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SpecSyn: An Environment Supporting
the Specify-Explore-Refine Paradigm
for Hardware/Software System Design
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Abstract—System-level design issues are gaining increasingand buses. Third, we must refine the original specification into

attention, as behavioral synthesis tools and methodologies mature. 3 new system-level description, which designers will use to
We present the SpecSyn system-level design environment, WhiChcreate an implementation for each component

supports the new specify-explore-refine (SER) design paradigm. . . .
This three-step approach to design includes precise specification In current practice, these three steps are carried out in

of system functionality, rapid exploration of numerous system- an informal andad hoc manner. Specifications are usually
level design options, and refinement of the specification into written informally in English or some other natural language.
one reflecting the chosen option. A system-level design option Exploration is done manually using mental or hand-calculated
consists of an allocation of system components, such as standardygtimations of quality metrics such as performance, size, and
and custom processors, memories, and buses, and a partitioning Th fined d intion is th ted inf I .
of functionality among those components. After refinement, the power. : erefine eSCI’Ip.IOI’] IS then created In ormg y using
functionality assigned to each component can then be synthesizedPlock diagrams and English. Drawbacks of such informal
to hardware or compiled to software. We describe the issues and techniques include the lack of early simulation, the lack of
approaches for each part of the SpecSyn environment. The new rapid feedback of quality metrics that result from design
paradigm and environment are expected to lead to a more than gecigions, the lack of automated tools to explore more design
ten times reduction in design time, and our experiments support . . .. . .
this expectation. alternatives while requiring less design time, and the lack
of good documentation of each component’s functionality as
Index Terms— Embedded systems, estimation, exploration, well as of the design decisions to aid in concurrent design,

hardware/software codesign, hierarchical modeling methodology, COmponent integrgtion and redesign. _
partitioning, refinement, specification, system design. The response in the research community to the above

drawbacks has been to introduce simulatable specifications
earlier into the design process, and to use automated tools to
assist in the exploration of design alternatives. The specify-

) ) explore-refine paradigm, which can also be thought of as
T HE focus of design effort on higher levels of abstracy pierarchical modeling methodology, may further improve

tion, driven by increasing system complexity and shortehe situation. In such an approach, we first precisely specify
design times, has led to the need for a system-level desigg system’s functionality, explore numerous system-level
methodology and supporting tools. To better understand tglementations with the aid of tools, and then automatically

system design problem, we can isolate three distinct taskgnerate a refined description representing any implementation
First, we must specify the system’s functionality and conjecisions.

straints. Second, we must explore various system-level desigiyore specifically, the following tasks, illustrated in Fig. 1,
alternatives, each consisting of an interconnection of Sygre necessary to create a system-level design.

tSemtcomponents atnq aln gs&tgnr’gen(; of functionality :0 them.l.. Specification Capturéefo specify the desired system func-
ystem components include standard processors, custom appil- tionality, we decompose the functionality into pieces by

cation specific integrated circuit (ASIC) processors, memories, creating a conceptual model of the system. We generate a

description of this model in a language. We validate this
description by simulation or verification techniques. The
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*Pec- s B s Fig. 2. The SpecSyn system-design environment.

Software and hardware design ) . .

Softwars synthesis  High-leval synthesis constraints. We can obtain a custom processor’s design through
high-level (behavioral) synthesis [1], [2], which converts the
behavioral description into a data path structure of register-

RT-level d ipt . . .
. - °’°l”"°" transfer (RT) components from a library, such as arithmetic
- Procassor | [asic ASIC | [memory and logic units, registers, counters, register files and memo-
- mapped . . .. .
‘ Coode | | RTL struct (4 RTL struct :gg';fzss ries, along with a finite-state machine (FSM) controller that
l sequences the flow of data through the data path. The result
of software and hardware design is RT-level description

Software and hardware implementation

which may contain C code for each software component, and
an FSM plus an RT-level netlist for each custom component.
The RT-level description is then passed software and
Physical description hardware implementatioffor final implementation. Software
(To manufacturing and testing) components require compilation, while custom components
require FSM and logic synthesis [3] followed by physical
design, in which fine-grained digital components like gates
or transistors are placed, routed and timed on an integrated
subproblems, we estimate each alternative design’s quéikcuit (IC).
ity. We have developed the SpecSyn environment to support
* Specification RefinementVe refine the initial specifi- the specify, explore, and refine steps—the SER paradigm. The
cation into a new description reflecting the decisiongarious parts of SpecSyn, illustrated in Fig. 2, correspond to
that we have made during exploration. To do this, wee various system-design subtasks described above; each part
move variables into memories, insert interface protocolill be discussed in detail in upcoming sections. Discussion
between components, and add arbiters to linearize c@f-how SpecSyn differs from many related efforts is found
current accesses to a single resource. Then, we genefat&ection VI; however, we point out two key differences
a system description detailing the system’s processokgre. First, SpecSyn outputs a system-level description, which
memories, and buses and the functionality assigned diifers from the input only by the addition of system-level
each. We use cosimulation to verify that this refinedrchitectural features. This output can thus be treated as though
description is equivalent to the initial specification. Th& were hand-written. Specifically, it can be easily read and
result of specification refinement is system-level de- understood, used as documentation, input to simulators, input
scription, which possesses some implementation detaits behavioral synthesis, input to real-time schedulers (and
of the system-level architecture we have developed, lideally compilers), or designed manually. SpecSyn thus fits in
otherwise is still largely functional. well with current practice. Second, SpecSyn was developed
Afterwards, we performsoftware and hardware design as a general tool intended to support a wide variety of
where we create a design for each component, using saftplementation component technologies, architectures, and
ware and hardware design techniques. A standard procedsauristics, and new versions of such items can be added.
component requires software synthesis, which determines softin this paper, we present an overview of the SpecSyn
ware execution order to satisfy resource and performaneevironment, discussing relevant issues, previous work, and

Compitation  Logic synthesis  Physicai design
(place/route/timing)

Fig. 1. The specify-explore-refine (SER) approach to system design.
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solutions for each part. We then present industry experimerisough languages such as VHDL and Verilog lack support
using SpecSyn and the specify-explore-refine paradigm. for certain embedded system characteristics, most notably for
state-transitions, one can always use some more complex
combination of other constructs, which of course is more time-
consuming and error-prone, but not impossible. For example,
we can always capture state transitions using sequential pro-
A. Models and Languages gram constructs. Such capture using less appropriate constructs

Specifying a system’s functionality is a difficult task, bels analogous to capturing a record using multiple scalar vari-
cause the functionality is often complex and poorly undefbles, capturing recursion using a stack, or capturing a parser
stood. To ease the specification task, one decomposes Yflg C’'s sequential constructs; all such captures are possible
functionality into pieces according to some model, and caf@nd in fact support tools usually translate to such constructs
tures that model in some language. This distinction betwe8HrNg processing), but are tedious for humans to perform
a model and a language is important, since the choice ofligectly.
model affects the ease of the specification task much morelhere are many other system characteristics that are not
than does the choice of a language. Common models frectly supported by languages such as SpecCharts, VHDL,
clude communicating sequential processes (CSP) [4], datafly@rilog, and C, including synchronous dataflow [7], queuing,
graphs, hierarchical FSM's, Petri-nets, and object-orienté@Mplex timing constraints, and mixed analog/digital parts. No
models. Common languages include C, C++, VHDL, Verilogne language directly supports all characteristics, but hybrid
Statecharts [5], and Java. Each language can capture mi@gels and languages that extend the number of supported
models, but certain languages excel for particular models. Fdiaracteristics, such as PSM and SpecCharts, seem to be a
example, Statecharts excels at capturing FSM'’s, even thou@p in the right direction. For more information on PSM and
VHDL and Verilog can also capture FSM's, albeit with moréSpecCharts, we refer the reader to [6] and [8].
effort. In addition to specifying functionality, the designer must

We observed that no existing model or language cateral§o specify design constraints. SpecSyn permits minimum and
to the capture of embedded systems. Embedded Systemsr@@(imum constraints to be specified on behavior execution
those Systems whose functiona”ty is determined mosﬂy gynes and channel bit rates. Ideally, one would also be able to
interactions with the environment. Examples include mogpecify overall design constraints, such as power, board size,
controller and telecommunication systems. We found th@ellar cost, and design cost (if these items could be quantified).
many such systems possess several characteristics, includi@je specific design constraints, such as a component's size
state.transi'[ior']s7 exceptionS, forklr@’]dprogram-"ke compu- and I/O limitations, will be derived from each Component’s
tations which are not all supported by any one existing moddiPrary entry later.

State-transitions, exceptions and forking are supported by
the hierarchical FSM model, while forking and program-like
computations are supported by the CSP model. To overcofhe
this lack of support, we developed the program-state machineThe captured specification must be converted into an in-
(PSM) model, which is essentially a combination of hieternal representation on which subsequent tools can operate.
archical FSM'’s (Statecharts) and CSP. The model consifespresentations commonly used for behavioral synthesis, in-
of a hierarchy of program-states. Each program-state candbading the control/dataflow graph (CDFG) and Value Trace
decomposed into concurrent program-substates or sequerifilexpose control and data dependencies between arithmetic-
program-substates sequenced by arcs, as in Statecharts. Hewel operations, which may be too fine-grained for system
ever, unlike Statecharts, a third option is to decomposedasign tasks. Most good partitioning heuristics would require
program-state into sequential program statements. Becauderg run times on the resulting large numbers of objects,
program-state is not just a state but also a computation, tand estimators could not obtain meaningful preestimates (see
types of arcs are required: transition-on-completion (TOC$ection III-C) for each object. Refinement into a readable
which is traversed when the computation has completed, asystem-level description also becomes a nearly impossible
transition-immediately (TI), which is traversed when the anask. Thus, we chose to create a representation based on the
event occurs, regardless of the computation stage. We ate@rser-granularity of procedural-level computations.
developed the SpecCharts language, which is an extensiod second drawback of using behavioral synthesis rep-
to VHDL, to capture the PSM model [6]. SpecCharts caresentations stems from their focus on dependencies. Such
be translated automatically to VHDL, which will be moredependencies are necessary for scheduling during behavioral
complex than the original SpecCharts, but is simulatable asgnthesis, but are not essential to performing system design
(ideally) synthesizable in a VHDL environment. Of course, thiasks. Representing dependencies between procedural-level
PSM model can also be captured directly in VHDL (with somebjects requires us to replicate each object at each place that a
additional effort); we are currently investigating techniques torocedure is called, since dependencies will differ for each
capture the PSM model in Java and C++. call. This replication makes the system design task much

The choice of a language depends on more than jusbre complex. Instead, we developed a representation that
supported system characteristics, so SpecSyn accepts thednuses on representing the accesses, rather than dependencies,
dustry standard of VHDL as input, as well as SpecCharamong objects.

Il. SPECIFICATION CAPTURE

Internal Representation
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entity FuzzyControllerE is
port (in1, in2 : in integer; out1: out integer );
end;

FuzzyMain: process

variable inival, in2val : integer; procedure EvaluateRule(num : in integer) is
type mr_array is array (1 to 384) of integer; variable trunc : integer; -- truncated value
variable mr1, mr2: mr_array; -- membership rules begin
type tmr_array is array (1 to 128) of integer; it (num = 1) then . )
variable tmr1, tmr2: tmr_array; -- truncated memb. rules , trunc := Min(mri(inival), mr1(128+in1val);
function Min ... elsif (num = 2) then )
trunc := Min(mr2(in2val), mr2(128+in2val));

begin end if;
intval = in1; in2val :=in2; forifi 22 J n=0_1 12)8&%9
EvaluatoRuo) tme1 ) :2 Min(trunc, mr1 (256+));
Convolve; ' elsif (num = 2) then .
out1 <= ComputeCentroid; tmr2(i) := Min(trunc, mr2(256+i));
wait until ... eng’}g(;:;_

end process; end; !

Fig. 3. Partial VHDL specification of a fuzzy-logic controller example.
For example, consider the partial VHDL specification of a in1 in2 outl

fuzzy-logic controller in Fig. 3. Input$nl andin2 must be

converted to outpubutl using fuzzy logic. The main process val &0 _022
FuzzyMainfirst samples input values by writing them into T3
variablesinlval andin2val. It then calls procedurgvalRule 6 c .
twice, once for each input, and that procedure fills an array [ convolve :l'l [_centroid
8 pos c14] °1§E16.°17 c@L [3E

(tmr1 or tmr2) based on the input and on another predefined
array (nrl or mr2). After convolving the¢mr arrays, a
centroid value is computed and output. The process repeats
after a time interval.

We represent this specification as the directed graphl.i.lﬂnc_Jl Min | Lot | L2 | [ort | | oz |
Fig. 4. Each grgph node representbe&hav?oror avariable Fig. 4. Basic SLIF-AG for the example.
from the specification, where a behavior is a process or pro-
cedure, though for finer granularity we can consider statement
blocks like loops by creating new procedures using a technique i )
called exlining [9]. Each graph directed-edge represents a cofff d0 want multiple nodes, however, which can be handled
municationchannelfrom the specification, where a channe¥/Sing @ procedure cloning transformation [10]. .
represents a procedure call, a variable/port read or write, oroL!F 1S annotated with numerous values, as shown in
a message pass specified using send/receive constructs.Fii@t- 5 and 6. We annotate each behavior and variable ob-
example, procesSuzzyMain procedureéEvalRuleand variable J€ct with a list of size weights, one weight for each type
inlval are each represented by a node. The writéndfyql Of component to which the object may be assigned. For
in FuzzyMaintranslates to a single edge, while the two call§xample, a variable object is annotated with the number of
of EvalRuleby FuzzyMaintranslate to another single edgememory words required for storage in each library memory.
Nodes representing processes are tagged to distinguish terRehavior is annotated with numbers of square microns,
from procedure nodes (hence tRezzyMainnode is shown dates, and combinational-logic blocks for each custom chip,
in bold). ASIC, and FPGA, respectively, on which the behavior could

We refer to the representation as tSpecification-level be implemented. [More complex annotations can be used to
intermediate format (SLIF)since its granularity is that of consider hardware sharing; see Section I1I-C3).] In addition,
behaviors and variables explicit in the specification. We refér behavior is annotated with the number of bytes for each
to the part of SLIF shown so far as atcess graph (AG) possible standard processor.
since the relations between the behaviors/variables are defined/e annotate each behavior and variable object with internal
by the accesses among those objects. The AG is similarc@mputation time (ict) weights for each possible component,
a procedure call-graph commonly used for software profilingprresponding to a variable’s access time, or to a behavior’s
where an edge represents an access rather than a flow of datacution time excluding communication time. Times can
the AG is more general since it also includes variables. Ndte obtained with the aid of profiling and static estimation
that the AG uses only one node f&valRuleand one for techniques [11]. We also annotate each edge with access
Min, even though each behavior is called more than once wftequency weights, which can also be obtained through profil-
different dependencies for each call; thus, a large increaseing. Furthermore, we associate a bits weight with each edge,
the number of nodes is prevented using the AG. Sometimepresenting the number of bits sent during each transfer. For

ci0
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Object ict_BO51 _Ict XC4020 _lct V100 _size_8051 _size_XCA020 _size_V100 programmable and comes with widely used compilers and
FuzzyMain 5 8 80 500 debuggers, but is usually slow or large. A special-purpose
o : . . i - : processor, such as a DMA controller or Fourier transformer,

EvalRule 778 s22 500 1600 performs a specific function. A custom processor is synthe-
Corvalve 800 600 900 2000 sized to quickly execute a set of functions, but is harder

Contold 200 o . o o ,  to design and modify. An application-specific instruction-set

Min 8 3 30 850 processor (ASIP) is a programmable processor optimized for
::; g g g ;z: 32;22 ;gg a particular class of applications, such as telecommunications.
1 0 o 0 256 10240 56 A memory stores variables. A bus implements communication
tmr2 0 0 0 256 10240 256 between processors/memories.

The SpecSyn allocator permits allocation of any number
of standard processors, custom processors, memories, and
buses. Of course, allowing any allocation is only useful if

Fig. 5. SLIF behavior/variable annotations for the example.

Object accfreq bits src dst the exploration tool understands the allocation; specifically,
cl 1 6 FuzzyMain inival if the tool knows how to partition functionality among the
c2 1 6 FuzzyMain in2val components, knows how to estimate for such a partition, and
c3 2 8 FuzzyMain EvalRule can generate a refined description with behavior for each
c4 1 0 FuzzyMain Convoive component. Incorporating such knowledge, especially that
c5 1 0 FuzzyMain Centroid required for estimation, is very difficult, which is the reason
c6 1 16 EvalRule  inival that current tools only support a subset of possible allocations,
c7 1 16 EvalRule  in2val such as a particular interconnection of a standard processor,
c8 129 16 EvalRule  trunc memory, bus and custom processor [12], [13]. While SpecSyn
9 129 32 EvalRule  Min permits a variety of allocations, its estimation models and
c10 65 32 EvalRule  mr1 heuristics must continually be improved to better apply to each.
11 65 32 EvalRule  mr2 Each component is characterized in a library by its con-
12 32 16 EvaRus  tmr straints, anq by a technology file. For exgmple, a c_ustom
13 32 16 Evalfde  imm2 processor might be characterized by the maximum I/O pins and

gates, and by a technology file describing an RT-component
Fig. 6. SLIF channel annotations for the example. library. A standard processor is characterized by a maximum
program memory size, a bus size, a maximum bus bitrate, and

each annotation, we might associate average, minimum ghipchnology file describing how to map a generic instruction
maximum values set to the processor’s instruction set [11]. A memory is

Annotations are computed during preestimation, and agggrr?cterézed by th(_a numbgr Of_ po;]ts, numper(jotf) W%rds, Wot:d
combined into quality metric estimates during online estim/!dth, and access time. A bus is characterized by the number

tion; Section IlI-C discusses these two estimation steps furtth.W'reS' protocol, and maximum bit rates. .
Ideally, we would also be able to allocate special-purpose

processor components (e.g., DMA controllers), as well as

hierarchical components, such as an ASIC which itself con-
Given a functional specification, we must proceed to creaigins a standard processor core, memory, and several custom

a system-level design of interconnected components, egfBcessor blocks.

component implementing a portion of that specification. A Fig. 7 demonstrates an example allocatiStandardProcl

design’s acceptability is evaluated by how well it satisfigg an Intel 8051 with 4 kb of on-chip memory, a@ustom-

constraints on design metrics, such as performance, size, popyc1is a Xilinx XC4010 FPGA with 160 1/O pins and 10 000
and cost. Since substantial time and effort are needed (fftes. Two 1 kB memories are also allocated.

evaluate a potential design, designers usually examine only
a few potential designs, often those that they can evaluate
quickly because of previous experience. B. Partitioning

By using a machine-readable specification, we can auto-jen 4 functional specification and an allocation of system
matically explore large numbers of potential designs rap'dl?'fomponents, we need to partition the specification and assign
Exploration of potential designs can be decomposed into fOéjéCh part to one of the allocated components. In fact, we
interdependent subproblems: allocation, partitioning, transfqrs distinguish three types @inctional objectshat must be
mation and estimation. We need not solve these problems ifiisioned. One type is sariable, which stores data values.
the given order; in fact, we will usually need to iterate many, japies in the specification must be assigned to memory
times before we are satisfied with our system-level des'gn'components. The second isahavior which transforms data
values. A behavior may consist of programming statements,
such as assignment, if and loop statements, and it generates

Allocation is the task of adding components to the desiga.new set of values for a subset of variables. Behaviors must
Many possible components exist. A standard processorhbg assigned to custom or standard processors. The third is the

I1l. EXPLORATION

A. Allocation
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min-cut cost function. Each SpecSyn partitioning problem,
including variables to memories, channels to buses, and be-
haviors to processors, is performed by passing the appropriate
data structure and cost function and then applying the existing
heuristics.

SpecSyn’s approach to partitioning thus addresses the fact
that heuristics, data structures, and cost functions are con-
tinually evolving. A new partitioning problem can initially
be solved using a general heuristic. Then, once the problem
definition has matured, one can develop and easily integrate
a new custom heuristic. A user, after some experimentation,
can choose the heuristic(s) with the appropriate result quality
and runtime.

3) Manual Partitioning and Hints:We have also focused

channe] which transfers data from one behavior to anothepn supporting manual partitioning because of the importance
Channels must be assigned to buses. Specification partitionff@ced on designer interaction. Such support not only involves
strives to satisfy constraints, specified by the user as well R®viding the ability to manually relocate objects, but also
associated with allocated components. allowing user control of the relative weights of various metrics
1) Hardware and Hardware/Software Partitioningd vari- in the cost function (see below), and automatically providing
ety of techniques have evolved to assist the designer perfofifits of what changes might yield improvements to the current
functional partitioning. We can consider two categories d#artition. SpecSyn currently supports two types of hints.
techniques: hardware partitioning and hardware/software pafiloseness hints provide a list of object pairs, sorted by the
tioning. The hardware partitioning techniques aim to partitioloseness of the objects in each pair. Closeness is based on
functionality among hardware modules, such as among ASI@sweighted function of various closeness metrics. There are
or among blocks on an ASIC. Most such techniques partitigitirrently seven behavior closeness metrics supported [28].
at the granularity of arithmetic operations, differing in the ¢ Connectivityis based on the number of wires shared

StandardProcessor1 {18051)

CustomProc1 (XC4020)
Bus2

Bus1

Memory1 (V100) Memory2 (V100)

Fig. 7. An example allocation of components.

partitioning heuristics employed. Clustering heuristics are used
in [14] and [15], integer-linear programming in [16] and
[17], manual partitioning in [18], and iterative-improvement e
heuristics in [19] and [20]. Other techniques for hardware
partitioning operate at a higher level of granularity, such as in
[21] where processes and subroutines are partitioned among
ASIC’s using clustering, iterative-improvement, and manual

between the sets of behaviors. Grouping behaviors that
share wires should result in fewer pins.

Communicationis based on the number of bits of data
transferred between the sets of behaviors, independent of
the number of wires used to transfer the data. Grouping
heavily communicating behaviors should result in better
performance, due to decreased communication time.

techniques. Experiments have shown tremendous advantages Hardware sharingis based on the estimated percentage
of functional partitioning over the current practice of structural ~ of hardware that can be shared between the two sets of
partitioning [22]. behaviors. Grouping behaviors that can share hardware

Hardware/software partitioning techniques form the second should result in a smaller overall hardware size.
functional partitioning category. These techniques focus one Common accessors based on the number of behav-
partitioning functionality among a hardware/software architec- iors that access both sets of behaviors. Grouping such
ture. The techniques in [12], [13], [23], and [24]-[27] partition  behaviors should result in fewer overall wires.
at the statement, statement sequence and subroutine/task lev-Sequential executiois based on the ability to execute
els, respectively. behaviors sequentially without loss in performance.

In SpecSyn, both the hardware and hardware/software pars Constrained communicatiois based on the amount of
titioning techniques are supported, since one can allocate any communication between the sets of behaviors that con-
combination of hardware and software components and assign tributes to each performance constraint. Grouping such
pieces of the specification to those components. behaviors should help ensure that performance constraints

2) Heuristics: Instead of using one particular partitioning are met.
heuristic, SpecSyn uses a partitioning engine called GPP Balanced sizés based on the size of the sets of behaviors.
(general purpose partitioner). GPP is a library of functions with  Grouping smaller behaviors should eventually lead to
uniform interfaces, implementing the basic control strategies groups of balanced size.
of numerous common heuristics, including clustering, group There are also three closeness metrics supported for
migration (an extension of Kernighan/Lin), simulated anneal- variables and for channels.
ing, clique partitioning, genetic evolution, as well as custom ¢ Common accessolis based on the number of behaviors
heuristics. These control strategies are distinct from data thataccess both sets of variables/channels. Grouping such
structures and cost functions. A particular partitioning problem  variables/channels should result in fewer overall wires.
can be solved by calling a heuristic with the appropriate datas Sequential acces$s based on the occurrence of se-
structure and cost function—for example, circuit partitioning  quential, rather than concurrent, access of the vari-
can be solved by passing a hypergraph data structure and a ables/channels by behaviors. Grouping sequentially
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accessed variables/channels into the same memory does int in2 outd
not decrease performance, whereas grouping concurrerfdy”
accessed ones might decrease performance due to ac¢e
conflicts.

« Width similarity is based on the similarity of the vari-
ables’/channels’ bit widths. Grouping variables/channel
with similar bitwidths should result in fewer wasted t 1
memory/bus bits. [ Bust 1] |

The other type of hint is called lookahead. Here, we generage
all possiblen modifications of the current partition, where anfr— =7 [
n modification is a sequence af moves of any objects from
one group to anothem(is user-defined). We again provide a]CustomProct (XC4020) Memory1 (V100) || Memory2 (V100)
list of such modifications, sorted by the partition improvement -
gained by each as measured by a cost function. Fig. 8. Partitioning AG nodes among system components.

4) Cost Functions:Partitioning heuristics are guided by o
cost functions. A variety of cost functions can be supporte@r two-level approach for fast and accurate estimation, and
The following supported cost function focuses on satisfyin§f€ Provide details of our estimation models.

StandardProc1
— (18051)

EvalRule

I Convolve . L_throid l

4

Min NI wrt | [ mee I tort | [tz |

constraints: 1) Preestimation and inine-Es’_[imationn_gen_eral, more
accurate estimates require more time, but time is very limited
Costfct =k - F(componentl.size, during exploration. (When comparing alternative options, fi-

delity is often more important than accuracy; see [8] and [29]).
High accuracy can be achieved through synthesis, compila-
tion, and simulation, i.e., by generating a refined description,

component2.size_constr) creating an RT-level design using synthesis and compilation,
+ ks - F(component1.10, measuring gates or bytes for size metrics, and performing
simulations for performance metrics. However, the minutes
or hours required by such an approach makes it unsuitable
during exploration, when hundreds to tens of thousands of

behaviorl.cxectime_constr)--- (1) designs must be examined.

To decrease estimation time, an implementatioodel can
where thek’s are user-provided constants indicating the relase ysed, which is an implementation abstraction from which
tive importance of each metric, addis a function indicating metric values can be derived, but which does not contain
the desirability of a metric’s value. A common form &f complete implementation details. SpecSyn uses a two-level
returns the degree of constraint violation, normalized sugSchnique to obtain metric values, as illustrated in Fig. 9.
that zero indicates no violation, and one indicates very Iargel) Preestimation: Each functional object (behavior, vari-
violation. This form of ' causes the cost function to return able and channel) is annotated with information (see
zero when a partition meets all constraints, making the goal Section 11-B), such as the number of bytes for a behavior

of partitioning to obtain a cost of zero. when compiled to a particular processor, the average

The above cost function is very general, permitting US gy ency of channel access, or the number of channel
to satisfy constraints as well as to optimize certain metrics,  pic preestimation occurs only once at the beginning

Wlthout_requmng _SPeC'T'C knowledge in a heunsfuc of the of exploration, is independent of any particular partition
constraints or optimization metrics. For example, if we wish 4 allocation, and may take seconds to minutes.

to optimize execution time while satisfying size and /O 5y gpjine-estimation: Preestimated annotations are com-
constraints, we can simply weigh size and 1/0 very heavily, ~ pineq in complex expressions to obtain metric values for
so that violations of those constraints will not be tolerated. If a particular partition and allocation. Online-estimation
we wish to focus first on just execution time, and then later occurs hundreds or thousands of times during manual or
on power, we can give the power constraint an initial weight automated exploration, so it must be completed in just

of zero. o , milliseconds.
As an example of the results of partitioning, Fig. 8 shows . .
. . ; In most other approaches, exploration consists of only one

a partition of several of the previous example’s nodes amo

two memories, an ASIC, a processor and a bus. Note that fQ%Q(eI of estimation (or two levels where one is trivial), with

o . another level coming only after RT-level design.
communication channels have been partitioned dntd. . L .
We now discuss SpecSyn estimation models for three metric

types: performance, hardware size, and software size.
2) Performance:In SpecSyn’s performance model, a be-
Estimation of values for design quality metrics is requiredavior's execution time is calculated as the sum of the be-
to determine if a particular system-level design (a partition dfavior’'s internal computation time (ictand communication
functions among allocated components) satisfies constrairtisie Theict is the execution time on a particular component,
and to compare alternative designs. In this section, we descréssuming all accessed behaviors and variables take zero time.

componentl.size_constr)

+ kg - F(component2.size,

component1. 10 _constr)

+ k4 - F(behaviorl.cxectime,

C. Estimation
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Functional specification

Exploration

Internal representation

@ @‘@ -4 - Coarse-grained objects

suitable for system-level

several iterations

( Pre-estimation
Estimation models, estimators
Compilation, synthesis, profiler
Order of seconds or minutes

Yields annotated representation

- - Annotations can be complex
data structures, not just
numbers

ﬂ\llocation, Partitioning,

Custom Processor

1€

Transformation
Standard processor /—\ Incremental estimation models

1000’s of . i
iterations Multiple-metric cost functions

\_/ Order of milliseconds

(Online estimation j

_ J

Refined spacification

Fig. 9. Subtasks during exploration.

The communication time includes time to transfer data to/frotransfer time over a channel for each accessed object
accessed behaviors and variables, as well as the time (ar.ttimes.,), plus the execution time of each accessed
such accessed behaviors to execute (e.g., the time for a cabiefect (ci.dst).czectime), times the number of such accesses
procedure to execute and return). This model leads to so@g.accfreq). The transfer time over a channel is determined
inaccuracy, since some computation and communication cofldm the bus data transfer timéus.time) and the width of
occur in parallel, but the model seems to provide reasonalgi@t bus fus.width); if the data bits exceeds the bus width,

accuracy while enabling rapid estimations.

More precisely, execution time is computed as follows:

b.exectime = b.ict, + b.commtime
b.commtime = Z ci.accfreq

enEb.outchannels

X (ep ttimeyys + (cp.dst).exectime)
e ttimeyys = [bus.time X (¢ bits + bus.awidth)]

bus.time = bus.timesame
if (cx.dst).p = p,
=bus.timedi f f otherwise

(@)

then multiple transfers are used (as computed by the division).
The bus_time is usually less when the communication is
within one component.

Fig. 10 shows the execution-time equation feuzzyMain
of Fig. 4. For simplicity, the example uses fixed numbers for
ConvolveandCentroidcommunication times, whereas actually
further equations should be used.

a) Preestimation: A behavior's internal computation
time can be computed during preestimation through profiling
and scheduling. Profiling determines the execution count
of each basic block where a basic block is a sequence of
statements not containing a branch. A schedule for each basic
block is then estimated for each possible processor component,

In other words, a behavior's execution time equalsids using compilation for standard processors and synthesis for
on the current componenb.{ct;), plus its communication custom processors. [Compilation techniques are discussed
time (.commtime). The communication time equals thefurther in Section I1I-C4).] The summation over all blocks
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FuzzyMain.et = FuzzyMain.ict Object comp bind iet et
+ cl.accfreq * (c1.tt + in1val.et) FuzzyMain  |StdProct 8051 5 8,494
+ c2.accfreq ™ (c2.tt + in2val.et) intval CustProc1  XC4020 0 0
+ c3.accfreq : (c3.tt + EvalRule.et) in2val CustProc  XC4020 0 0
* °4'a°°;’eq  (ca.tt+ Convolve.et) EvaRule  [CustProct  XCA4020 522 2,197
invival.et : fz'SZfi;fi o(cs.tt + Centroid.et) Convolve  |StdProct 8051 800 1,133
invaval.et = in2val ict + 0 Centroid StdProct 8051 2500 2,954
EvalRule.et = EvalRule.ict trunc CustProct  XC4020 0 0
+ c8.accfreq * (c8.tt + trunc.et) Min CustProct  XC4020 3 3
c9.accfreq * (cO.tt + Min.et) mr1 Mem1 V100 0 0
c10.accfreq * (c10.tt + mri.et) mr2 Mem1 V100 0 0
c11.accfreq * (c11.tt + mr2.et) tmr1 Mem2 V100 0 0
cl12.accfreq * (c12.1t + tmr1.et) tmr2 Mem2 V100 0 0
c13.accfreq * (c13.tt + tmr2.et) ) . o
Convolve.et = Convolve.ict +333 Fig. 11. Evaluating execution times for the example.
Centroid = Centroid.ict +454
:&i’:c ; ;‘;“i‘:‘i’c'tci’;o gates) required by that processor. The most accurate estimate is
mr = mrict+0 achieved by performing synthesis, but as discussed above, such
mr2 = mrict+0 an approach is too slow during exploration. Instead, some tools
tmri = tmrlict+0 use aweight-basedipproach, in which preestimation consists
tmr2 = tmr2ict+0 of annotating each behavior and variable with a weight, and

then a simple online-estimation sums the weights [12], [13].
Such an approach is fast, but may be inaccurate since it does
of each block’s execution count times steps yields the totat consider hardware sharing. Other research efforts [14],
steps for the behavior. Multiplying by the step time, i.e[15], [18], [30] use adesign-basedapproach, in which an
the clock period, yields arict value. Note that processorsonline-estimation roughly synthesizes a design for a given
using pipelining, caching or interrupts would require furthepartition, omitting time-consuming synthesis tasks such as
refinements of théct model. Each behavior is annotated witHogic optimization. While more accurate, such estimators may
anict value for each possible component. require tens of seconds, which may be too slow for exploration
Channel access frequencies are also determined thro@grthousands of options.
profiling. Any variable accesses or procedure call parametersSpecSyn uses an incremental update technique to achieve
can be encoded into bits as during synthesis. Bus times dmih the accuracy of design-based estimators and the speed
widths are already associated with each bus. of weight-based estimators. The technique takes advantage of
Figs. 5 and 6 showed the annotations obtained during pret fact that many iterative-improvement partitioning heuris-
timation for the fuzzy-logic controller example. tics, while exploring thousands of partitions, move only a
b) Online estimation:Given a partition of every func- few objects between one iteration and the next. Thus, us-
tional object to a component, the actuel, bus values, and ing extensive information gathered during preestimation, we
bus times become known. Thus, a behavior's execution tirfiggrementally modify a custom processor's design in just
equation can be evaluated. When a partitioning heuristic movegliseconds (constant-time).
an object, the objectigt value will change, and bus times may SpecSyn uses a hardware design model similar to those
also change since objects previously on the same componeni8], [14], and [15], consisting of a control-unit/data path
will now be on different components, and possibly vice-verséCU/DP) as shown in Fig. 12. The CU/DP area can be
We only need to change those values and reevaluate @enputed as the sum of the following ternfsinctional-unit
equation. In addition, any other equations that include tfEU) size Storage-unit sizéncluding registers, register files
object’s execution time must also be updated. If care is takend memoriesMultiplexer size State-register sizeControl-
to maintain links from an object to all terms that change whdagic size and Wiring-size As shown in Fig. 13, each term
the object is moved, then the updates can be done very quick$y.a function of basic parameters, including the number of
Fig. 11 shows the results of evaluating the execution tinp@ssible states, the number of control lines, the number of
equations for the fuzzy controller example. Using the allstates each control line is active, the number of bits and
cation and partition of Fig. 8, each object is assigned toveords for each storage unit, the number of bits and type of
component¢omp, each of which was bound to a library itemeach functional unit, the number of sources of each storage-
(bind); based on this assignment, the curréattvalues are unit input, functional-unit input, and data path output, the
shown. Using theset's, and the communication times basedumber of data path connections, and the number of data path
on the transfer times (not shown), the execution tire§ ( components. For example functions, see [31].
equations of Fig. 10 are evaluated. ThbBazzyMainexecutes a) Preestimation: The parameters are computed for each
in 8494 time units for the given allocation and partition.  functional object during preestimation, by performing rough
3) Hardware Size:When several behaviors are assigned ®ynthesis on each object. Each object is then annotated with the
a custom processor, we must estimate the size (e.g., numbecahputed parameters. Such computation can take seconds or

Fig. 10. Execution-time equations for the example.
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DP inputs as well as the complementary action of adding an object, can

1 11 be done in constant time [31].

¥ Y Note that we can merge the information from the functional

mux—| I FU2 | objects because of their coarse granularity; otherwise, the
t ignored interobject effects would result in poor accuracy.

4) Software SizeA straightforward model of a processor’s
software size is that of the summation of the processor’s
YY) functional objects’ sizes. While neglecting interprocedural
FU1 optimization, such optimization is likely not large, so this

| state-reg | model yields fairly accurate estimates.
cu X a) Preestimation:ldeally, we could determine a func-
DP tional object’s size by simply compiling the object for each
possible target standard processor, as shown in Fig. 14(a).
Unless the target processor is the same as the host machine
Fig. 12. CU/DP area model. processor on which SpecSyn is running, such compilation
will require a cross-compiler, i.e., a compiler that runs on

one processor but generates code for another. However, a

| storage I I storage |

logic

y DP outputs

area factor is a function of : . .
cross-compiler may not be available on the host machine. For
state_reg # states . .
cu N example, suppose the host machine is a Sparc and the target
logic # states, # ctri_ines, # states each ctr_line is active processor an Intel 8051. We probably do not have an 8051
cuP compiler that runs on the Sparc; instead, we probably have
.
storage # bits and # words of each storage one that runs on an x86 processor.
func_units | #bits and type of each FU SpecSyn supports a method for e§timating software size
oP + even when a cross-compiler is not available. The method uses
muxes # sources of each storage or FU input, or DP output port . . .
. a generic processor model and a single compiler, as shown
wires # DP connections, # DP components in Fig. 14(b). A functional object’s size is first compiled into

generic three-address instructions. Using available processor-
specific technology files listing the number of bytes that
each generic instruction would require in each processor, the
minutes. Given an initial partition of functional objects amongstimator computes the software size. A target processor’'s
custom processors, we can obtain a rough design of eagbhnology file can be developed based on the size information
processor by intelligently combining its objects’ parametesf the processor’s instruction set; note that developing such
annotations. For example, we can determine the numbergofiile is substantially simpler than developing a back-end
possible custom processor statesdy summing the objects’ compiler. Details on deriving technology files for specific
possible states (in our model, a custom processor implemepitscessors are given in [11].
sequential objects from one process; multiple processes wouldNote that the same generic processor approach would be
require multiple processors) and then creating a state regigipplied for software performance estimation. Specifically, the
of sizelog(S) bits. As another example, we can determine thtechnology file of the target processor would include not
number of FU’s by taking the union of the objects’ FU’s (sincenly the bytes but also the number of steps for each generic
sequential behaviors can share FU’s). Note that the terms, sudtruction.
as state register size and number of FU’s, are not obtained bySsome experiments comparing the generic model with the
simple addition; in fact, terms may actually be nonlinear witprocessor-specific model yielded inaccuracy of roughly 7%
respect to the parameters. See [31] for details on computiid].
all the terms from the objects’ parameters. b) Online estimation:Online software size estimation

b) Online estimation:When a partitioning heuristic re- consists simply of increasing or decreasing the processor size
moves an object from a processor, we update that processbiysthe size of the added or removed functional object.
terms. Some terms can be updated simply by examining the
object’s annotations. For example, the number of possible .
processor states is reduced by the object's number, and kheTransformations
state register size recomputed using the log function. OnA functional specification serves the purpose of precisely
the other hand, other terms require further examination. Fefining a system’s intended behavior. Such a specification
example, an object might require a particular FU, but removingually will be read by humans as well as input to synthesis
that object only removes that FU if no other object uses the Ftdols. Unfortunately, a specification written for readability may
thus, we keep track of which objects use each FU. Likewiseot directly lead to the best synthesized design. As a result,
removing an object might not eliminate a multiplexor, butdlesigners often try to juggle synthesis considerations with
might reduce its size since certain sources are no longeadability considerations while writing the initial functional
needed; thus, we keep track of which objects require easpecification. Such juggling usually leads to lower readability,
source. Updating a processor’s design for removal of an objdeiss portability, and more functional errors; hence, many of

Fig. 13. Equation and terms for computing CU/DP area.
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Fig. 14. Software size estimation: (a) processor-specific model and (b) generic model.

the advantages of a top-down approach are greatly diminishpthn to investigate such process transformations. A variety

ultimately leading to longer design times. of other optimizing transformations with origins in software
To solve this problem, SpecSyn provides a suite of autcempilation could also be applied [34], [35].

mated transformations. As shown in Fig. 9, transformations Turning to SLIF transformationqreclustering[28] merges

can be applied on the SLIF or on the specification. SLIRodes that should probably never be separated, thus achiev-

transformations occur in an “inner loop” along with allocationing coarser granularityProcedure cloning[10] duplicates

partitioning and online estimation, being applied thousands pfocedure nodes so that each calling behavior has its own

times. Specification transformations occur in an “outer loopgopy, without necessarily inlining that copy; such cloning is

which is followed by rebuilding of the SLIF and reannotationanalogous to logic duplication during logic-level partitioning.
One specification transformation jsocedure exlining9]. Port calling [36] inserts a node for sending or receiving

Exlining is the inverse of procedure inlining; namely, redata to external input/output ports; such nodes enable better

placing sequences of statements by procedure calls. Sidégribution of 1/0O among components, similar in idea to

procedures determine SLIF granularity, exlining is a means fparallel I/O chips.

achieving finer-granularity. There are two types of exlining.

Redundancy exliningseeks to find and replace redundant

statement sequenceBistinct-computation exliningseeks to IV. REFINEMENT

break a large procedure into several smaller procedures, eveRefinement is the generation of a new specification for each

though each may only be called once. Redundancy exlini@gsiem component after exploration has yielded a suitable

is a very hard problem; presently, we encode each statemgfidcation and partition. The refined specification should be

into a character string indicating the statement type, symbofigih readable and simulatable, enabling further verification

target and sources, concatenate each such string into one I3 synthesis. We now describe specification refinement tasks
one, and then use thagrep approximate pattern matCh'ngrequired after system design.

tool to find potential redundancies. Not all matches found
by such an approach are necessarily redundancies, so user )
interaction is required. Distinct-computation exlining is in facf Interfacing
very similar to the problem addressed in [15]. StatementsAn important task is interface generation. Abstract commu-
can be clustered together based on a number of closengisation channels were assigned to physical bukgsrface
metrics. Simulated annealing can be used to further improrefinementdetermines the buswidth and the protocol for the
the statement clusterings. bus that will implement the channels. A bus (such as a
A second specification transformationgscedure inlining PC ISA bus) may already have these items fixed, in which
which achieves coarser granularity and distributes compease they are simply looked up. Alternatively, a bus may be
tations among calling behaviors, eliminating potential conflexible, in which case the best width and protocol must still
putation bottlenecks. Other possible transformations inclube determined; algorithms and techniques have been reported
process merging32], where two processes are sequentialized [37], [38]. After determining the protocol to meet design
into one to reduce hardware size, gmecess splitting33], constraints, structure can be created for the protocol using
where one process is split into two concurrent ones. Wechniques in [39]-[41].
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entity FuzzyControllerE is
%ort (in1,in2 : in integer; out1: out integer );
end;

component ASIC1E is
port (in1, in2 : in integer; startEvaiRule : in bit;

doneEvalRule : out bit; num_chan : int_chan;

mr_chan, tmr_chan : addr_int_chan; ...);
end;

component Memory1E is
%on (mr_chan : addr_int_chan);
end;

component Memory2E is ...
component ProcessoriE is ...

< port maps > ...

entity ASIC1E is
port ( in1, in2 : in integer; startEvalRule : in bit;
doneEvalRule : out bit; num_chan : int_chan;
g mr_chan, tmr_chan : addr_int_chan; ...);
end;

process
variable in1val, in2val : integer;
function Min ...
variable num : integer;

begin
wait until startEvalRule="1";
num := ReadNum(num_chan);
EvaluateRule(num);

procedure EvaluateRule(num : in integer) is
variable trunc : integer; -- truncateg value
variable mr_valt, mr_val2 : integer;
variable tmr_val : integer;
begin
if (num = 1) then
mr_vall := ReadMemory1(inival + MR10FFSE‘Q;
mr_val2 := ReadMemory1(128 + inlval + MR1OFFSET);
trunc := Min{mri_vall, mri_val2));
elsif (num = 2) then
mr_vall := ReadMemoryi(inival + MRZOFFSE‘I"_)
mr_val2 := ReadMemory1(128 + in1val + MR20O
gqfnc = Min(mr_vall, mr_val2);
end if;

FSET);

foriin 1 to 128 loop
if (num = 1) then
mr_vali := ReadMemory1(256+i + MR1OFFSET);
tmr_val := Min(trunc, mr_valt);
WriteMemory2(i + TMR1OFFSET, tmr_val);
elsif (num = 2) then
mr_val1 := ReadMemory1(256+i + MR20OFFSET);
tmr_val := Min(trunc, mr_val1);
Xv_rfiteMemory2(i+TMR20FFSET, tmr_val);
end if;
end loop;
end;

95

doneEvalRule="1";
Fig. 15. Refined fuzzy-logic controller VHDL partial specification.

B. Memories where the process would wait until it was activated via a

Another task is memory refinement associated with the ifi@ntrol signal, would execute the behavior, and then would
plementation of variables assigned to memories. The variaffidicate completion via another control signal. However, such

accesses must be replaced by references to the corresponfithgPProach results in an excessive number of processes (one
memory locations. for each separated behavior) and control signals. A better

approach is to combine all separated behaviors that we know to
C. Arbitration be sequential (i.e., all those behaviors that belong to the same

A third task, arbiter generation, inserts an arbiter behaviBfocess), and that have been assigned to the same component,

where there is a resource contention, i.e., where two behavibi® @ single process. This process would wait until it was
could access the same memory or bus simultaneously. gctlvated, would exgcute one of its beha\{lors bgsed ona n.ewly
Note that, while during partitioning we abstracted commybtroduced mode signal, and would indicate its completion.
nication implementation to the problem of mapping channdrourth, we insert communication protocols and arbiters, as
to buses, during refinement we must now deal with moflescribed above. We use VHDL send/receive procedures to
complex communication issues involving protocols and arpiide the protocol details, and use additional VHDL processes
tration. Such complex communication results in new behavid& describe the arbiters.
(protocols and arbiters), which may later be synthesized,
or possibly mapped to existing communication components
like serial communication controllers or direct-memory-access To verify the system-design decisions, we can simulate the
controllers. refined specification. When certain components use different
_ models of computation than other components or contain
D. Generation different levels of details, different simulation approaches

The final task of refinement is the actual generation of ust be combined to obtain a simulation of the complete
refined description. The new description should be readab#stem. Such combination is called cosimulation. A variety
modifiable, simulatable, and synthesizable. We use the foff approaches to cosimulation are described in the literature,
lowing technique to generate a refined description. First, wgch as in [42]-[45]. The refined specification can serve as
create a VHDL entity for each system component. Secoridput to most of these approaches.
for each behavior that represented a process in the originaln Fig. 15, we show a refined specification for the system
specification, we create a VHDL process inside the componelgisign shown in Fig. 8. Due to space limitations, the figure
to which the behavior has been assigned. Third, we descriff®ws only a part of the refined specification. The interface
activation for separated behaviors, i.e., those behaviors thatthe fuzzy controller remains unchanged. However, its
have been assigned to a component different from their callingntents now consist of many more details than in the original
behaviors. The simplest approach to achieving such activatigpecification of Fig. 3. For example, the top-level view of
would be to create a single process for each such behavitie controller now consists of instantiations of an ASIC, two

Validation
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memories, and a processor component, along with the intpresent results for one particular example: a fuzzy-logic
connections among those components. The ASIC componeamntroller [47].
in turn, is defined as an entity with several ports. The first Four library components were available: a standard proces-
two ports, inl and in2, simply connect with the externalsor (Intel 8051) and three custom processors with 50, 100, and
inputs with the same names. The next two pastartEvalRule 150 k gates. Each component had an associated dollar cost.
and doneEvalRulewould be used by th&uzzyMainprocess For the experiment, we automatically generated all possible
on the processor to activate tl®/alRule procedure on the allocation combinations of these components below a certain
ASIC. The last three ports shownyum_chan, mr_chan and dollar cost. For each allocation, we partitioned automatically
tmr_chan, are composite data types that describe the signailsing simulated annealing and a cost function that sought to
necessary for fetching theum parameter fronfruzzyMainfor meet all size and pin constraints while minimizing execution
fetching mr1 and mr2 data fromMemoryl and for storing time.
tmrl and tmr2 data to Memory2 The ASIC's behavior Fig. 16 shows results for the fuzzy-logic controller for 35
consists of a single process, which waits for an activatiafifferent allocations. Allocation 1 consisted of just the 8051
signal, fetches thewum parameter, and callEvalRulewith standard processor, and had an execution time of over 150 000
that parameter. ms, so its point is not shown on the graph. Allocation 2
EvalRuleis a procedure found in this process, identical toonsisted of just one 50 k gate custom processor, but the
the procedure in Fig. 3, except that the and¢ms arrays can processor’'s size constraint was violated so that point is not
no longer be accessed as global variables. Instead, they musthi@wvn either. Allocation 3 consisted of one 8051 standard
accessed using new subroutines that read data femoryl processor and one 50-k gate custom processor, resulting in an
and write data tdMemory2 Those subroutines describe thexecution time of 18 115 ms. Allocation 4 consisted of just one
detailed communication protocol for such memory accessd§0-k gate processor, but again this resulted in a size violation,
and would usually be found in a communication-protocao the point is not shown. Allocation 5 consisted of one 8051
VHDL package. Note that since thexr1 and mr2 arrays and one 100-k gate custom processor, yielding an execution
have been merged into the same memblgmoryl offsets time of 7721 ms. Subsequent higher cost allocations yield no
(MRIOFFSET andM R20F FSET) must be added to any better execution time. For example, allocation 31 consisted
array addresses; likewise famrl and tmr2, which both of one 8051, one 50-k custom processor, one 100-k custom
reside inMemory2 processor, and two 150-k custom processors, and yielded an
There are two important points to note in this examplexecution time of 9785 ms. Conceptually, we should have
First, note the large amount of detail that must be addeéen able to achieve 7721 ms by just using the 100-k custom
to the specification as a result of creating a system-leyslocessor, but the simulated annealing formulation simply did
design. Presently, designers must manually incorporate thist find a solution using just that custom processor along with
detail, resulting in longer specification times. Moreover, if théhe 8051; instead, functions were assigned to multiple custom
system-level design serves as the first captured specificatiprocessors, requiring interprocessor communication and hence
then we can expect many more functional errors, since ttie longer execution time.
specification writer must consider many detailed issues thatSpecSyn thus aids the designer to get a feel for the design
detract from a focus on the system’s functionality. Secongpace, enabling him to focus on promising points. The above
it is crucial that the designer be given access to these newlyta was generated automatically in 1 h running on a Sparc
introduced details. Many of those details involve importar®. There are numerous other types of tradeoffs that can also
design decisions that the designer must be aware of amsl generated.
must be able to change; for these reasons, generation of pecSyn was used by an industry engineer to design
refined specification can be seen as extremely important. Afthe fuzzy-logic controller. The partitioning results obtained
refinement, the functional specification of each componemiatched favorably with those obtained by another engineer
is just that—a specification, not an implementation. Thigho did a manual partition. The system-level design obtained
means that for a software component (as well as a hardwéke SpecSyn consisted of 5 FPGA’s. Each was implemented
component), there may be more than one process in the camsing high-level synthesis, and NeoCAD tools were used
ponent’s functional specification. These processes will needtto complete the design. Details of this experiment can be
be merged into a single control thread, but such mergingfisund in [47]. We summarize them briefly in Fig. 17. The
part of the implementation task for the component. Thus, ti8pecCharts language was used for the initial specification.
refined specification is a unique and important intermediakéte the reduction in the number of lines when using
representation of functionality, necessary to verify the systeiBpecCharts as opposed to VHDL for the specification (see
level allocation and partitioning decisions we have madg] for other experiments which demonstrate the reduction
without yet requiring detailed implementation decisions fdnh specification time, specification errors, comprehension
each component. Further details on refinement can be fouirde, and lines of code). Also note the large increase in
in [8] and [46]. the number of lines for the refined specification; since this
is automatically generated, the designer is relieved from the
tedious effort of having to write the refined specification
We have conducted a series of experiments to expldmenself. Finally, note the very large size of the VHDL
design alternatives for several industrial examples. Here a#er its structural implementation; such a large amount of

V. EXPERIMENTS
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Fig. 16. Exploration for the fuzzy-logic controller.
information is very difficult to work with, so starting with
a functional specification enables a tremendous increase SpecCharts spec 350
in designer comprehension. The entire implementation was
obtained in roughly 100 man-hours with the aid of SpecSyn VHDL spec 598
and high-level synthesis, which is nearly a ten times reduction
in design time from the six months required to obtain the Refined VHDL spec 1495
design manually.
Structural VHDL spec 17500

VI. RELATED WORK, CURRENT STATUS, AND FUTURE WORK Fig. 17. Fuzzy-logic controller industry design summary.

Several other system-level design environments have also

evolved. TOSCA [48], [49] focuses on control-dominated

systems. A hierarchical FSM input is converted to a procesgorporating formal transformations such as parallelization.
algebra internal format based on a CSP-like model, whi&everal metrics guide the partitioning. Processes partitioned to
is partitioned among an architecture consisting of a standauaftware are output in a virtual instruction set (VIS), which is
processor, memory, system bus, and some number of cuslater translated for a particular processor, thus achieving some
processors that can share local buses. Partitioning is perecessor independence. Synthesis is applied to the output and
formed manually or using a hierarchical clustering heuristithe results used to guide further iterations. The VIS is similar
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to SpecSyn’s generic instruction set, except that SpecSywders, etc. Some work on pipelining has been reported
only uses the set for estimation purposes; SpecSyn outpmg51] and [52]. Sixth, exploration might be improved by
software at the algorithmic level, in accordance with the SEgbnsidering ranges of designs during partitioning, rather than

methodology.

a single point in the range as is currently done. Seventh,

COSYMA [12] focuses on microcontroller-based systemgansformations, such as parallelization, need to be developed
An extended C input is converted to a basic-block armhd integrated with partitioning, as they play a key role

statement-level graph, which

is partitioned among dn enabling good final implementations. Eighth, as package

architecture consisting of a standard processor, custtwarders continually change and more components find their
processor, memory and bus. Fast indirect metrics guide tiway onto a chip, a general method of partitioning and esti-
simulated annealing partitioning, the resulting implementationating for hierarchical components needs to be developed.
is then analyzed using more complex metrics, and the reslfigally, a variety of input languages, such as C, Statecharts,
are used to guide further iterations. Vulcan Il [13] uses and synchronous-dataflow-based languages, need to be sup-
similar architecture and applies a greedy patrtitioning heurisfiorted.

with fast indirect metrics. Recent focus has been on analyzing
input constraints for use during partitioning and synthesis.

A large number of other approaches exist. Summaries can
be found in [29] and [50].

VII. CONCLUSIONS

We have introduced a specify-explore-refine paradigm for

SpecSyn possesses many unique features. First, Spec§ygtem design. Our specification technique focuses on un-
outputs a system-level description in order to support the SERrstandable specifications, which in turn encourages the use
methodology. Second, SpecSyn is intended to support a varietyfront-end languages such as SpecCharts. Our approach
of system architectures, heuristics, estimation models, and dastexploration uses preestimation and online-estimation to
functions; no one version of any of these items is advocatadhieve both fast and accurate estimates, supports a variety
for all possible systems. For example, a suite of heuristicsad$ partitioning heuristics, and is intended to be continually
provided, with easy ability to add new ones. Third, SpecSyxtended, enabling a designer to examine numerous alterna-
uses a two-level estimation method in which considerabiige designs quickly. Our refinement techniques automatically
effort is spent on both preestimation and online-estimation.insert details into the specification that would otherwise have

SpecSyn currently consists of over 150 000 lines of C codagen manually written by the designer, thus relieving the
and has been under development since 1989. Its main interfdesigner of tedious effort. We expect that this paradigm and
consists of a spreadsheet-like display showing each comporteal will eventually result in a 100-h design cycle, and our
and functional object along with annotations, constraints aedperiments demonstrate the feasibility of such a dramatic
metric values for each. Menu options permit designers to peeduction in design time from current practice.

form any of a number of design tasks, whose results are then
reflected by updating values in the display; violated constraints

REFERENCES

are flagged for the user. SpecSyn has been released to several

universities and to over 20 companies, and experiments with
industry examples are ongoing.

Some limitations lend themselves to future work. First,[2]
SpecSyn does not currently support scheduling of the coarse-
grained behaviors on the processors to which they are agj
signed, since in manual design, the system-level allocation
and partition decisions are usually made before such schegy
uling decisions. However, in an automated approach, such
scheduling might prove useful. Second, SpecSyn does nb¥
currently incorporate the postsynthesis metric values back
into subsequent explore/refine iterations. Such incorporation
could prove very useful. Third, a method should be in
troduced to allow designers to provide manual metric es)
timations. Such a method could be as simple as acceptir@
numbers for use during preestimation, or as complex a
using designer-defined expressions for combining annotations
during online-estimation. Fourth, a method for design from®!
partial specifications should be implemented. The method
for allowing manual metric estimations would likely form al10]
large part of this method. Fifth, estimation models must be
continually improved to account for additional architecturghi]
features, such as pipelining, caching, and real-time operating
systems, and to model fixed-processors like DMA controllerﬁQ]
Fourier transform blocks, Ethernet controllers, MPEG de-

D. D. Gajski, N. D. Dutt, C. H. Wu, and Y. L. LinHigh-Level Syn-
thesis: Introduction to Chip and System Desigf8oston, MA: Kluwer-
Academic, 1991.

J. Vanhoof, K. VanRompaey, |. Bolsens, and H. DeMdigh-level Syn-
thesis for Real-Time Digital Signal ProcessingBoston, MA: Kluwer-
Academic, 1993.

G. DeMicheli, A. Sangiovanni-Vincentelli, and P. Antognefigsign
Systems for VLSI Circuits: Logic Synthesis and Silicon Compilation.
Amsterdam, The Netherlands: Martinus Nijhoff, 1987.

C. A. R. Hoare, “Communicating sequential process€ginmun. ACM,
vol. 21, no. 8, pp. 666-677, 1978.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
and A. Shtul-Trauring, “STATEMATE: A working environment for the
development of complex reactive systems,’Proc. Int. Conf. Software
Eng, 1988, pp. 396-406.

6] F. Vahid, S. Narayan, and D. Gajski, “SpecCharts: A VHDL front-end

for embedded systemslEEE Trans. Computpp. 694-706, 1995

E. Lee and D. Messerschmitt, “Synchronous data floRtdc. IEEE,

vol. 75, pp. 1235-1245, Sept. 1987.

D. D. Gajski, F. Vahid, S. Narayan, and J. Gorfgpecification and
Design of Embedded System&nglewood Cliffs, NJ: Prentice-Hall,
1994.

F. Vahid, “Procedure exlining: A transformation for improved system
and behavioral synthesis,” iroc. Int. Symp. Syst. Synthesi®95, pp.
84-89.

, “Procedure cloning: A transformation for improved system-level
functional partitioning,” inProc. European Design Test Conf. (EDTC),
1997, pp. 487-492.

J. Gong, D. Gajski, and S. Narayan, “Software estimation using a generic
processor model,” ifProc. European Design Test Conf. (EDTQR95,

pp. 498-502.

R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,”IEEE Design Test Compufpp. 64—-75, Dec. 1994.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.



GAJSKI et al: SPECSYN: AN ENVIRONMENT SUPPORTING THE SER PARADIGM 99

(23]

[14]

(18]

[16]

(17]

(18]
[19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]
(37]
(38]
(39]
[40]
[41]

[42]

R. Gupta and G. DeMicheli, “Hardware-software cosynthesis for digitd#3] R. Gupta, C. N. Coelho, and G. DeMicheli, “Synthesis and simula-
systems,”IEEE Design Test Computpp. 29-41, Oct. 1993. tion of digital systems containing interacting hardware and software

M. C. McFarland and T. J. Kowalski, “Incorporating bottom-up design components,” ifProc. Design Automation ConfL992, pp. 225-230.

into hardware synthesis,IEEE Trans. Comput.pp. 938-950, Sept. [44] A. Kalavade and E. A. Lee, “A hardware/software codesign methodol-
1990. ogy for DSP applications,/EEE Design Test Computl993.

E. D. Lagnese and D. E. Thomas, “Architectural partitioning for systerf#5] S. Sutarwala and P. Paulin, “Flexible modeling environment for em-
level synthesis of integrated circuitslEEE Trans. Comput.vol. 10, bedded systems design,” iAroc. Int. Workshop Hardware-Software
pp. 847-860, July 1991. Co-Design,1994, pp. 124-130.

C. H. Gebotys, “An optimization approach to the synthesis of multichip46] J. Gong, D. Gajski, and S. Bakshi, “Model refinement for hardware-
architectures,|EEE Trans. VLSI Systvol. 2, pp. 11-20, Mar. 1994. software codesign,” ifProc. European Design Test Conf. (EDTCP96.

Y. Y. Chen, Y. C. Hsu, and C. T. King, “MULTIPAR: Behavioral [47] L. Ramachandran, D. D. Gajski, S. Narayan, F. Vahid, and P. Fung,
partition for synthesizing multiprocessor architecturek§EE Trans. “Toward achieving a 100-hour design cycle: A test case,"Pimc.
VLSI Syst.yvol. 2, pp. 21-32, Mar. 1994. European Design Automation Conf. (EuroDACR94, pp. 144-149.

K. Kucukcakar and A. Parker, “CHOP: A constraint-driven system-levg¥8] A. Balboni, W. Fornaciari, and D. Sciuto, “Partitioning and exploration
partitioner,” in Proc. Design Automation ConfL991, pp. 514-519. strategies in the TOSCA co-design flow,” iRroc. Int. Workshop

R. Gupta and G. DeMicheli, “Partitioning of functional models of syn- Hardware-Software Co-Desigri,993, pp. 62—69.

chronous digital systems,” iRroc. Int. Conf. Computer-Aided Design, [49] S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sciuto, “A method-
1990, pp. 216-219. ology for control-dominated systems codesign, Hroc. Int. Workshop

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “Hardware-software Hardware-Software Co-Desigri,994, pp. 2-9.

partitioning with iterative improvement heuristics,” Rroc. Int. Symp. [50] W. H. Wolf, “Hardware-software co-design of embedded systems,”
Syst. Synthesi4,996, pp. 71-76. Proc. IEEE,vol. 82, pp. 967-989, July 1994.

F. Vahid and D. Gajski, “Specification partitioning for system design,151] S. Bakshi and D. D. Gajski, “A component selection algorithm for high-
in Proc. Design Automation Confl992, pp. 219-224. performance pipelines,” ifProc. European Design Automation Conf.
F. Vahid, T. D. M. Le, and Y. C. Hsu, “A comparison of functional (EuroDAC), 1994, pp. 400-405.

and structural partitioning,” irProc. Int. Symp. Syst. Synthesif§96, [52] S. Bakshi and D. D. Gajski, “A memory selection algorithm for high-
pp. 121-126. performance pipelines,” ifProc. European Design Automation Conf.
X. Xiong, E. Barros, and W. Rosentiel, “A method for partitioning (EuroDAC), 1994, pp. 124-129.

UNITY language in hardware and software,”oc. European Design
Automation Conf. (EuroDAC)1994.

F. Vahid, J. Gong, and D. D. Gajski, “A binary-constraint search algo-
rithm for minimizing hardware during hardware-software partitioning,”
in Proc. European Design Automation Conf. (EuroDA@R94, pp.
214-219.

P. Eles, Z. Peng, and A. Doboli, “VHDL system-level specification and
partitioning in a hardware/software co-synthesis environment?roc.
Int. Workshop on Hardware-Software Co-Desid®92, pp. 49-55.

A. Kalavade and E. A. Lee, “A global criticality/local phase drive
algorithm for the constrained hardware/software partitioning proble
in Proc. Int. Workshop on Hardware-Software Co-Desig®94, pp.
42-48.

J. G. D’Ambrosio and X. Hu, “Configuration-level hardware/softwar
partitioning for real-time embedded systems,”Rmnoc. Int. Workshop
Hardware-Software Co-Desigri,994, pp. 34-41.

F. Vahid and D. D. Gajski, “Clustering for improved system-leve
functional partitioning,” inProc. Int. Symp. Syst. Synthesi®95, pp.
28-33.

Daniel D. Gajski (M'77-SM’83-F'94) received the
Dipl.Ing. and M.S. degrees in electrical engineering
from the University of Zagreb, Croatia, and the
Ph.D. degree in computer and information sciences
from the University of Pennsylvania, Philadelphia.

After ten years of industrial experience in digi-
tal circuits, switching systems, supercomputer de-
sign, and VLSI structures, he spent ten years in
| academia with the Department of Computer Science
1 at the University of lllinois, Urbana-Champaign.

D. D. Gajski and F. Vahid, “Specification and design of embedded Presently, he is a Professor in the Department of
hardware-software systemsiEEE Design Test Computvol. 12, pp. Information and Computer Sciences at the University of California, Irvine.
53-67, 1995, His interests are in multiprocessor architectures and science of design. He is
J. V. Rajan and D. E. Thomas, “Synthesis by delayed binding @&fditor of the bookHigh-Level Synthesis: An Introduction to Chip and System
decisions,” inProc. Design Automation ConfL985. Design (New York: Kluwer-Academic, 1992) an8pecification and Design

F. Vahid and D. Gajski, “Incremental hardware estimation duringf Embedded SystenBnglewood Cliffs, NJ: Prentice-Hall, 1994), and the
hardware/software functional partitioningBEE Trans. VLSI Systvol.  author ofPrinciples of Digital Design(Englewood Cliffs, NJ: Prentice-Hall,

3, pp. 459-464, Sept. 1995. 1985).

J. W. Hagerman and D. E. Thomas, “Process transformation for system

level synthesis,” Tech. Rep. CMUCAD-93-08, 1993.

R. A. Walker and D. E. Thomas, “Behavioral transformation for algo-
rithmic level IC design,”IEEE Trans. Comput.pp. 1115-1128, Oct.
1989.

A. Nicolau and R. Potasman, “Incremental tree height reduction for high
level synthesis,” ifProc. Design Automation Confl991, pp. 770-774.

M. Girkar and C. D. Polychronopoulos, “Automatic extraction of
functional parallelism from ordinary programdEEE Trans. Parallel
Distrib. Syst.,pp. 166-178, 1992.

F. Vahid, “Port calling: A transformation for reducing 1/0 during multi-
package functional partitioning,” imt. Symp. Syst. Synthesi§97.

S. Narayan and D. D. Gajski, “Synthesis of system-level bus interface
in Proc. European Conf. Design Automation (EDAC94.

, “Protocol generation for communication channels,” Rnoc.
Design Automation Conf1994, pp. 547-551.

G. Borriello and R. H. Katz, “Synthesis and optimization of interface
transducer logic,” inProc. Int. Conf. Computer-Aided Desigh987.
J. Akella and K. McMillan, “Synthesizing converters between finite stat in the Department of Computer Science at the
protocols,” inProc. Int. Conf. Computer Desigri991. University of California, Riverside. His research in-

J. S. Sun and R. W. Brodersen, “Design of system interface moduletgtests include hardware/software codesign of embedded systems, intellectual
in Proc. Int. Conf. Computer-Aided Desigh992, pp. 478-481. property development and use, and functional partitioning. He is coauthor of
D. Becker, R. K. Singh, and S. G. Tell, “An engineering environment fathe bookSpecification and Design of Embedded Systems

hardware/software co-simulation,” iRroc. Design Automation Conf.,  Dr. Vahid served as Program Chair for the International Symposium on
1992, pp. 129-134. System Synthesis in 1996 and as General Chair in 1997.

Frank Vahid (S’89-M'93) received the B.S. degree
in electrical and computer engineering from the
University of Illinois, Urbana-Champaign, in 1988.
He received the M.S. and Ph.D. degrees in computer
science from the University of California, Irvine, in
1990 and 1994, respectively, where he was an SRC
fellow.

He has worked as an Engineer at Hewlett-Packard
and AMCC. He is currently an Assistant Professor

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.



100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

Sanjiv Narayan received the B.S. degree in com-
puter science from the Indian Institute of Technol-
ogy, New Delhi, in 1988. He received the M.S. and
Ph.D. degrees in computer science as a Chancellot
Fellow at the University of California, Irvine, in
1990 and 1994, respectively.

He is currently with Ambit Design Systems, Santa
Clara, CA, where he is associated with the researc.
and development of behavioral synthesis tools. Hi:
current research interests include behavioral synthe
sis, system specification and modeling, and interface

synthesis. He is also a coauthor $pecification and Design of EmbeddedHall, 1994).

Jie Gong received the M.S. and Ph.D. degrees in
computer science from the University of California,
Irvine. She received the B.S. degree in computer
engineering from the Tsinghua University, Beijing,
People’s Republic of China.

She was working at the Unified Design System
Laboratory of Motorola, Inc., and currenlty she is
with Qualcomm, Inc. Her research interests include
behavioral synthesis and system-level design. She is
a coauthor of the boolSpecification and Design of
Embedded SystertEnglewood Cliffs, NJ: Prentice-

SystemgEnglewood Cliffs, NJ: Prentice-Hall, 1994). Dr. Gong is a member of the ACM.

Authorized licensed use limited to: INESC. Downloaded on February 2, 2009 at 09:53 from IEEE Xplore. Restrictions apply.



