
84 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

SpecSyn: An Environment Supporting
the Specify-Explore-Refine Paradigm

for Hardware/Software System Design
Daniel D. Gajski,Fellow, IEEE,Frank Vahid,Member, IEEE,Sanjiv Narayan, and Jie Gong

Abstract—System-level design issues are gaining increasing
attention, as behavioral synthesis tools and methodologies mature.
We present the SpecSyn system-level design environment, which
supports the new specify-explore-refine (SER) design paradigm.
This three-step approach to design includes precise specification
of system functionality, rapid exploration of numerous system-
level design options, and refinement of the specification into
one reflecting the chosen option. A system-level design option
consists of an allocation of system components, such as standard
and custom processors, memories, and buses, and a partitioning
of functionality among those components. After refinement, the
functionality assigned to each component can then be synthesized
to hardware or compiled to software. We describe the issues and
approaches for each part of the SpecSyn environment. The new
paradigm and environment are expected to lead to a more than
ten times reduction in design time, and our experiments support
this expectation.

Index Terms— Embedded systems, estimation, exploration,
hardware/software codesign, hierarchical modeling methodology,
partitioning, refinement, specification, system design.

I. INTRODUCTION

T HE focus of design effort on higher levels of abstrac-
tion, driven by increasing system complexity and shorter

design times, has led to the need for a system-level design
methodology and supporting tools. To better understand the
system design problem, we can isolate three distinct tasks.
First, we must specify the system’s functionality and con-
straints. Second, we must explore various system-level design
alternatives, each consisting of an interconnection of sys-
tem components and an assignment of functionality to them.
System components include standard processors, custom appli-
cation specific integrated circuit (ASIC) processors, memories,

Manuscript received March 17, 1995; revised July 3, 1996. This work was
supported by the National Science Foundation under Grant MIP-8922851 and
the Semiconductor Research Corporation under Grant 92-DJ-146.

D. D. Gajski is with the Department of Information and Computer Science,
University of California, Irvine, CA 92664 USA.

F. Vahid is with the Department of Computer Science, University of
California, Riverside, CA 92502 USA.

S. Narayan is with Ambit Design Systems, Santa Clara CA 95053 USA.
J. Gong was with the Semiconductor Systems Design Technology Group,

Motorola, Inc., Tempe, AZ 85281 USA. She is now with Qualcomm, Inc.,
San Diego, CA 92121 USA.

Publisher Item Identifier S 1063-8210(98)01308-0.

and buses. Third, we must refine the original specification into
a new system-level description, which designers will use to
create an implementation for each component.

In current practice, these three steps are carried out in
an informal andad hoc manner. Specifications are usually
written informally in English or some other natural language.
Exploration is done manually using mental or hand-calculated
estimations of quality metrics such as performance, size, and
power. The refined description is then created informally using
block diagrams and English. Drawbacks of such informal
techniques include the lack of early simulation, the lack of
rapid feedback of quality metrics that result from design
decisions, the lack of automated tools to explore more design
alternatives while requiring less design time, and the lack
of good documentation of each component’s functionality as
well as of the design decisions to aid in concurrent design,
component integration and redesign.

The response in the research community to the above
drawbacks has been to introduce simulatable specifications
earlier into the design process, and to use automated tools to
assist in the exploration of design alternatives. The specify-
explore-refine paradigm, which can also be thought of as
a hierarchical modeling methodology, may further improve
the situation. In such an approach, we first precisely specify
the system’s functionality, explore numerous system-level
implementations with the aid of tools, and then automatically
generate a refined description representing any implementation
decisions.

More specifically, the following tasks, illustrated in Fig. 1,
are necessary to create a system-level design.

• Specification Capture:To specify the desired system func-
tionality, we decompose the functionality into pieces by
creating a conceptual model of the system. We generate a
description of this model in a language. We validate this
description by simulation or verification techniques. The
result of specification capture is afunctional specification,
which lacks any implementation detail.

• Exploration: We explore numerous design alternatives to
find one that best satisfies our constraints. To do this, we
transform the initial specification into one more suitable
for implementation. We allocate a set of system compo-
nents and specify their physical and performance con-
straints. We partition the functional specification among
allocated components. For guidance in these exploration

1063–8210/98$10.00 1998 IEEE

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

GAJSKI et al.: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 85

Fig. 1. The specify-explore-refine (SER) approach to system design.

subproblems, we estimate each alternative design’s qual-
ity.

• Specification Refinement:We refine the initial specifi-
cation into a new description reflecting the decisions
that we have made during exploration. To do this, we
move variables into memories, insert interface protocols
between components, and add arbiters to linearize con-
current accesses to a single resource. Then, we generate
a system description detailing the system’s processors,
memories, and buses and the functionality assigned to
each. We use cosimulation to verify that this refined
description is equivalent to the initial specification. The
result of specification refinement is asystem-level de-
scription, which possesses some implementation details
of the system-level architecture we have developed, but
otherwise is still largely functional.

Afterwards, we performsoftware and hardware design,
where we create a design for each component, using soft-
ware and hardware design techniques. A standard processor
component requires software synthesis, which determines soft-
ware execution order to satisfy resource and performance

Fig. 2. The SpecSyn system-design environment.

constraints. We can obtain a custom processor’s design through
high-level (behavioral) synthesis [1], [2], which converts the
behavioral description into a data path structure of register-
transfer (RT) components from a library, such as arithmetic
and logic units, registers, counters, register files and memo-
ries, along with a finite-state machine (FSM) controller that
sequences the flow of data through the data path. The result
of software and hardware design is anRT-level description,
which may contain C code for each software component, and
an FSM plus an RT-level netlist for each custom component.
The RT-level description is then passed tosoftware and
hardware implementationfor final implementation. Software
components require compilation, while custom components
require FSM and logic synthesis [3] followed by physical
design, in which fine-grained digital components like gates
or transistors are placed, routed and timed on an integrated
circuit (IC).

We have developed the SpecSyn environment to support
the specify, explore, and refine steps—the SER paradigm. The
various parts of SpecSyn, illustrated in Fig. 2, correspond to
the various system-design subtasks described above; each part
will be discussed in detail in upcoming sections. Discussion
of how SpecSyn differs from many related efforts is found
in Section VI; however, we point out two key differences
here. First, SpecSyn outputs a system-level description, which
differs from the input only by the addition of system-level
architectural features. This output can thus be treated as though
it were hand-written. Specifically, it can be easily read and
understood, used as documentation, input to simulators, input
to behavioral synthesis, input to real-time schedulers (and
ideally compilers), or designed manually. SpecSyn thus fits in
well with current practice. Second, SpecSyn was developed
as a general tool intended to support a wide variety of
implementation component technologies, architectures, and
heuristics, and new versions of such items can be added.

In this paper, we present an overview of the SpecSyn
environment, discussing relevant issues, previous work, and

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

solutions for each part. We then present industry experiments
using SpecSyn and the specify-explore-refine paradigm.

II. SPECIFICATION CAPTURE

A. Models and Languages

Specifying a system’s functionality is a difficult task, be-
cause the functionality is often complex and poorly under-
stood. To ease the specification task, one decomposes the
functionality into pieces according to some model, and cap-
tures that model in some language. This distinction between
a model and a language is important, since the choice of a
model affects the ease of the specification task much more
than does the choice of a language. Common models in-
clude communicating sequential processes (CSP) [4], dataflow
graphs, hierarchical FSM’s, Petri-nets, and object-oriented
models. Common languages include C, C++, VHDL, Verilog,
Statecharts [5], and Java. Each language can capture many
models, but certain languages excel for particular models. For
example, Statecharts excels at capturing FSM’s, even though
VHDL and Verilog can also capture FSM’s, albeit with more
effort.

We observed that no existing model or language catered
to the capture of embedded systems. Embedded systems are
those systems whose functionality is determined mostly by
interactions with the environment. Examples include most
controller and telecommunication systems. We found that
many such systems possess several characteristics, including
state-transitions, exceptions, forking, andprogram-like compu-
tations, which are not all supported by any one existing model.
State-transitions, exceptions and forking are supported by
the hierarchical FSM model, while forking and program-like
computations are supported by the CSP model. To overcome
this lack of support, we developed the program-state machine
(PSM) model, which is essentially a combination of hier-
archical FSM’s (Statecharts) and CSP. The model consists
of a hierarchy of program-states. Each program-state can be
decomposed into concurrent program-substates or sequential
program-substates sequenced by arcs, as in Statecharts. How-
ever, unlike Statecharts, a third option is to decompose a
program-state into sequential program statements. Because a
program-state is not just a state but also a computation, two
types of arcs are required: transition-on-completion (TOC),
which is traversed when the computation has completed, and
transition-immediately (TI), which is traversed when the arc
event occurs, regardless of the computation stage. We also
developed the SpecCharts language, which is an extension
to VHDL, to capture the PSM model [6]. SpecCharts can
be translated automatically to VHDL, which will be more
complex than the original SpecCharts, but is simulatable and
(ideally) synthesizable in a VHDL environment. Of course, the
PSM model can also be captured directly in VHDL (with some
additional effort); we are currently investigating techniques to
capture the PSM model in Java and C++.

The choice of a language depends on more than just
supported system characteristics, so SpecSyn accepts the in-
dustry standard of VHDL as input, as well as SpecCharts.

Though languages such as VHDL and Verilog lack support
for certain embedded system characteristics, most notably for
state-transitions, one can always use some more complex
combination of other constructs, which of course is more time-
consuming and error-prone, but not impossible. For example,
we can always capture state transitions using sequential pro-
gram constructs. Such capture using less appropriate constructs
is analogous to capturing a record using multiple scalar vari-
ables, capturing recursion using a stack, or capturing a parser
using C’s sequential constructs; all such captures are possible
(and in fact support tools usually translate to such constructs
during processing), but are tedious for humans to perform
directly.

There are many other system characteristics that are not
directly supported by languages such as SpecCharts, VHDL,
Verilog, and C, including synchronous dataflow [7], queuing,
complex timing constraints, and mixed analog/digital parts. No
one language directly supports all characteristics, but hybrid
models and languages that extend the number of supported
characteristics, such as PSM and SpecCharts, seem to be a
step in the right direction. For more information on PSM and
SpecCharts, we refer the reader to [6] and [8].

In addition to specifying functionality, the designer must
also specify design constraints. SpecSyn permits minimum and
maximum constraints to be specified on behavior execution
times and channel bit rates. Ideally, one would also be able to
specify overall design constraints, such as power, board size,
dollar cost, and design cost (if these items could be quantified).
More specific design constraints, such as a component’s size
and I/O limitations, will be derived from each component’s
library entry later.

B. Internal Representation

The captured specification must be converted into an in-
ternal representation on which subsequent tools can operate.
Representations commonly used for behavioral synthesis, in-
cluding the control/dataflow graph (CDFG) and Value Trace
[1], expose control and data dependencies between arithmetic-
level operations, which may be too fine-grained for system
design tasks. Most good partitioning heuristics would require
long run times on the resulting large numbers of objects,
and estimators could not obtain meaningful preestimates (see
Section III-C) for each object. Refinement into a readable
system-level description also becomes a nearly impossible
task. Thus, we chose to create a representation based on the
coarser-granularity of procedural-level computations.

A second drawback of using behavioral synthesis rep-
resentations stems from their focus on dependencies. Such
dependencies are necessary for scheduling during behavioral
synthesis, but are not essential to performing system design
tasks. Representing dependencies between procedural-level
objects requires us to replicate each object at each place that a
procedure is called, since dependencies will differ for each
call. This replication makes the system design task much
more complex. Instead, we developed a representation that
focuses on representing the accesses, rather than dependencies,
among objects.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

GAJSKI et al.: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 87

Fig. 3. Partial VHDL specification of a fuzzy-logic controller example.

For example, consider the partial VHDL specification of a
fuzzy-logic controller in Fig. 3. Inputs and must be
converted to output using fuzzy logic. The main process
FuzzyMainfirst samples input values by writing them into
variables and . It then calls procedureEvalRule
twice, once for each input, and that procedure fills an array
(or) based on the input and on another predefined
array (or). After convolving the arrays, a
centroid value is computed and output. The process repeats
after a time interval.

We represent this specification as the directed graph in
Fig. 4. Each graph node represents abehavioror a variable
from the specification, where a behavior is a process or pro-
cedure, though for finer granularity we can consider statement
blocks like loops by creating new procedures using a technique
called exlining [9]. Each graph directed-edge represents a com-
municationchannel from the specification, where a channel
represents a procedure call, a variable/port read or write, or
a message pass specified using send/receive constructs. For
example, processFuzzyMain, procedureEvalRuleand variable

are each represented by a node. The write of
in FuzzyMaintranslates to a single edge, while the two calls
of EvalRuleby FuzzyMaintranslate to another single edge.
Nodes representing processes are tagged to distinguish them
from procedure nodes (hence theFuzzyMainnode is shown
in bold).

We refer to the representation as theSpecification-level
intermediate format (SLIF)since its granularity is that of
behaviors and variables explicit in the specification. We refer
to the part of SLIF shown so far as anaccess graph (AG)
since the relations between the behaviors/variables are defined
by the accesses among those objects. The AG is similar to
a procedure call-graph commonly used for software profiling,
where an edge represents an access rather than a flow of data;
the AG is more general since it also includes variables. Note
that the AG uses only one node forEvalRule and one for
Min, even though each behavior is called more than once with
different dependencies for each call; thus, a large increase in
the number of nodes is prevented using the AG. Sometimes

Fig. 4. Basic SLIF-AG for the example.

we do want multiple nodes, however, which can be handled
using a procedure cloning transformation [10].

SLIF is annotated with numerous values, as shown in
Figs. 5 and 6. We annotate each behavior and variable ob-
ject with a list of size weights, one weight for each type
of component to which the object may be assigned. For
example, a variable object is annotated with the number of
memory words required for storage in each library memory.
A behavior is annotated with numbers of square microns,
gates, and combinational-logic blocks for each custom chip,
ASIC, and FPGA, respectively, on which the behavior could
be implemented. [More complex annotations can be used to
consider hardware sharing; see Section III-C3).] In addition,
a behavior is annotated with the number of bytes for each
possible standard processor.

We annotate each behavior and variable object with internal
computation time (ict) weights for each possible component,
corresponding to a variable’s access time, or to a behavior’s
execution time excluding communication time. Times can
be obtained with the aid of profiling and static estimation
techniques [11]. We also annotate each edge with access
frequency weights, which can also be obtained through profil-
ing. Furthermore, we associate a bits weight with each edge,
representing the number of bits sent during each transfer. For

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

88 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

Fig. 5. SLIF behavior/variable annotations for the example.

Fig. 6. SLIF channel annotations for the example.

each annotation, we might associate average, minimum and
maximum values.

Annotations are computed during preestimation, and are
combined into quality metric estimates during online estima-
tion; Section III-C discusses these two estimation steps further.

III. EXPLORATION

Given a functional specification, we must proceed to create
a system-level design of interconnected components, each
component implementing a portion of that specification. A
design’s acceptability is evaluated by how well it satisfies
constraints on design metrics, such as performance, size, power
and cost. Since substantial time and effort are needed to
evaluate a potential design, designers usually examine only
a few potential designs, often those that they can evaluate
quickly because of previous experience.

By using a machine-readable specification, we can auto-
matically explore large numbers of potential designs rapidly.
Exploration of potential designs can be decomposed into four
interdependent subproblems: allocation, partitioning, transfor-
mation and estimation. We need not solve these problems in
the given order; in fact, we will usually need to iterate many
times before we are satisfied with our system-level design.

A. Allocation

Allocation is the task of adding components to the design.
Many possible components exist. A standard processor is

programmable and comes with widely used compilers and
debuggers, but is usually slow or large. A special-purpose
processor, such as a DMA controller or Fourier transformer,
performs a specific function. A custom processor is synthe-
sized to quickly execute a set of functions, but is harder
to design and modify. An application-specific instruction-set
processor (ASIP) is a programmable processor optimized for
a particular class of applications, such as telecommunications.
A memory stores variables. A bus implements communication
between processors/memories.

The SpecSyn allocator permits allocation of any number
of standard processors, custom processors, memories, and
buses. Of course, allowing any allocation is only useful if
the exploration tool understands the allocation; specifically,
if the tool knows how to partition functionality among the
components, knows how to estimate for such a partition, and
can generate a refined description with behavior for each
component. Incorporating such knowledge, especially that
required for estimation, is very difficult, which is the reason
that current tools only support a subset of possible allocations,
such as a particular interconnection of a standard processor,
memory, bus and custom processor [12], [13]. While SpecSyn
permits a variety of allocations, its estimation models and
heuristics must continually be improved to better apply to each.

Each component is characterized in a library by its con-
straints, and by a technology file. For example, a custom
processor might be characterized by the maximum I/O pins and
gates, and by a technology file describing an RT-component
library. A standard processor is characterized by a maximum
program memory size, a bus size, a maximum bus bitrate, and
a technology file describing how to map a generic instruction
set to the processor’s instruction set [11]. A memory is
characterized by the number of ports, number of words, word
width, and access time. A bus is characterized by the number
of wires, protocol, and maximum bit rates.

Ideally, we would also be able to allocate special-purpose
processor components (e.g., DMA controllers), as well as
hierarchical components, such as an ASIC which itself con-
tains a standard processor core, memory, and several custom
processor blocks.

Fig. 7 demonstrates an example allocation.StandardProc1
is an Intel 8051 with 4 kb of on-chip memory, andCustom-
Proc1 is a Xilinx XC4010 FPGA with 160 I/O pins and 10 000
gates. Two 1 kB memories are also allocated.

B. Partitioning

Given a functional specification and an allocation of system
components, we need to partition the specification and assign
each part to one of the allocated components. In fact, we
can distinguish three types offunctional objectsthat must be
partitioned. One type is avariable, which stores data values.
Variables in the specification must be assigned to memory
components. The second is abehavior, which transforms data
values. A behavior may consist of programming statements,
such as assignment, if and loop statements, and it generates
a new set of values for a subset of variables. Behaviors must
be assigned to custom or standard processors. The third is the

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

GAJSKI et al.: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 89

Fig. 7. An example allocation of components.

channel, which transfers data from one behavior to another.
Channels must be assigned to buses. Specification partitioning
strives to satisfy constraints, specified by the user as well as
associated with allocated components.

1) Hardware and Hardware/Software Partitioning:A vari-
ety of techniques have evolved to assist the designer perform
functional partitioning. We can consider two categories of
techniques: hardware partitioning and hardware/software parti-
tioning. The hardware partitioning techniques aim to partition
functionality among hardware modules, such as among ASIC’s
or among blocks on an ASIC. Most such techniques partition
at the granularity of arithmetic operations, differing in the
partitioning heuristics employed. Clustering heuristics are used
in [14] and [15], integer-linear programming in [16] and
[17], manual partitioning in [18], and iterative-improvement
heuristics in [19] and [20]. Other techniques for hardware
partitioning operate at a higher level of granularity, such as in
[21] where processes and subroutines are partitioned among
ASIC’s using clustering, iterative-improvement, and manual
techniques. Experiments have shown tremendous advantages
of functional partitioning over the current practice of structural
partitioning [22].

Hardware/software partitioning techniques form the second
functional partitioning category. These techniques focus on
partitioning functionality among a hardware/software architec-
ture. The techniques in [12], [13], [23], and [24]–[27] partition
at the statement, statement sequence and subroutine/task lev-
els, respectively.

In SpecSyn, both the hardware and hardware/software par-
titioning techniques are supported, since one can allocate any
combination of hardware and software components and assign
pieces of the specification to those components.

2) Heuristics: Instead of using one particular partitioning
heuristic, SpecSyn uses a partitioning engine called GPP
(general purpose partitioner). GPP is a library of functions with
uniform interfaces, implementing the basic control strategies
of numerous common heuristics, including clustering, group
migration (an extension of Kernighan/Lin), simulated anneal-
ing, clique partitioning, genetic evolution, as well as custom
heuristics. These control strategies are distinct from data
structures and cost functions. A particular partitioning problem
can be solved by calling a heuristic with the appropriate data
structure and cost function—for example, circuit partitioning
can be solved by passing a hypergraph data structure and a

min-cut cost function. Each SpecSyn partitioning problem,
including variables to memories, channels to buses, and be-
haviors to processors, is performed by passing the appropriate
data structure and cost function and then applying the existing
heuristics.

SpecSyn’s approach to partitioning thus addresses the fact
that heuristics, data structures, and cost functions are con-
tinually evolving. A new partitioning problem can initially
be solved using a general heuristic. Then, once the problem
definition has matured, one can develop and easily integrate
a new custom heuristic. A user, after some experimentation,
can choose the heuristic(s) with the appropriate result quality
and runtime.

3) Manual Partitioning and Hints:We have also focused
on supporting manual partitioning because of the importance
placed on designer interaction. Such support not only involves
providing the ability to manually relocate objects, but also
allowing user control of the relative weights of various metrics
in the cost function (see below), and automatically providing
hints of what changes might yield improvements to the current
partition. SpecSyn currently supports two types of hints.
Closeness hints provide a list of object pairs, sorted by the
closeness of the objects in each pair. Closeness is based on
a weighted function of various closeness metrics. There are
currently seven behavior closeness metrics supported [28].

• Connectivity is based on the number of wires shared
between the sets of behaviors. Grouping behaviors that
share wires should result in fewer pins.

• Communicationis based on the number of bits of data
transferred between the sets of behaviors, independent of
the number of wires used to transfer the data. Grouping
heavily communicating behaviors should result in better
performance, due to decreased communication time.

• Hardware sharingis based on the estimated percentage
of hardware that can be shared between the two sets of
behaviors. Grouping behaviors that can share hardware
should result in a smaller overall hardware size.

• Common accessorsis based on the number of behav-
iors that access both sets of behaviors. Grouping such
behaviors should result in fewer overall wires.

• Sequential executionis based on the ability to execute
behaviors sequentially without loss in performance.

• Constrained communicationis based on the amount of
communication between the sets of behaviors that con-
tributes to each performance constraint. Grouping such
behaviors should help ensure that performance constraints
are met.

• Balanced sizeis based on the size of the sets of behaviors.
Grouping smaller behaviors should eventually lead to
groups of balanced size.
There are also three closeness metrics supported for
variables and for channels.

• Common accessorsis based on the number of behaviors
that access both sets of variables/channels. Grouping such
variables/channels should result in fewer overall wires.

• Sequential accessis based on the occurrence of se-
quential, rather than concurrent, access of the vari-
ables/channels by behaviors. Grouping sequentially

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

90 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

accessed variables/channels into the same memory does
not decrease performance, whereas grouping concurrently
accessed ones might decrease performance due to access
conflicts.

• Width similarity is based on the similarity of the vari-
ables’/channels’ bit widths. Grouping variables/channels
with similar bitwidths should result in fewer wasted
memory/bus bits.

The other type of hint is called lookahead. Here, we generate
all possible modifications of the current partition, where an

modification is a sequence of moves of any objects from
one group to another (is user-defined). We again provide a
list of such modifications, sorted by the partition improvement
gained by each as measured by a cost function.

4) Cost Functions:Partitioning heuristics are guided by
cost functions. A variety of cost functions can be supported.
The following supported cost function focuses on satisfying
constraints:

(1)

where the ’s are user-provided constants indicating the rela-
tive importance of each metric, and is a function indicating
the desirability of a metric’s value. A common form of
returns the degree of constraint violation, normalized such
that zero indicates no violation, and one indicates very large
violation. This form of causes the cost function to return
zero when a partition meets all constraints, making the goal
of partitioning to obtain a cost of zero.

The above cost function is very general, permitting us
to satisfy constraints as well as to optimize certain metrics,
without requiring specific knowledge in a heuristic of the
constraints or optimization metrics. For example, if we wish
to optimize execution time while satisfying size and I/O
constraints, we can simply weigh size and I/O very heavily,
so that violations of those constraints will not be tolerated. If
we wish to focus first on just execution time, and then later
on power, we can give the power constraint an initial weight
of zero.

As an example of the results of partitioning, Fig. 8 shows
a partition of several of the previous example’s nodes among
two memories, an ASIC, a processor and a bus. Note that four
communication channels have been partitioned onto .

C. Estimation

Estimation of values for design quality metrics is required
to determine if a particular system-level design (a partition of
functions among allocated components) satisfies constraints,
and to compare alternative designs. In this section, we describe

Fig. 8. Partitioning AG nodes among system components.

our two-level approach for fast and accurate estimation, and
we provide details of our estimation models.

1) Preestimation and Online-Estimation:In general, more
accurate estimates require more time, but time is very limited
during exploration. (When comparing alternative options, fi-
delity is often more important than accuracy; see [8] and [29]).
High accuracy can be achieved through synthesis, compila-
tion, and simulation, i.e., by generating a refined description,
creating an RT-level design using synthesis and compilation,
measuring gates or bytes for size metrics, and performing
simulations for performance metrics. However, the minutes
or hours required by such an approach makes it unsuitable
during exploration, when hundreds to tens of thousands of
designs must be examined.

To decrease estimation time, an implementationmodelcan
be used, which is an implementation abstraction from which
metric values can be derived, but which does not contain
complete implementation details. SpecSyn uses a two-level
technique to obtain metric values, as illustrated in Fig. 9.

1) Preestimation: Each functional object (behavior, vari-
able and channel) is annotated with information (see
Section II-B), such as the number of bytes for a behavior
when compiled to a particular processor, the average
frequency of channel access, or the number of channel
bits. Preestimation occurs only once at the beginning
of exploration, is independent of any particular partition
and allocation, and may take seconds to minutes.

2) Online-estimation: Preestimated annotations are com-
bined in complex expressions to obtain metric values for
a particular partition and allocation. Online-estimation
occurs hundreds or thousands of times during manual or
automated exploration, so it must be completed in just
milliseconds.

In most other approaches, exploration consists of only one
level of estimation (or two levels where one is trivial), with
another level coming only after RT-level design.

We now discuss SpecSyn estimation models for three metric
types: performance, hardware size, and software size.

2) Performance: In SpecSyn’s performance model, a be-
havior’s execution time is calculated as the sum of the be-
havior’s internal computation time (ict)and communication
time. The ict is the execution time on a particular component,
assuming all accessed behaviors and variables take zero time.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

GAJSKI et al.: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 91

Fig. 9. Subtasks during exploration.

The communication time includes time to transfer data to/from
accessed behaviors and variables, as well as the time for
such accessed behaviors to execute (e.g., the time for a called
procedure to execute and return). This model leads to some
inaccuracy, since some computation and communication could
occur in parallel, but the model seems to provide reasonable
accuracy while enabling rapid estimations.

More precisely, execution time is computed as follows:

if

otherwise (2)

In other words, a behavior’s execution time equals itsict
on the current component (), plus its communication
time (). The communication time equals the

transfer time over a channel for each accessed object
(), plus the execution time of each accessed
object (), times the number of such accesses
(). The transfer time over a channel is determined
from the bus data transfer time () and the width of
that bus (); if the data bits exceeds the bus width,
then multiple transfers are used (as computed by the division).
The is usually less when the communication is
within one component.

Fig. 10 shows the execution-time equation forFuzzyMain
of Fig. 4. For simplicity, the example uses fixed numbers for
ConvolveandCentroidcommunication times, whereas actually
further equations should be used.

a) Preestimation:A behavior’s internal computation
time can be computed during preestimation through profiling
and scheduling. Profiling determines the execution count
of each basic block where a basic block is a sequence of
statements not containing a branch. A schedule for each basic
block is then estimated for each possible processor component,
using compilation for standard processors and synthesis for
custom processors. [Compilation techniques are discussed
further in Section III-C4).] The summation over all blocks

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

92 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

Fig. 10. Execution-time equations for the example.

of each block’s execution count times steps yields the total
steps for the behavior. Multiplying by the step time, i.e.,
the clock period, yields anict value. Note that processors
using pipelining, caching or interrupts would require further
refinements of theict model. Each behavior is annotated with
an ict value for each possible component.

Channel access frequencies are also determined through
profiling. Any variable accesses or procedure call parameters
can be encoded into bits as during synthesis. Bus times and
widths are already associated with each bus.

Figs. 5 and 6 showed the annotations obtained during prees-
timation for the fuzzy-logic controller example.

b) Online estimation:Given a partition of every func-
tional object to a component, the actualict, bus values, and
bus times become known. Thus, a behavior’s execution time
equation can be evaluated. When a partitioning heuristic moves
an object, the object’sict value will change, and bus times may
also change since objects previously on the same component
will now be on different components, and possibly vice-versa.
We only need to change those values and reevaluate the
equation. In addition, any other equations that include the
object’s execution time must also be updated. If care is taken
to maintain links from an object to all terms that change when
the object is moved, then the updates can be done very quickly.

Fig. 11 shows the results of evaluating the execution time
equations for the fuzzy controller example. Using the allo-
cation and partition of Fig. 8, each object is assigned to a
component (comp), each of which was bound to a library item
(bind); based on this assignment, the currentict values are
shown. Using theseict’s, and the communication times based
on the transfer times (not shown), the execution time (et)
equations of Fig. 10 are evaluated. Thus,FuzzyMainexecutes
in 8494 time units for the given allocation and partition.

3) Hardware Size:When several behaviors are assigned to
a custom processor, we must estimate the size (e.g., number of

Fig. 11. Evaluating execution times for the example.

gates) required by that processor. The most accurate estimate is
achieved by performing synthesis, but as discussed above, such
an approach is too slow during exploration. Instead, some tools
use aweight-basedapproach, in which preestimation consists
of annotating each behavior and variable with a weight, and
then a simple online-estimation sums the weights [12], [13].
Such an approach is fast, but may be inaccurate since it does
not consider hardware sharing. Other research efforts [14],
[15], [18], [30] use adesign-basedapproach, in which an
online-estimation roughly synthesizes a design for a given
partition, omitting time-consuming synthesis tasks such as
logic optimization. While more accurate, such estimators may
require tens of seconds, which may be too slow for exploration
of thousands of options.

SpecSyn uses an incremental update technique to achieve
both the accuracy of design-based estimators and the speed
of weight-based estimators. The technique takes advantage of
the fact that many iterative-improvement partitioning heuris-
tics, while exploring thousands of partitions, move only a
few objects between one iteration and the next. Thus, us-
ing extensive information gathered during preestimation, we
incrementally modify a custom processor’s design in just
milliseconds (constant-time).

SpecSyn uses a hardware design model similar to those
in [8], [14], and [15], consisting of a control-unit/data path
(CU/DP) as shown in Fig. 12. The CU/DP area can be
computed as the sum of the following terms:Functional-unit
(FU) size; Storage-unit sizeincluding registers, register files
and memories;Multiplexer size; State-register size; Control-
logic size; and Wiring-size. As shown in Fig. 13, each term
is a function of basic parameters, including the number of
possible states, the number of control lines, the number of
states each control line is active, the number of bits and
words for each storage unit, the number of bits and type of
each functional unit, the number of sources of each storage-
unit input, functional-unit input, and data path output, the
number of data path connections, and the number of data path
components. For example functions, see [31].

a) Preestimation:The parameters are computed for each
functional object during preestimation, by performing rough
synthesis on each object. Each object is then annotated with the
computed parameters. Such computation can take seconds or

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

GAJSKI et al.: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 93

Fig. 12. CU/DP area model.

Fig. 13. Equation and terms for computing CU/DP area.

minutes. Given an initial partition of functional objects among
custom processors, we can obtain a rough design of each
processor by intelligently combining its objects’ parameter
annotations. For example, we can determine the number of
possible custom processor statesby summing the objects’
possible states (in our model, a custom processor implements
sequential objects from one process; multiple processes would
require multiple processors) and then creating a state register
of size bits. As another example, we can determine the
number of FU’s by taking the union of the objects’ FU’s (since
sequential behaviors can share FU’s). Note that the terms, such
as state register size and number of FU’s, are not obtained by
simple addition; in fact, terms may actually be nonlinear with
respect to the parameters. See [31] for details on computing
all the terms from the objects’ parameters.

b) Online estimation:When a partitioning heuristic re-
moves an object from a processor, we update that processor’s
terms. Some terms can be updated simply by examining the
object’s annotations. For example, the number of possible
processor states is reduced by the object’s number, and the
state register size recomputed using the log function. On
the other hand, other terms require further examination. For
example, an object might require a particular FU, but removing
that object only removes that FU if no other object uses the FU;
thus, we keep track of which objects use each FU. Likewise,
removing an object might not eliminate a multiplexor, but
might reduce its size since certain sources are no longer
needed; thus, we keep track of which objects require each
source. Updating a processor’s design for removal of an object,

as well as the complementary action of adding an object, can
be done in constant time [31].

Note that we can merge the information from the functional
objects because of their coarse granularity; otherwise, the
ignored interobject effects would result in poor accuracy.

4) Software Size:A straightforward model of a processor’s
software size is that of the summation of the processor’s
functional objects’ sizes. While neglecting interprocedural
optimization, such optimization is likely not large, so this
model yields fairly accurate estimates.

a) Preestimation: Ideally, we could determine a func-
tional object’s size by simply compiling the object for each
possible target standard processor, as shown in Fig. 14(a).
Unless the target processor is the same as the host machine
processor on which SpecSyn is running, such compilation
will require a cross-compiler, i.e., a compiler that runs on
one processor but generates code for another. However, a
cross-compiler may not be available on the host machine. For
example, suppose the host machine is a Sparc and the target
processor an Intel 8051. We probably do not have an 8051
compiler that runs on the Sparc; instead, we probably have
one that runs on an x86 processor.

SpecSyn supports a method for estimating software size
even when a cross-compiler is not available. The method uses
a generic processor model and a single compiler, as shown
in Fig. 14(b). A functional object’s size is first compiled into
generic three-address instructions. Using available processor-
specific technology files listing the number of bytes that
each generic instruction would require in each processor, the
estimator computes the software size. A target processor’s
technology file can be developed based on the size information
of the processor’s instruction set; note that developing such
a file is substantially simpler than developing a back-end
compiler. Details on deriving technology files for specific
processors are given in [11].

Note that the same generic processor approach would be
applied for software performance estimation. Specifically, the
technology file of the target processor would include not
only the bytes but also the number of steps for each generic
instruction.

Some experiments comparing the generic model with the
processor-specific model yielded inaccuracy of roughly 7%
[11].

b) Online estimation:Online software size estimation
consists simply of increasing or decreasing the processor size
by the size of the added or removed functional object.

D. Transformations

A functional specification serves the purpose of precisely
defining a system’s intended behavior. Such a specification
usually will be read by humans as well as input to synthesis
tools. Unfortunately, a specification written for readability may
not directly lead to the best synthesized design. As a result,
designers often try to juggle synthesis considerations with
readability considerations while writing the initial functional
specification. Such juggling usually leads to lower readability,
less portability, and more functional errors; hence, many of

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

94 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

(a) (b)

Fig. 14. Software size estimation: (a) processor-specific model and (b) generic model.

the advantages of a top-down approach are greatly diminished,
ultimately leading to longer design times.

To solve this problem, SpecSyn provides a suite of auto-
mated transformations. As shown in Fig. 9, transformations
can be applied on the SLIF or on the specification. SLIF
transformations occur in an “inner loop” along with allocation,
partitioning and online estimation, being applied thousands of
times. Specification transformations occur in an “outer loop,”
which is followed by rebuilding of the SLIF and reannotation.

One specification transformation isprocedure exlining[9].
Exlining is the inverse of procedure inlining; namely, re-
placing sequences of statements by procedure calls. Since
procedures determine SLIF granularity, exlining is a means for
achieving finer-granularity. There are two types of exlining.
Redundancy exliningseeks to find and replace redundant
statement sequences.Distinct-computation exliningseeks to
break a large procedure into several smaller procedures, even
though each may only be called once. Redundancy exlining
is a very hard problem; presently, we encode each statement
into a character string indicating the statement type, symbolic
target and sources, concatenate each such string into one large
one, and then use theagrep approximate pattern matching
tool to find potential redundancies. Not all matches found
by such an approach are necessarily redundancies, so user
interaction is required. Distinct-computation exlining is in fact
very similar to the problem addressed in [15]. Statements
can be clustered together based on a number of closeness
metrics. Simulated annealing can be used to further improve
the statement clusterings.

A second specification transformation isprocedure inlining,
which achieves coarser granularity and distributes compu-
tations among calling behaviors, eliminating potential com-
putation bottlenecks. Other possible transformations include
process merging[32], where two processes are sequentialized
into one to reduce hardware size, andprocess splitting[33],
where one process is split into two concurrent ones. We

plan to investigate such process transformations. A variety
of other optimizing transformations with origins in software
compilation could also be applied [34], [35].

Turning to SLIF transformations,preclustering[28] merges
nodes that should probably never be separated, thus achiev-
ing coarser granularity.Procedure cloning[10] duplicates
procedure nodes so that each calling behavior has its own
copy, without necessarily inlining that copy; such cloning is
analogous to logic duplication during logic-level partitioning.
Port calling [36] inserts a node for sending or receiving
data to external input/output ports; such nodes enable better
distribution of I/O among components, similar in idea to
parallel I/O chips.

IV. REFINEMENT

Refinement is the generation of a new specification for each
system component after exploration has yielded a suitable
allocation and partition. The refined specification should be
both readable and simulatable, enabling further verification
and synthesis. We now describe specification refinement tasks
required after system design.

A. Interfacing

An important task is interface generation. Abstract commu-
nication channels were assigned to physical buses.Interface
refinementdetermines the buswidth and the protocol for the
bus that will implement the channels. A bus (such as a
PC ISA bus) may already have these items fixed, in which
case they are simply looked up. Alternatively, a bus may be
flexible, in which case the best width and protocol must still
be determined; algorithms and techniques have been reported
in [37], [38]. After determining the protocol to meet design
constraints, structure can be created for the protocol using
techniques in [39]–[41].

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

GAJSKI et al.: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 95

Fig. 15. Refined fuzzy-logic controller VHDL partial specification.

B. Memories

Another task is memory refinement associated with the im-
plementation of variables assigned to memories. The variable
accesses must be replaced by references to the corresponding
memory locations.

C. Arbitration

A third task, arbiter generation, inserts an arbiter behavior
where there is a resource contention, i.e., where two behaviors
could access the same memory or bus simultaneously.

Note that, while during partitioning we abstracted commu-
nication implementation to the problem of mapping channels
to buses, during refinement we must now deal with more
complex communication issues involving protocols and arbi-
tration. Such complex communication results in new behaviors
(protocols and arbiters), which may later be synthesized,
or possibly mapped to existing communication components
like serial communication controllers or direct-memory-access
controllers.

D. Generation

The final task of refinement is the actual generation of a
refined description. The new description should be readable,
modifiable, simulatable, and synthesizable. We use the fol-
lowing technique to generate a refined description. First, we
create a VHDL entity for each system component. Second,
for each behavior that represented a process in the original
specification, we create a VHDL process inside the component
to which the behavior has been assigned. Third, we describe
activation for separated behaviors, i.e., those behaviors that
have been assigned to a component different from their calling
behaviors. The simplest approach to achieving such activation
would be to create a single process for each such behavior,

where the process would wait until it was activated via a
control signal, would execute the behavior, and then would
indicate completion via another control signal. However, such
an approach results in an excessive number of processes (one
for each separated behavior) and control signals. A better
approach is to combine all separated behaviors that we know to
be sequential (i.e., all those behaviors that belong to the same
process), and that have been assigned to the same component,
into a single process. This process would wait until it was
activated, would execute one of its behaviors based on a newly
introduced mode signal, and would indicate its completion.
Fourth, we insert communication protocols and arbiters, as
described above. We use VHDL send/receive procedures to
hide the protocol details, and use additional VHDL processes
to describe the arbiters.

E. Validation

To verify the system-design decisions, we can simulate the
refined specification. When certain components use different
models of computation than other components or contain
different levels of details, different simulation approaches
must be combined to obtain a simulation of the complete
system. Such combination is called cosimulation. A variety
of approaches to cosimulation are described in the literature,
such as in [42]–[45]. The refined specification can serve as
input to most of these approaches.

In Fig. 15, we show a refined specification for the system
design shown in Fig. 8. Due to space limitations, the figure
shows only a part of the refined specification. The interface
of the fuzzy controller remains unchanged. However, its
contents now consist of many more details than in the original
specification of Fig. 3. For example, the top-level view of
the controller now consists of instantiations of an ASIC, two

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

96 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

memories, and a processor component, along with the inter-
connections among those components. The ASIC component,
in turn, is defined as an entity with several ports. The first
two ports, and , simply connect with the external
inputs with the same names. The next two ports,startEvalRule
and doneEvalRule, would be used by theFuzzyMainprocess
on the processor to activate theEvalRuleprocedure on the
ASIC. The last three ports shown, , and

, are composite data types that describe the signals
necessary for fetching the parameter fromFuzzyMain, for
fetching and data fromMemory1, and for storing

and data to Memory2. The ASIC’s behavior
consists of a single process, which waits for an activation
signal, fetches the parameter, and callsEvalRulewith
that parameter.

EvalRuleis a procedure found in this process, identical to
the procedure in Fig. 3, except that the and arrays can
no longer be accessed as global variables. Instead, they must be
accessed using new subroutines that read data fromMemory1
and write data toMemory2. Those subroutines describe the
detailed communication protocol for such memory accesses,
and would usually be found in a communication-protocol
VHDL package. Note that since the and arrays
have been merged into the same memoryMemory1, offsets
(and) must be added to any
array addresses; likewise for and , which both
reside inMemory2.

There are two important points to note in this example.
First, note the large amount of detail that must be added
to the specification as a result of creating a system-level
design. Presently, designers must manually incorporate this
detail, resulting in longer specification times. Moreover, if the
system-level design serves as the first captured specification,
then we can expect many more functional errors, since the
specification writer must consider many detailed issues that
detract from a focus on the system’s functionality. Second,
it is crucial that the designer be given access to these newly
introduced details. Many of those details involve important
design decisions that the designer must be aware of and
must be able to change; for these reasons, generation of a
refined specification can be seen as extremely important. After
refinement, the functional specification of each component
is just that—a specification, not an implementation. This
means that for a software component (as well as a hardware
component), there may be more than one process in the com-
ponent’s functional specification. These processes will need to
be merged into a single control thread, but such merging is
part of the implementation task for the component. Thus, the
refined specification is a unique and important intermediate
representation of functionality, necessary to verify the system-
level allocation and partitioning decisions we have made,
without yet requiring detailed implementation decisions for
each component. Further details on refinement can be found
in [8] and [46].

V. EXPERIMENTS

We have conducted a series of experiments to explore
design alternatives for several industrial examples. Here we

present results for one particular example: a fuzzy-logic
controller [47].

Four library components were available: a standard proces-
sor (Intel 8051) and three custom processors with 50, 100, and
150 k gates. Each component had an associated dollar cost.
For the experiment, we automatically generated all possible
allocation combinations of these components below a certain
dollar cost. For each allocation, we partitioned automatically
using simulated annealing and a cost function that sought to
meet all size and pin constraints while minimizing execution
time.

Fig. 16 shows results for the fuzzy-logic controller for 35
different allocations. Allocation 1 consisted of just the 8051
standard processor, and had an execution time of over 150 000
ms, so its point is not shown on the graph. Allocation 2
consisted of just one 50 k gate custom processor, but the
processor’s size constraint was violated so that point is not
shown either. Allocation 3 consisted of one 8051 standard
processor and one 50-k gate custom processor, resulting in an
execution time of 18 115 ms. Allocation 4 consisted of just one
100-k gate processor, but again this resulted in a size violation,
so the point is not shown. Allocation 5 consisted of one 8051
and one 100-k gate custom processor, yielding an execution
time of 7721 ms. Subsequent higher cost allocations yield no
better execution time. For example, allocation 31 consisted
of one 8051, one 50-k custom processor, one 100-k custom
processor, and two 150-k custom processors, and yielded an
execution time of 9785 ms. Conceptually, we should have
been able to achieve 7721 ms by just using the 100-k custom
processor, but the simulated annealing formulation simply did
not find a solution using just that custom processor along with
the 8051; instead, functions were assigned to multiple custom
processors, requiring interprocessor communication and hence
the longer execution time.

SpecSyn thus aids the designer to get a feel for the design
space, enabling him to focus on promising points. The above
data was generated automatically in 1 h running on a Sparc
2. There are numerous other types of tradeoffs that can also
be generated.

SpecSyn was used by an industry engineer to design
the fuzzy-logic controller. The partitioning results obtained
matched favorably with those obtained by another engineer
who did a manual partition. The system-level design obtained
by SpecSyn consisted of 5 FPGA’s. Each was implemented
using high-level synthesis, and NeoCAD tools were used
to complete the design. Details of this experiment can be
found in [47]. We summarize them briefly in Fig. 17. The
SpecCharts language was used for the initial specification.
Note the reduction in the number of lines when using
SpecCharts as opposed to VHDL for the specification (see
[8] for other experiments which demonstrate the reduction
in specification time, specification errors, comprehension
time, and lines of code). Also note the large increase in
the number of lines for the refined specification; since this
is automatically generated, the designer is relieved from the
tedious effort of having to write the refined specification
himself. Finally, note the very large size of the VHDL
after its structural implementation; such a large amount of

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

GAJSKI et al.: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 97

Fig. 16. Exploration for the fuzzy-logic controller.

information is very difficult to work with, so starting with
a functional specification enables a tremendous increase
in designer comprehension. The entire implementation was
obtained in roughly 100 man-hours with the aid of SpecSyn
and high-level synthesis, which is nearly a ten times reduction
in design time from the six months required to obtain the
design manually.

VI. RELATED WORK, CURRENT STATUS, AND FUTURE WORK

Several other system-level design environments have also
evolved. TOSCA [48], [49] focuses on control-dominated
systems. A hierarchical FSM input is converted to a process
algebra internal format based on a CSP-like model, which
is partitioned among an architecture consisting of a standard
processor, memory, system bus, and some number of custom
processors that can share local buses. Partitioning is per-
formed manually or using a hierarchical clustering heuristic,

Fig. 17. Fuzzy-logic controller industry design summary.

incorporating formal transformations such as parallelization.
Several metrics guide the partitioning. Processes partitioned to
software are output in a virtual instruction set (VIS), which is
later translated for a particular processor, thus achieving some
processor independence. Synthesis is applied to the output and
the results used to guide further iterations. The VIS is similar

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

98 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

to SpecSyn’s generic instruction set, except that SpecSyn
only uses the set for estimation purposes; SpecSyn outputs
software at the algorithmic level, in accordance with the SER
methodology.

COSYMA [12] focuses on microcontroller-based systems.
An extended C input is converted to a basic-block and
statement-level graph, which is partitioned among an
architecture consisting of a standard processor, custom
processor, memory and bus. Fast indirect metrics guide the
simulated annealing partitioning, the resulting implementation
is then analyzed using more complex metrics, and the results
are used to guide further iterations. Vulcan II [13] uses a
similar architecture and applies a greedy partitioning heuristic
with fast indirect metrics. Recent focus has been on analyzing
input constraints for use during partitioning and synthesis.

A large number of other approaches exist. Summaries can
be found in [29] and [50].

SpecSyn possesses many unique features. First, SpecSyn
outputs a system-level description in order to support the SER
methodology. Second, SpecSyn is intended to support a variety
of system architectures, heuristics, estimation models, and cost
functions; no one version of any of these items is advocated
for all possible systems. For example, a suite of heuristics is
provided, with easy ability to add new ones. Third, SpecSyn
uses a two-level estimation method in which considerable
effort is spent on both preestimation and online-estimation.

SpecSyn currently consists of over 150 000 lines of C code,
and has been under development since 1989. Its main interface
consists of a spreadsheet-like display showing each component
and functional object along with annotations, constraints and
metric values for each. Menu options permit designers to per-
form any of a number of design tasks, whose results are then
reflected by updating values in the display; violated constraints
are flagged for the user. SpecSyn has been released to several
universities and to over 20 companies, and experiments with
industry examples are ongoing.

Some limitations lend themselves to future work. First,
SpecSyn does not currently support scheduling of the coarse-
grained behaviors on the processors to which they are as-
signed, since in manual design, the system-level allocation
and partition decisions are usually made before such sched-
uling decisions. However, in an automated approach, such
scheduling might prove useful. Second, SpecSyn does not
currently incorporate the postsynthesis metric values back
into subsequent explore/refine iterations. Such incorporation
could prove very useful. Third, a method should be in-
troduced to allow designers to provide manual metric es-
timations. Such a method could be as simple as accepting
numbers for use during preestimation, or as complex as
using designer-defined expressions for combining annotations
during online-estimation. Fourth, a method for design from
partial specifications should be implemented. The method
for allowing manual metric estimations would likely form a
large part of this method. Fifth, estimation models must be
continually improved to account for additional architectural
features, such as pipelining, caching, and real-time operating
systems, and to model fixed-processors like DMA controllers,
Fourier transform blocks, Ethernet controllers, MPEG de-

coders, etc. Some work on pipelining has been reported
in [51] and [52]. Sixth, exploration might be improved by
considering ranges of designs during partitioning, rather than
a single point in the range as is currently done. Seventh,
transformations, such as parallelization, need to be developed
and integrated with partitioning, as they play a key role
in enabling good final implementations. Eighth, as package
borders continually change and more components find their
way onto a chip, a general method of partitioning and esti-
mating for hierarchical components needs to be developed.
Finally, a variety of input languages, such as C, Statecharts,
and synchronous-dataflow-based languages, need to be sup-
ported.

VII. CONCLUSIONS

We have introduced a specify-explore-refine paradigm for
system design. Our specification technique focuses on un-
derstandable specifications, which in turn encourages the use
of front-end languages such as SpecCharts. Our approach
to exploration uses preestimation and online-estimation to
achieve both fast and accurate estimates, supports a variety
of partitioning heuristics, and is intended to be continually
extended, enabling a designer to examine numerous alterna-
tive designs quickly. Our refinement techniques automatically
insert details into the specification that would otherwise have
been manually written by the designer, thus relieving the
designer of tedious effort. We expect that this paradigm and
tool will eventually result in a 100-h design cycle, and our
experiments demonstrate the feasibility of such a dramatic
reduction in design time from current practice.

REFERENCES

[1] D. D. Gajski, N. D. Dutt, C. H. Wu, and Y. L. Lin,High-Level Syn-
thesis: Introduction to Chip and System Design.Boston, MA: Kluwer-
Academic, 1991.

[2] J. Vanhoof, K. VanRompaey, I. Bolsens, and H. DeMan,High-level Syn-
thesis for Real-Time Digital Signal Processing.Boston, MA: Kluwer-
Academic, 1993.

[3] G. DeMicheli, A. Sangiovanni-Vincentelli, and P. Antognetti,Design
Systems for VLSI Circuits: Logic Synthesis and Silicon Compilation.
Amsterdam, The Netherlands: Martinus Nijhoff, 1987.

[4] C. A. R. Hoare, “Communicating sequential processes,”Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[5] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
and A. Shtul-Trauring, “STATEMATE: A working environment for the
development of complex reactive systems,” inProc. Int. Conf. Software
Eng., 1988, pp. 396–406.

[6] F. Vahid, S. Narayan, and D. Gajski, “SpecCharts: A VHDL front-end
for embedded systems,”IEEE Trans. Comput.,pp. 694–706, 1995

[7] E. Lee and D. Messerschmitt, “Synchronous data flow,”Proc. IEEE,
vol. 75, pp. 1235–1245, Sept. 1987.

[8] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong,Specification and
Design of Embedded Systems.Englewood Cliffs, NJ: Prentice-Hall,
1994.

[9] F. Vahid, “Procedure exlining: A transformation for improved system
and behavioral synthesis,” inProc. Int. Symp. Syst. Synthesis,1995, pp.
84–89.

[10] , “Procedure cloning: A transformation for improved system-level
functional partitioning,” inProc. European Design Test Conf. (EDTC),
1997, pp. 487–492.

[11] J. Gong, D. Gajski, and S. Narayan, “Software estimation using a generic
processor model,” inProc. European Design Test Conf. (EDTC),1995,
pp. 498–502.

[12] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,”IEEE Design Test Comput.,pp. 64–75, Dec. 1994.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

GAJSKI et al.: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 99

[13] R. Gupta and G. DeMicheli, “Hardware-software cosynthesis for digital
systems,”IEEE Design Test Comput.,pp. 29–41, Oct. 1993.

[14] M. C. McFarland and T. J. Kowalski, “Incorporating bottom-up design
into hardware synthesis,”IEEE Trans. Comput., pp. 938–950, Sept.
1990.

[15] E. D. Lagnese and D. E. Thomas, “Architectural partitioning for system
level synthesis of integrated circuits,”IEEE Trans. Comput., vol. 10,
pp. 847–860, July 1991.

[16] C. H. Gebotys, “An optimization approach to the synthesis of multichip
architectures,”IEEE Trans. VLSI Syst.,vol. 2, pp. 11–20, Mar. 1994.

[17] Y. Y. Chen, Y. C. Hsu, and C. T. King, “MULTIPAR: Behavioral
partition for synthesizing multiprocessor architectures,”IEEE Trans.
VLSI Syst.,vol. 2, pp. 21–32, Mar. 1994.

[18] K. Kucukcakar and A. Parker, “CHOP: A constraint-driven system-level
partitioner,” inProc. Design Automation Conf.,1991, pp. 514–519.

[19] R. Gupta and G. DeMicheli, “Partitioning of functional models of syn-
chronous digital systems,” inProc. Int. Conf. Computer-Aided Design,
1990, pp. 216–219.

[20] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “Hardware-software
partitioning with iterative improvement heuristics,” inProc. Int. Symp.
Syst. Synthesis,1996, pp. 71–76.

[21] F. Vahid and D. Gajski, “Specification partitioning for system design,”
in Proc. Design Automation Conf.,1992, pp. 219–224.

[22] F. Vahid, T. D. M. Le, and Y. C. Hsu, “A comparison of functional
and structural partitioning,” inProc. Int. Symp. Syst. Synthesis,1996,
pp. 121–126.

[23] X. Xiong, E. Barros, and W. Rosentiel, “A method for partitioning
UNITY language in hardware and software,” inProc. European Design
Automation Conf. (EuroDAC),1994.

[24] F. Vahid, J. Gong, and D. D. Gajski, “A binary-constraint search algo-
rithm for minimizing hardware during hardware-software partitioning,”
in Proc. European Design Automation Conf. (EuroDAC),1994, pp.
214–219.

[25] P. Eles, Z. Peng, and A. Doboli, “VHDL system-level specification and
partitioning in a hardware/software co-synthesis environment,” inProc.
Int. Workshop on Hardware-Software Co-Design,1992, pp. 49–55.

[26] A. Kalavade and E. A. Lee, “A global criticality/local phase driven
algorithm for the constrained hardware/software partitioning problem,”
in Proc. Int. Workshop on Hardware-Software Co-Design,1994, pp.
42–48.

[27] J. G. D’Ambrosio and X. Hu, “Configuration-level hardware/software
partitioning for real-time embedded systems,” inProc. Int. Workshop
Hardware-Software Co-Design,1994, pp. 34–41.

[28] F. Vahid and D. D. Gajski, “Clustering for improved system-level
functional partitioning,” inProc. Int. Symp. Syst. Synthesis,1995, pp.
28–33.

[29] D. D. Gajski and F. Vahid, “Specification and design of embedded
hardware-software systems,”IEEE Design Test Comput.,vol. 12, pp.
53–67, 1995.

[30] J. V. Rajan and D. E. Thomas, “Synthesis by delayed binding of
decisions,” inProc. Design Automation Conf.,1985.

[31] F. Vahid and D. Gajski, “Incremental hardware estimation during
hardware/software functional partitioning,”IEEE Trans. VLSI Syst.,vol.
3, pp. 459–464, Sept. 1995.

[32] J. W. Hagerman and D. E. Thomas, “Process transformation for system
level synthesis,” Tech. Rep. CMUCAD-93-08, 1993.

[33] R. A. Walker and D. E. Thomas, “Behavioral transformation for algo-
rithmic level IC design,”IEEE Trans. Comput.,pp. 1115–1128, Oct.
1989.

[34] A. Nicolau and R. Potasman, “Incremental tree height reduction for high
level synthesis,” inProc. Design Automation Conf.,1991, pp. 770–774.

[35] M. Girkar and C. D. Polychronopoulos, “Automatic extraction of
functional parallelism from ordinary programs,”IEEE Trans. Parallel
Distrib. Syst.,pp. 166–178, 1992.

[36] F. Vahid, “Port calling: A transformation for reducing I/O during multi-
package functional partitioning,” inInt. Symp. Syst. Synthesis,1997.

[37] S. Narayan and D. D. Gajski, “Synthesis of system-level bus interfaces,”
in Proc. European Conf. Design Automation (EDAC),1994.

[38] , “Protocol generation for communication channels,” inProc.
Design Automation Conf.,1994, pp. 547–551.

[39] G. Borriello and R. H. Katz, “Synthesis and optimization of interface
transducer logic,” inProc. Int. Conf. Computer-Aided Design,1987.

[40] J. Akella and K. McMillan, “Synthesizing converters between finite state
protocols,” inProc. Int. Conf. Computer Design,1991.

[41] J. S. Sun and R. W. Brodersen, “Design of system interface modules,”
in Proc. Int. Conf. Computer-Aided Design,1992, pp. 478–481.

[42] D. Becker, R. K. Singh, and S. G. Tell, “An engineering environment for
hardware/software co-simulation,” inProc. Design Automation Conf.,
1992, pp. 129–134.

[43] R. Gupta, C. N. Coelho, and G. DeMicheli, “Synthesis and simula-
tion of digital systems containing interacting hardware and software
components,” inProc. Design Automation Conf.,1992, pp. 225–230.

[44] A. Kalavade and E. A. Lee, “A hardware/software codesign methodol-
ogy for DSP applications,”IEEE Design Test Comput.,1993.

[45] S. Sutarwala and P. Paulin, “Flexible modeling environment for em-
bedded systems design,” inProc. Int. Workshop Hardware-Software
Co-Design,1994, pp. 124–130.

[46] J. Gong, D. Gajski, and S. Bakshi, “Model refinement for hardware-
software codesign,” inProc. European Design Test Conf. (EDTC),1996.

[47] L. Ramachandran, D. D. Gajski, S. Narayan, F. Vahid, and P. Fung,
“Toward achieving a 100-hour design cycle: A test case,” inProc.
European Design Automation Conf. (EuroDAC),1994, pp. 144–149.

[48] A. Balboni, W. Fornaciari, and D. Sciuto, “Partitioning and exploration
strategies in the TOSCA co-design flow,” inProc. Int. Workshop
Hardware-Software Co-Design,1993, pp. 62–69.

[49] S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sciuto, “A method-
ology for control-dominated systems codesign,” inProc. Int. Workshop
Hardware-Software Co-Design,1994, pp. 2–9.

[50] W. H. Wolf, “Hardware-software co-design of embedded systems,”
Proc. IEEE,vol. 82, pp. 967–989, July 1994.

[51] S. Bakshi and D. D. Gajski, “A component selection algorithm for high-
performance pipelines,” inProc. European Design Automation Conf.
(EuroDAC), 1994, pp. 400–405.

[52] S. Bakshi and D. D. Gajski, “A memory selection algorithm for high-
performance pipelines,” inProc. European Design Automation Conf.
(EuroDAC), 1994, pp. 124–129.

Daniel D. Gajski (M’77–SM’83–F’94) received the
Dipl.Ing. and M.S. degrees in electrical engineering
from the University of Zagreb, Croatia, and the
Ph.D. degree in computer and information sciences
from the University of Pennsylvania, Philadelphia.

After ten years of industrial experience in digi-
tal circuits, switching systems, supercomputer de-
sign, and VLSI structures, he spent ten years in
academia with the Department of Computer Science
at the University of Illinois, Urbana-Champaign.
Presently, he is a Professor in the Department of

Information and Computer Sciences at the University of California, Irvine.
His interests are in multiprocessor architectures and science of design. He is
editor of the bookHigh-Level Synthesis: An Introduction to Chip and System
Design (New York: Kluwer-Academic, 1992) andSpecification and Design
of Embedded Systems(Englewood Cliffs, NJ: Prentice-Hall, 1994), and the
author ofPrinciples of Digital Design(Englewood Cliffs, NJ: Prentice-Hall,
1985).

Frank Vahid (S’89–M’93) received the B.S. degree
in electrical and computer engineering from the
University of Illinois, Urbana-Champaign, in 1988.
He received the M.S. and Ph.D. degrees in computer
science from the University of California, Irvine, in
1990 and 1994, respectively, where he was an SRC
fellow.

He has worked as an Engineer at Hewlett-Packard
and AMCC. He is currently an Assistant Professor
in the Department of Computer Science at the
University of California, Riverside. His research in-

terests include hardware/software codesign of embedded systems, intellectual
property development and use, and functional partitioning. He is coauthor of
the bookSpecification and Design of Embedded Systems.

Dr. Vahid served as Program Chair for the International Symposium on
System Synthesis in 1996 and as General Chair in 1997.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

Sanjiv Narayan received the B.S. degree in com-
puter science from the Indian Institute of Technol-
ogy, New Delhi, in 1988. He received the M.S. and
Ph.D. degrees in computer science as a Chancellor’s
Fellow at the University of California, Irvine, in
1990 and 1994, respectively.

He is currently with Ambit Design Systems, Santa
Clara, CA, where he is associated with the research
and development of behavioral synthesis tools. His
current research interests include behavioral synthe-
sis, system specification and modeling, and interface

synthesis. He is also a coauthor ofSpecification and Design of Embedded
Systems(Englewood Cliffs, NJ: Prentice-Hall, 1994).

Jie Gong received the M.S. and Ph.D. degrees in
computer science from the University of California,
Irvine. She received the B.S. degree in computer
engineering from the Tsinghua University, Beijing,
People’s Republic of China.

She was working at the Unified Design System
Laboratory of Motorola, Inc., and currenlty she is
with Qualcomm, Inc. Her research interests include
behavioral synthesis and system-level design. She is
a coauthor of the book,Specification and Design of
Embedded Systems(Englewood Cliffs, NJ: Prentice-

Hall, 1994).
Dr. Gong is a member of the ACM.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.

