
Behavioral-level Test Vector Generation for System-on-Chip Designs

M. Lajolo

NEC USA C&C Research Lab

M. Rebaudengo, M. Sonza Reorda, M. Violante

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
http://www.cad.polito.it/

L. Lavagno
Universith di Udine - DIEGM

Abstract
Co-design tools represent an effective solution for re-

ducing costs and shortening time-to-market, when Sys-
tem-on-Chip design is considered. In a top-down design
flow, designers would greatly benefit fiom the availabil-
ity of tools able to automatically generate test se-
quences, which can be reused during the following de-
sign steps, from the system-level specification to the
gate-level description. This would significantly increase
the chance of identihing testability problems early in the
design flow, thus reducing the costs and increasing the
final product quality. The paper proposes an approach
for integrating the ability to generate test sequences into
an existing co-design tool. Preliminary experimental
results are reported, assessing the feasibility of the pro-
posed approach.

1. Introduction
In the last years, new technologies allowed to inte-

grate entire systems on a single chip, called System-on-
Chip (SOC). SOC products represent a real challenge
not just from the manufacturing point of view, but even
when design issues are concerned.

To cope with SOC designers requirements, research-
ers developed co-design environments, whose main
characteristic is to allow the designer to quickly evaluate
the costs and benefits of different architectures, includ-
ing both hardware and software components. In these
environments it is also possible to automatically synthe-
size both the hardware and software modules imple-
menting the desired system behavior.

While the design practice is quickly moving toward
higher levels of abstraction, test issues are still consid-
ered only when a detailed description of the design is
available, typically at the gate-level for test sequence
generation purposes and register transfer (RT)-level for
design for testability structures insertion.

In the past years, intensive research efforts have been
devoted to devise solutions tackling test sequence gen-
eration since the early design phases, mainly the RT-
level and several approaches have been proposed. Most
of them are usually able to generate test patterns of good
quality, sometimes comparable or even better than gate-
level ATPG tools. However, lacking of general applica-
bility, these approaches are still not accepted by indus-
tries. The different approaches are based on different
assumptions and on a wide spectrum of distinct algo-
rithmic techniques. Some are based on extracting from a
behavioral description the corresponding control ma-
chine [l] or the symbolic representation based on binary
decision diagrams 121, while others also synthesize a
structural description of the data path [3]. Some ap-
proaches rely on a direct examination of the HDL de-
scription [4], or exploit the knowledge of the gate-level
implementation 151. Some others combine static analysis
with simulation 161.

Most of the cited approaches rely on high-level fault
models for behavioral HDL descriptions that have been
developed by the current practice of software testing [7]
and extending them to cope with hardware descriptions.
In this sense, the high-level fault model corresponds to a
metric that measures the goodness of a given sequence
of input vectors. Some of the difficulties that make de-

21
0-7695-0786-7/00 $10.00 0 2000 IEEE

http://www.cad.polito.it

veloping a good metric for hardware descriptions much
more difficult than for software are: the large amount of
concurrency that dramatically degrades the usefulness of
the widely used path coverage or similar metrics; the
combined presence of behavioral and structural descrip-
tion styles that prevents the use of techniques suitable
for control-oriented or data-oriented circuits only; the
complexity of timing schemes (multiple clock circuits
are difficult to handle, as they were at the gate-level); the
difficulty of modeling faulty behavior observation (since
software metrics only consider reachability of condi-
tions, that corresponds to fault controllability).

In this work, we propose an approach that targets the
system-level of abstraction, allowing performing test
sequence generation at the same level of abstraction the
design is carried out. We propose an approach that ad-
dresses systems described at the behavioral-level and
that computes test sequences attaining high fault cover-
age when applied to the corresponding gate-level model
of the systems.

The approach is inspired to the ones described in [8]
and [9]. The main contributions of this work are:

the adoption of a high level fault model used to
represent gate-level faults while at the behavioral-
level;
the development of a behavioral-level fault simula-
tor to evaluate system behaviors in presence of
faults.

Given a behavioral-level fault model and a fault
simulator supporting it, we can evaluate the goodness of
input stimuli from a testability point of view while rea-
soning at the behavioral-level, before a gate-level
description is available. By exploiting this feature, we
developed a behavioral-level test pattern generator (BL-
TPG) and, to assess its feasibility, we compared the fault
coverage of the sequences it produces while working at
the behavioral-level with the one obtained by a commer-
cial gate-level automatic test pattern generator.

Preliminary results show that input sequences com-
puted at a higher level of abstraction could be exploited
as test sequences at the lower level of abstraction. The
results also show some weak points of the current im-
plementation of our approach that demand further im-
provements.

The paper is organized as follows. Section 2 de-
scribes the adopted fault model, while Section 3 de-
scribes the behavioral-level fault simulator. Section 4
describes the BL-TPG tool. Finally, experimental results

are presented in Section 5 and some conclusions are
drawn in Section 6.

2. Fault model discussion
The effectiveness of test vectors is usually measured

resorting to a gate-level description of the system under
test and a fault simulation supporting one of the avail-
able gate-level fault models. One of the most popular
fault models is the permanent single stuck-at one, rhus
we adopted it to measure how effective sequences are
while at the gate-level.

When developing a behavioral-level test pattern gen-
erator we assume that, even if computed at a higher level
of abstraction, the usefulness of the generated vectors is
evaluated at the gate-level. Therefore, the behavioral-
level test generator should adopt a behavioral-level fault
model with a good correlation with respect to the
adopted gate-level one. Moreover, the behavioral-level
fault model should be consistent with the description of
the system the design tool provides.

In our work we addressed the POLIS [lo] co-design
environment, and developed a fault model that mimics
the permanent single stuck-at fault model while at the
behavioral level.

In the following subsections we recall the system
representation POLIS offers and then we present the
behavioral fault model.

2.1. System representation: network of CFSMs
In POLIS the system is represented as a network of

interacting Codesign Finite State Machines (CFSMs).
CFSMs extend Finite State Machines with arithmetic
computations without side effects on transition edges.
The communication edges between CFSMs are events,
which may or may not carry values. A CFSM can exe-
cute a transition only when an input event has occurred.

A CFSM network operates in a Globally Asynchro-
nous Locally Synchronous fashion, where each CFSM
has its own clock, modeling the fact that different re-
sources (e.g., HW or SW) can operate at widely different
speeds. CFSMs communicate via non-blocking depth-
one buffers. Initially there is no relation between local
clocks and physical time that gets defined later by a
process called architectural mapping.

This involves allocating individual CFSMs to compu-
tation resources and assigning a scheduling policy to
shared resources. CFSMs implemented in hardware have
local clocks that coincide with the hardware clocking.

22

CFSMs implemented in software have local clocks with
a variable period, that depends both on the execution
delay of the code implementing each transition and on
the chosen scheduling policy (e.g., allowing task pre-
emption).

2.2. Behavioral fault model
A behavioral fault model that approximates the stuck-

at one can be defined by analyzing the synthesis rules
exploited by POLIS to produce a gate-level model from
a behavioral-level one. We reported in Table 1 the corre-
spondence existing between the two levels.

Behavioral-level Gate-level

Table 1 : Correspondence between
behavioral-level and gate-level

Given the correspondence reported in Table 1 , we
adopted permanent single stuck-at in events and vari-
ables of behavioral descriptions as the behavioral-level
fault model. Figure 1 represents the relation between the
set of gate-level (GL) faults and the behavioral-level
(BL) one.

faults

Figure 1: Gate- vs. Behavioral-level faults

We can observe that a one-to-one relation exists be-
tween GL and BL faults affecting memory elements. At
the same time GL faults exist that cannot be represented
at the BL, e.g., faults in the combinational logic. As a
consequence, the set of BL faults is a subset of the GL
one, where faults in the combinational logic are ne-
glected.

While reasoning on the system behavior we adopted
the BL fault model as a rough approximation of the GL
model.

3. Behavioral-level fault simulator
The behavioral-level fault simulator has been devel-

oped in order to support the BL fault model previously
described. It operates as a serial fault simulator and
interacts with the simulation model POLIS provides.

Figure 2 shows an example of the representation that
POLIS uses to model the behavior of each CFSM.

An S-Graph has a straightforward and efficient im-
plementation as sequential code on a processor. There-
fore, the behavior of a model composed of several inter-
acting CFSMs can be simulated as a software program
executed by a host workstation.

Figure 2: An S-Graph example

We exploited this approach and developed a fault
simulator resorting to a source level debugger. In par-
ticular, given a bit B in the variable V of CFSM C as the
current fault location, we set a breakpoint in every loca-
tion of the source code for C where V is read. Then,
during the simulation, every time a breakpoint is trig-
gered, we modify the bit B in V according to the speci-
fied fault (either stuck-at-0 or stuck-at-1).

As far as response analysis is concerned, we dump on
a file the output trace for the fault-free and the faulty
behaviors, then after the simulation completion, we
check if the two outputs match.

This approach, despite its simplicity, is very effective
in allowing the simulation of faulty behavior. As a draw-

-

23

back, by operating in serial fashion, fault simulation
could require significant CPU time for large models.

4. Test sequence generation
The purpose of the behavioral-level test pattern gen-

. eration (BL-TPG) tool is to compute input sequences
that maximize the fault coverage with respect to the BL
fault model.

We adopted a heuristic approach that, starting from a
given set of input vectors (e.g., manually developed
input sequences), produces a sequence that maximizes
the BL fault coverage (BL FC).

In our approach a test sequence is a set of vectors to
be applied to the system. Each vector is a set of events
that are concurrently applied to the system input at a
given time. We coded the sequence as a matrix of bits,
where SEQUENCE-LENGTH is the number of rows in
the matrix and thus it represents the number of vectors to
be applied on the system inputs. Conversely,
N-INPUTS is the number of system inputs and thus the
number of columns in the matrix. The number of bits
used to represent an input event e is selected as follows:

0 1 bit if e is an input event without value
0 logzn bits, where n is the number of different

values associated to the event e, if e is an input
event with value.

The algorithm we developed is described in Figure 3.
For each faultfin the fault list (which comprises all the
single permanent stuck-at faults in all the bit variables of
every CFSM in the system) we executed a random muta-
tion hill climber (RMHC) algorithm that randomly
modifies an initial input sequence looking for a new one
that detectsf, i.e., a sequence for which the outputs of
the faulty machine and the fault-free one differ. The
RMHC exploits an evaluation function that measures
how far a new sequence is from detecting the fault$ The
function comprises two major terms:

1. the activity the sequence produces within each
CFSM in the system, measured as the number of
the statements coding the CFSM behavior that are
executed by the sequence. To compute this infor-
mation the techniques already described in [8] and
[9] are exploited;

2. the number of CFSMs outputs in the faulty system
(i.e., that system affected by the target fault) that
hold a value not equal to the corresponding output
in the fault-free system.

The first term is intended to traverse most of the sys-
tem specification in order to excite the target fault, while
the second term is used to reward those sequences that
propagate a fault from the faulty site (a variable in a
CFSM) to the CFSM outputs and possibly to the system
outputs. The RMHC is stopped when the target fault is
detected, or a maximum number of iterations has been
performed.

In the current implementation of the algorithm the
value of S EQUENCE-LENGTH is specified by the user.

void ATPG(sequence initial-s,
faultlist F,
int n-fault)

{
int i, j ;
sequence S;

for(i = 0; i < n-fault; i++)
{

S = initial-s;
if(RMHC(F[i], S) == DETECTED)

save-sequence (S) ;
I

Figure 3: Adopted test sequence generation algorithm

5. Experimental results
To assess the effectiveness of the proposed approach,

we implemented a prototypical version of BL-TPG that
amounts to 750 lines of C code (including the behav-
ioral-level fault simulator). We run some experiments on
three simple benchmarks whose number of CFSMs,
number of statements coding the CFSMs behavior, num-
ber of primary inputs (PIS), number of primary outputs
(POs), number of flip-flops (FFs) and number of gates
are summarized in Table 2; all the CFSMs composing
the benchmarks have been implemented as hardware
modules. The benchmarks are the Traffic Light Control-
ler (TLC), the seat belt controller (BELT) and a part of
the dashboard (DASH) benchmark distributed with
POLIS (we neglected the CFSMs containing trigonomet-
ric functions).

24

Name I CFSMs I Statements I PIs I POs I FFs I Gates

Name

Table 2: Benchmarks characteristics

BL-TPG 1 Random
FC I Len I FC I Len

We run BL-TPG on a Sun UltraSparc 51300 equipped
with 256 MBytes of RAM to compute a set of test se-
quences for the behavioral descriptions of the adopted
benchmarks. Then we fault simulated the attained vec-
tors with the gate-level implementation of the bench-
marks. We obtained the gate-level model of each bench-
mark by synthesizing its RTL-VHDL description
(generated by POLIS) resorting to the Synopsys synthe-
sis tool.

To evaluate the effectiveness of BL-TPG, we com-
pared the fault coverage, FC, figures attained by the
sequences it produces with the ones of random se-
quences of the same length, Len. Results in Table 3
shows that BL-TPG vectors are more effective than
random generated ones.

Table 3: BL-TPG vs. random vectors

Moreover, in Table 4 we compared the gate-level
fault coverage figures BL-TPG attains with the ones of a
commercial gate-level automatic test sequence generator
(ATPG). Table 4 also reports the CPU required by test
generation and fault simulation.

BL-TPG I Commercial ATPG
FC I Len I CPU I FC I Len I CPU

Table 4: BL-TPG vs. gate-level ATPG

By observing this preliminary results the following

1. fault coverage: for the smallest benchmarks, BL-
TPG produces results comparable to the ones a
commercial ATPG produces; conversely BL-TPG
falls short on the largest benchmark. This can be
explained by considering that in the current im-
plementation, our algorithm does not take into ac-
count the observability problem [6], and thus low
fault coverage figures are attained;

2. test length: BL-TPG produces test sequences much
longer than those a commercial ATPG produces.
This is mainly due to the fact that the current im-
plementation of BL-TPG does not support fault
dropping;

3. CPU time: being based on a more abstract model
than the gate-level one, BL-TPG requires less CPU
time than the commercial ATPG In particular, for
the two benchmarks where similar fault coverage
results are obtained, BL-TPG is 4 times faster than
the adopted gate-level ATPG

considerations arise:

6. Conclusions
An approach to perform test sequence generation

while at the behavioral-level has been proposed. The
approach relies on a high-level fault model to map gate-
level faults on the behavioral description of the system
under test. A fault simulator supporting the behavioral-
level fault model and a test generation tool have been
developed and some experiments have been carried out
to assess the feasibility of the proposed approach.

Experimental results show that when observability
problems can be neglected, our approach is comparable
to a commercial ATPG tool. The results are promising,
but more work has to be done in order to consider ob-
servability during the test generation phase. Moreover,
the BL fault model should be improved in order to con-
sider also faults in the combinational logic.

7. References
[l] D. Moundanos, J. A. Abraham, Y. V. Hoskote, “A Uni-

fied Framework for Design Validation and Manifactur-
ing Test,” Proceedings IEEE International Test Confer-
ence, 1996, pp. 875-884
F. Ferrandi, F. Fummi, D. Sciuto, “Implicit Test Genera-
tion for Behavioral VHDL Models,” Proceedings IEEE
International. Test Conference, 1998

[2]

25

F. Fallah, P. Ashar, S. Devadas, “Simulation Vector
Generation from HDL Descriptions for Observability-
Enhanced Statement Coverage,” Proceedings 35Ih De-
sign Automation Conference, 1999, pp. 666-67 1
S. Chiusano, F. Corno, P. Prinetto. “Exploiting Behav-
ioral Information in Gate-Level ATPG,” JETTA: The
Journal of Electronic Testing: Theory and Applications,
Kluwer Academic Publishers, No. 14, 1999, pp. 141-148
E.M. Rudnick, R. Vietti, A. Ellis, F. Como, P. Prinetto,
M. Sonza Reorda, “Fast Sequential Circuit Test Genera-
tion Using High-Level and Gate-Level Techniques,”
Proceedings IEEE European Design Automation and
Test Conference, 1998
F. Como, M. Sonza Reorda, G. Squillero, “High-Level
Observability for Effective High-Level ATPG’, Proc.
18th IEEE VLSI Test Symposium, pp. 411416,2000
B. Beizer, Sofmare Testing Techniques (2nd ed.), Van
Nostrand Rheinold, New York, 1990
M. Lajolo, L. Lavagno, M. Rebaudengo, M. Soma Re-
orda, M. Violante, “Automatic Test Bench Generation
for Simulation-based Validation”, Proc. ACMIIEEE Srh
International Workshop on HardwarelSoftware
Codesign, CODES, May 2000, pp. 136-140
M. Lajolo, L. Lavagno, M. Rebaudengo, M. Sonza Re-
orda, M. Violante, “System-level Test Bench Generation
in a Co-design Framework”, Proc. IEEE European Test
Workshop 2000
F. Balarin et al., “Hardware-Software Co-design of
Embedded Systems: The POLIS Approach”, Kluwer
Academic Publishers, 1997

26

