appropriate solutions for these cases. Many of the ASIC architectures for deep learning proposed
so far consider a SoC architecture. An example of this trend is the recently announced FPGA for deep
learning (Xilinx, 2018) with software programmable processors, fine-grained reconfigurable hardware
and an intelligent device for tasks associated with deep learning. The new FPGA upgrades previous
devices with a new engine for deep learning inference.

Inference is still the only operation executed in deep learning platforms in the edge. However, the
possibility to train or retrain a network in the edge opens the possibility of constant learning whenever
new data is collected. Training still requires full precision and its computational complexity is much

36

Deep Learning on Edge
﻿

higher than that of inference. This mixed precision requires new architectures that can perform both
training and inference with different data representations.

CONCLUSION

Deep learning algorithms have successfully improved the accuracy results of many machine learning
algorithms. The set of applications that take advantage of these algorithmic improvements is increasing.
Many of these applications are associated with edge devices and therefore running deep learning models
on edge devices is now a major challenge.

This article describes the fundamentals of deep learning and known deep learning models proposed
in the literature. Most of these models are only concerned with accuracy and only a few are optimized
for mobile and edge computing. Neural network models for edge devices must be optimized even if this
implies some accuracy degradation traded-off by lower energy consumption and improved execution
times. Two main classes of optimizations have been applied so far: data quantization and data reduction.
These reduce memory and computing requirements and in some cases without accuracy degradation.

ASICs and FPGAs are the most appropriate technologies for edge inference since they offer good
energy and performance efficiencies. These metrics are better with ASICs, but FPGAs offer hardware
flexibility to optimize the implementation of new neural network models. A brief description of recent
commercial chips and published FPGA implementations were also given in this chapter.

REFERENCES

Anwar, S., Hwang, K., & Sung, W. (2015). Fixed point optimization of deep convolutional neural networks
for object recognition. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(pp. 1131–1135). 10.1109/ICASSP.2015.7178146

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning,
2(1), 1–127. doi:10.1561/2200000006

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). Greedy layer-wise training of deep
networks. In B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.). In Proceedings of the 19th International
Conference on Neural Information Processing Systems (153-160). Cambridge, MA.

Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decom-
position. Biological Cybernetics, 59(4-5), 291–294. doi:10.1007/BF00332918 PMID:3196773

Bouveyron, C., Celeux, G., Murphy, T., & Raftery, A. (2019). Model-Based Clustering and Classification
for Data Science: With Applications in R (Cambridge Series in Statistical and Probabilistic Mathemat-
ics). Cambridge, UK: Cambridge University Press. doi:10.1017/9781108644181

Cadence: Tensilica. (2017). DNA Processor IP For AI Inference.

37

Deep Learning on Edge
﻿

Chen, Y., Krishna, T., Emer, J. S., & Sze, V. (2016). Eyeriss: An Energy-Efficient Reconfigurable Ac-
celerator for Deep Convolutional Neural Networks. IEEE Journal of Solid-State Circuits, 52(1), 127–138.
doi:10.1109/JSSC.2016.2616357

Christmann, A., & Steinwart, I. (2008). Support Vector Machines. Springer-Verlag.

Courbariaux, M., & Bengio, Y. (2016) BinaryNet: Training Deep Neural Networks with Weights and
Activations Constrained to +1 or -1. In CoRR, abs/1602.02830.

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179–211.
doi:10.120715516709cog1402_1

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a deep
network. Univ. Montr., 1341, 1.

Fujii, T., Toi, T., Tanaka, T., Togawa, K., Kitaoka, T., Nishino, K., ... Motomura, M. (2018). New gen-
eration dynamically reconfigurable processor technology for accelerating embedded AI applications. In
Symposium on VLSI Circuits (41-42). 10.1109/VLSIC.2018.8502438

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural net-
works. In International Conference on Artificial Intelligence and Statistics (249–256).

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. In Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics (315-323).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Guo, K., Sui, L., Qiu, J., Yu, J., Wang, J., Yao, S., ... Yang, H. (2018). Angel-Eye: A Complete Design
Flow for Mapping CNN Onto Embedded FPGA. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(1), 35–47. doi:10.1109/TCAD.2017.2705069

Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015) Deep Learning with Limited Nu-
merical Precision. In Proceedings of the 32nd International Conference on International Conference
on Machine Learning: Vol. 37. (1737–1746).

Gysel, P., Motamedi, M., & Ghiasi, S. (2016). Hardware-oriented Approximation of Convolutional
Neural Networks. In Proceedings of the 4th International Conference on Learning Representations.

Han, S., Mao, H., & Dally, W. J. (2015). “Deep Compression: Compressing Deep Neural Network with
Pruning, Trained Quantization and Huffman Coding”. CoRR, abs/1510.00149.

Haykin, S. (2008). Neural Networks and Learning Machines (3rd ed.). Pearson.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. Multimedia
Tools and Applications, 77, 10437–10453.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Ru-
melhart, J. L. McClelland, & CORPORATE PDP Research Group (Eds.), Parallel distributed processing:
explorations in the microstructure of cognition. Vol. 1, MIT Press (282-317).

38

Deep Learning on Edge
﻿

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 6(02),
107–116. doi:10.1142/S0218488598000094

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 8(8),
1735–1780. doi:10.1162/neco.1997.9.8.1735 PMID:9377276

Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554–2558.
doi:10.1073/pnas.79.8.2554 PMID:6953413

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal ap-
proximators. Neural Networks, 2(5), 359–366. doi:10.1016/0893-6080(89)90020-8

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam,
H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR,
abs/1704.04861.

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-Excitation Networks, In Proceedings IEEE Conference
on Computer Vision and Pattern Recognition (7132-7141). IEEE.

Huang, G., Liu, Z., Maaten, L., & Weinberger, K. (2018). Densely Connected Convolutional Networks.
In IEEE Conference on Computer Vision and Pattern Recognition.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized Neural Networks.
In D. D. Lee, M. Sugiyama, I. Guyon, & R. Garnett (Ed.), Advances in Neural Information Processing
Systems: Vol. 4107–4115. Curran Associates, Inc.

Intel. (2017). Movidius Myriad X VPU.

Keogh, E. (2011). Instance-Based Learning. In C. Sammut, & G. I. Webb (Eds.), Encyclopedia of Ma-
chine Learning. Boston, MA: Springer.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional
Neural Networks. In Adv. Neural Inf. Process. Syst. 1–9.

Le, Q. V. (2013). Building high-level features using large scale unsupervised learning. In IEEE International
Conference on Acoustics, Speech and Signal Processing (8595–8598). 10.1109/ICASSP.2013.6639343

LeCun, Y. (1989). Generalization and network design strategies. In Connectionism in Perspective.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989).
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551.
doi:10.1162/neco.1989.1.4.541

LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. S., Drucker, H., ... & Vapnik, V. (1995). Learn-
ing algorithms for classification: A comparison on handwritten digit recognition. In Neural networks:
the statistical mechanics perspective, 261-276. Mech. Perspect.

39

Deep Learning on Edge
﻿

Lin, D. D., Talathi, S. S., & Annapureddy, V. S. (2016). Fixed Point Quantization of Deep Convolutional
Networks. In Proceedings of the 33rd International Conference on International Conference on Machine
Learning. Vol. 48. (pp. 2849–2858).

Linley Group. (2018). Ceva NeuPro Accelerates Neural Nets.

Matloff, N. (2017). Statistical Regression and Classification: from Linear Models to Regression (1st
ed.). Chapman and Hall. doi:10.1201/9781315119588

Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen, E., García, D., … Wu, H. (2017). Mixed
Precision Training. CoRR, abs/1710.03740.

Nwankpa, C., Ijomah, W., Gachagan, A. & Marshall, S. (2018). Activation Functions: Comparison of
trends in Practice and Research for Deep Learning. Corr. abs/1811.03378.

Patterson, J., & Gibson, A. (2017). Deep Learning: A Practitioner’s Approach. O’Reilley Media, 1st ed.

Quinlan, R. (1992). C4.5: Programs for Machine Learning (1st ed.). Morgan Kaufmann.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. In CoRR.

Sandler, M. B., Howard, A. G., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (4510-4520). 10.1109/CVPR.2018.00474

Shawahna, A., Sait, S. M., & El-Maleh, A. H. (2018). FPGA-Based Accelerators of Deep Learning
Networks for Learning and Classification: A Review. IEEE Access: Practical Innovations, Open Solu-
tions, 7, 7823–7859. doi:10.1109/ACCESS.2018.2890150

Shin, D., Lee, J., Lee, J., & Yoo, H. (2017). 14.2 DNPU: An 8.1TOPS/W reconfigurable CNN-RNN
processor for general-purpose deep neural networks. In IEEE International Solid-State Circuits Confer-
ence (240-241). 10.1109/ISSCC.2017.7870350

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recogni-
tion. In arXiv preprint arXiv:1409.1556.

Synopsys DesignWare. (2017). EV6x Vision Processors.

Sze, V., Chen, Y., Yang, T., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tu-
torial and survey. Proceedings of the IEEE, 105(12), 2295–2329. doi:10.1109/JPROC.2017.2761740

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Archi-
tecture for Computer Vision. In IEEE Conference on Computer Vision and Pattern Recognition, (2818-
2826). 10.1109/CVPR.2016.308

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2014). Going
Deeper with Convolutions. arXiv:1409.4842.

Gyrfalcon Technology. (2018). Lightspeeur 2803S Neural Accelerator.

Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P. H. W., Jahre, M., & Vissers, K. A. (2016).
FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. In CoRR, abs/1612.07119.

40

Deep Learning on Edge
﻿

Venieris, S. I., & Bouganis, C. (2018). fpgaConvNet: Mapping Regular and Irregular Convolutional
Neural Networks on FPGAs. IEEE Transactions on Neural Networks and Learning Systems, 30(2),
326–342. doi:10.1109/TNNLS.2018.2844093 PMID:29994725

Véstias, M. P., Duarte, R. P., Sousa, J. T., & Neto, H. C. (2018). Lite-CNN: A High-Performance Archi-
tecture to Execute CNNs in Low Density FPGAs. In 28th International Conference on Field Program-
mable Logic and Applications (pp. 393-399). 10.1109/FPL.2018.00075

Wang, N., Choi, J., Brand, D., Chen, C., & Gopalakrishnan, K. (2018). Training Deep Neural Networks
with 8-bit Floating Point Numbers. CoRR abs/1812.08011.

Xilinx, V. (2018). The first adaptive compute acceleration platform (acap).

Zeiler, M. D., & Fergus, R. (2013). Visualizing and Understanding Convolutional Networks. arXiv. vol.
30 (pp. 225–231).

Zhang, C., & Ma, Y. (2012). Ensemble Machine Learning. New York: Springer-Verlag. doi:10.1007/978-
1-4419-9326-7

Zhang, C., Wu, D., Sun, J., Sun, G., Luo, G., & Cong, J. (2016). Energy-Efficient CNN Implementation
on a Deeply Pipelined FPGA Cluster. In Proceedings of the International Symposium on Low Power
Electronics and Design (pp. 326–331). 10.1145/2934583.2934644

Zhang, C., & Zhang, S. (2002). Association Rule Mining. In Lecture Notes in Artificial Intelligence.
Springer-Verlag.

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018) ShuffleNet: An Extremely Efficient Convolutional Neural
Network for Mobile Devices. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 6848–6856). 10.1109/CVPR.2018.00716

ADDITIONAL READINGS

Bishop, C. (2006). Pattern Recognition and Machine Learning. New York: Springer Verlag.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio, S. (2010). Why does
unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11, 625–660.

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., & Vincent, P. (2009). The difficulty of training
deep architectures and the effect of unsupervised pre-training. In International Conference on Artificial
Intelligence and Statistics (153–160).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In International Conference on
Computer Vision.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural
Computation, 18(7), 1527–1554. doi:10.1162/neco.2006.18.7.1527 PMID:16764513

41

Deep Learning on Edge
﻿

Jarrett, K., Kavukcuogl, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage architec-
ture for object recognition? In International Conference on Computer Vision (2146–2153). 10.1109/
ICCV.2009.5459469

Kalinowski, I., & Spitsyn, V. (2015). Compact Convolutional Neural Network Cascade for Face Detec-
tion. CoRR, abs/1508.01292.

Lawrence, S., & Giles, C. Lee, Tsoi, Ah C. & Back, A. (1997). Face Recognition: A Convolutional
Neural Network Approach. In IEEE Transactions on Neural Networks. 8 (1): 98–113.

LeCun, Y., Kavukvuoglu, K., & Farabet, C. (2010). Convolutional networks and applications in vision.
In International Symposium on Circuits and Systems (253–256).

Lei, T., Barziley, R., & Jaakkola, T. (2016). Rationalizing Neural Predictions. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (107-117). 10.18653/v1/D16-1011

Matsugu, M., Mori, K., Mitari, Y., & Kaneda, Y. (2003). Subject independent facial expression recogni-
tion with robust face detection using a convolutional neural network. Neural Networks, 16(5–6), 555–559.
doi:10.1016/S0893-6080(03)00115-1 PMID:12850007

Pengcheng, Y., & Neubig, G. (2017). A Syntactic Neural Model for General-Purpose Code Generation,
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 1
(440-450).

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. In IEEE Conference on Computer
Vision and Pattern Recognition (6517-6525).

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional archi-
tectures for object recognition”. In International Conference on Artificial Neural Networks (92–101).
10.1007/978-3-642-15825-4_10

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated Residual Transformations for
Deep Neural Networks. In IEEE Conference on Computer Vision and Pattern Recognition. 10.1109/
CVPR.2017.634

Zeiler, M. D. & Fergus, R.. (2013). Visualizing and understanding convolutional networks. Computing
Research Repository, abs/1311.2901.

KEY TERMS AND DEFINITIONS

Activation Function: The activation function defines the output of a neuron given a set of inputs
from the previous layer or data input.

Artificial Neural Network (ANN): It is a computing model based on the structure of the human
brain with many interconnected processing nodes that model input-output relationships. The model is
organized in layers of nodes that interconnect to each other.

Autoencoder: An unsupervised learning network and is used to encode an input with a representa-
tion with fewer dimensions.

42

Deep Learning on Edge
﻿

Boltzman Machine: An unsupervised network that maximizes the product of probabilities assigned
to the elements of the training set.

Convolutional Layer: A network layer that applies a series of convolutions to a block of input fea-
ture maps.

Convolutional Neural Network (CNN): A class of deep neural networks applied to image process-
ing where some of the layers apply convolutions to input data.

Deep Belief Network: A probabilistic generative model with multiple layers of the so called latent
variables tha keep the state of the network.

Deep Learning (DL): A class of machine learning algorithms for automation of predictive analytics.
Deep Neural Network (DNN): An artificial neural network with multiple hidden layers.
Edge Device: any hardware device that serves as an entry point of data and may store, process and/

or send the data to a central server.
Feature Map: A feature map is a 2D matrix of neurons. A convolutional layer receives a block of

input feature maps and generates a block of output feature maps.
Fully Connected Layer: A network layer where all neurons of the layer are connected to all neurons

of the previous layer.
Hopfield Network: A dense neural network where all neurons connect to all other neurons.
Long-short Term Memory Network: A variation of recurrent neural networks to reduce the van-

ishing problem.
Machine Learning: A subfield of artificial intelligence whose objective is to give systems the ability

to learn and improve by its own without being explicitly programmed to do it.
Network Layer: A set of neurons that define the network of a CNN. Neurons in a network layer are

connected to the previous and to the next layer.
Perceptron: The basic unit of a neural network that encodes inputs from neurons of the previous

layer using a vector of weights or parameters associated with the connections between perceptrons.
Pooling Layer: A network layer that determines the average pooling or max pooling of a window

of neurons. The pooling layer subsamples the input feature maps to achieve translation invariance and
reduce over-fitting.

Pruning: An optimization technique for deep neural networks that removes some connections between
neurons to reduce the complexity of the network.

Recurrent Neural Network (RNN): A class of deep neural networks consisting of dense networks
with state.

Semi-Supervised: A training process of neural networks that mixes supervised and unsupervised
training.

Softmax Function: A function that takes as input a vector of k values and normalizes it into a prob-
ability distribution of k probabilities.

Supervised Training: A training process of neural networks where the outcome for each input is
known.

Unsupervised Training: A training process of neural networks where the training set does not have
the associated outputs.

