
Observability-based Coverage-directed Path Search
using PBO for Automatic Test Vector Generation

José C. Costa José C. Monteiro
TU Lisbon, IST / INESC-ID
1000-029 Lisboa, Portugal

Email: {jose.costa, jcm}@inesc-id.pt

Abstract—In this paper, we address the problem of finding
a minimal set of execution paths that achieve a user-specified
level of observability coverage. Under this metric, a program
statement is only considered covered if its execution has influence
on some output. We use Pseudo-Boolean Optimization (PBO) to
model the problem of finding the paths that are most likely to
increase code coverage. Generated paths are then validatedto
check for feasibility. This methodology was implemented into a
fully functional tool that is capable of handling real programs
specified in theC language.

I. I NTRODUCTION

Validation of embedded systems is hard because of their
heterogeneity. Software and hardware should be simulated
simultaneously, and furthermore, hardware and software sim-
ulations must be kept synchronized, so that they behave as
close as possible to the physical implementation.

In the case of software, the developed techniques are not
directly applicable to embedded software (that interacts with
hardware). The main reason is that research done in soft-
ware compilation and validation techniques has been mainly
directed to general-purpose software. The importance of em-
bedded software has been recognized [10], and research done
targeting general-purpose software is being retooled to address
the problem of embedded software.

Embedded software testing has become more important
with the dramatic increase of the size and complexity of the
programs. This importance is even more critical since software
programs are error prone. Complete path testing, which would
give a 100% path coverage, is impractical. Testing only a small
set of input values and a small set of paths is the solution. We
are left with two problems: decide which set of paths need
to be tested while guaranteeing a given confidence level; and
determine which inputs need to be applied to the program to
activate the selected paths.

In this paper, we address the first of these problems: given
an embedded software program, find a minimal set of execu-
tion paths that guarantees a user-specified level of statement
coverage. The method starts by modeling the problem to
obtain the path with the greatest number of statements as a
Pseudo-Boolean Optimization (PBO) problem [1]. This path is
then validated against an input value generator [6] to test its
feasibility, and if feasible its observability-based coverage is
computed. The coverage obtained directs the choosing of the
next path by changing thePBO problem accordingly. Paths are
generated until the specified coverage is achieved.

Many of the co-validation fault models currently applied
to hardware/software designs have their origins in either the

hardware or the software domains [8]. A number of these
models are based on the traversal of paths through a Control-
Flow Graph (CFG) representing the system behavior. Normally,
these systems are described in high level languages such as
Verilog or VHDL for hardware, and C or Java for software,
among others. Having a system described in a high level
language means that its description can be easily converted
into CFG descriptions. Having the hardware description and
the software description both inCFG format means that the
entire system can be in the same format. And having the
entire system described in the same format means that the
same techniques applied to hardwareCFG-based methods can
be applied to software and vice-versa. The method proposed
is based on traversal of paths on aCFG and thus can be
applied to either software or hardware high level languages.
Additionally, the coverage metric we use is motivated by
work on observability-based coverage metrics for hardware
models described in a hardware description language [4]
and afterwards by the same metrics applied for embedded
software [2].

This paper is organized as follows. In Section II, we give
an overview of the field of automated testing of embedded
systems. Our method for obtaining the input vectors for ob-
servability coverage is presented in Section III. In Section IV,
we present how we build the graph that includes the paths to
be selected. How we model the problem of finding the longest
path into a pseudo-boolean optimization problem is described
in Section V. Some results are presented in Section VI.
Finally, some conclusions and future work are presented in
Section VII.

II. RELATED WORK

Several methods have been proposed for coverage-directed
software path generation. Some of those methods were in-
tended for general software, while others were intended spe-
cifically for embedded software.

Evolutionary testing searches test data that fulfill a given
structural test criteria by means of evolutionary computation.
In general it starts with an initial test vector that is generated
at random. Afterwards, the test vectors are evaluated to de-
termine their fitness value. The test vectors are then subject
to mutations and/or combinations in order to obtain new test
vectors that try to fulfill the test criteria. In [14] an evolutionary
test method was presented that could be applied to statement
tests, branch tests, condition tests and segment tests.

Dynamic methods generate input data by running the pro-
gram and gathering information along its execution. In [5]
input data for branch coverage, which consists of exercising
all alternatives for every branch of the program, is generated
by dynamically selecting a path in an attempt to exercise a
test branch in a given program. It uses the approach presented
in a test generation relaxation technique [6] to guide the path
selection. The path selection is done by dynamically switching
execution to a path that offers less resistance in order to
force execution to reach the given branch. The resistance of
a branch tries to measure how difficult it is for that branch to
be executed.

Another dynamic method [9] was proposed for branch
coverage. The approach starts by executing a program for an
arbitrary program input. The execution flow is monitored as
the program is executed. For each executed branch, a search
procedure decides whether the execution should continue
through the current branch or an alternative branch should
be taken if, for instance, the current branch does not lead
to the execution of the selected statement. If an undesirable
execution flow at the current branch is observed, then a real-
valued function is associated with this branch. The function
value depends on the branch predicates and the lesser the
function value the more likely it is to execute that branch.
Afterwards, function minimization search algorithms are used
to automatically locate values of input variables which will
change the flow of execution at the branch.

A method intended specifically for embedded software was
presented in [11]. This method is based on a coverage-driven
validation approach in order to stress and cover variables and
function calls in embedded software, running on a SystemC
model of a PowerPC microprocessor.

While the methods mentioned here are representative of
the area, there are many other variations of coverage-directed
methods for software. These methods are simply concerned
with executing a certain percentage of the program code
under test. Yet, knowing which executed percentage has some
influence on the program outputs is even a more relevant
measure. Recently the authors have proposed a method [3]
that takes into account whether the statements executed have
any influence on the program’s output. That previous method
uses a tree graph representation to compute the path that most
likely would increase previous obtained coverage. In this paper
we use aPBO formulation to compute the paths.

III. PROPOSED METHODOLOGY

In this section, we make an overview of our method and
present tools that are used in different steps.

A. Overview of the method

Our methodology to generate input test vectors is illustrated
in Figure 1. The first step of the method is to determine a
path which increases the current coverage the most. The path
is then tested for its feasibility and, if feasible, we compute
the coverage attained by running the program with the inputs
determined to exercise the path. If the accumulated level oftest
coverage reaches the user-specified level, then we stop, having
obtained a minimal set of test vectors for this coverage. If the

Start

Obtain path

Obtain input vector
info

Problem feasible?
NO

YES

Obtain coverage
info

Coverage achieved?
NO

YES

use previously
obtained

information to
reformulate problem

Success

Fig. 1. Input test vectors generation methodology.

accumulated test coverage was not achieved, or the tested path
was infeasible, then we have to compute another path.

The focus of this paper is on determining the path that
potentially increases the already calculated coverage. For
that we use information obtained from the previous steps to
reformulate the problem of finding the path. In the remaining
steps (namely, computing the input test vector and evaluating
its coverage) we use methods available in the literature.

In the rest of this section we state the methods we use in the
problem we focus on, determining the next path. In the next
section, we present how we integrate everything to obtain an
observability-based coverage-directed method for software.

B. Pseudo-boolean optimization problems

Linear pseudo-boolean optimization (PBO) problems, also
known as 0-1 integer linear programming problems, can be
defined as follows,

minimize
∑

j∈N

cj · xj (1)

subject to
∑

j∈N

aij lj ≥ bi, (2)

xj , lj ∈ {0, 1}, aij, bi ∈ N
+

0 , i ∈ M,

N = {1, . . . , n}, M = {1, . . . , m}

wherecj is a non-negative integer cost associated with variable
xj , j ∈ N andaij denote the coefficients of the literalslj in
the set ofm linear constraints. A literallj denotes either a
variablexj or its complement̄xj . A literal will have value1

if lj = xj and xj = 1 or lj = x̄j and xj = 0. Otherwise it
will have value0.

In the case of non-linear pseudo-boolean expressions, they
can be easily reduced to linear ones, since the literals have

value0 or 1. In our method we use non-linear pseudo-boolean
expressions, thus through out the rest of the paper we will be
referring to the non-linear pseudo-boolean optimization prob-
lem as simply Pseudo-Boolean Optimization (PBO) problem.

Using PBO to model the problem of finding the path we
can:

• specify a cost function that states the best statements
that we want our path to execute in order to increase
accumulated coverage;

• specify which statements that we want our path to have;
• specify which paths we do not want to execute (because

they are infeasible or were already tested).
To obtain aPBO problem from the test program we first

obtain its Directed Acyclic Graph (DAG) representation IV.
The vertices of thisDAG are then mapped intoPBO variables.

The reason why we model the problem of finding the longest
path with PBO is that while the first longest path can be
obtained in linear time, the same is not true for the consequent
longest paths. Because by inserting into the problem the fact
that there are several path that already have been tested and
we do not want to obtain them again, brings extra complexity
to the problem, and thus a linear time solution is no longer
possible.

C. Input vector generation

The solution to thePBO problem will give us a path. In order
to test its feasibility, and if feasible to measure its coverage,
we must use an input vector generation method. We use a
dynamic method based on relaxation techniques proposed by
Gupta et al [6]. In this method test data generation is initiated
with an arbitrarily chosen input from a given domain. This
input is then iteratively refined to obtain an input on which
all the branch conditions on the given path evaluate to the
desired outcome. In each iteration the program statements
relevant to the evaluation of each branch condition on the
path are executed, and a set of linear constraints is derived.
The constraints are then solved to obtain the input for the
next iteration. The relaxation technique used in deriving the
constraints provides feedback on the amount by which each
input variable should be adjusted for the branches on the
path to evaluate to the desired outcome. When the branch
conditions on a path are linear functions of input variables,
this technique either finds a solution for such paths in one
iteration or it guarantees that the path is infeasible.

If it is infeasible then the information of where in the path
it became infeasible is added to thePBO problem (Section V).

D. Software observability coverage metric

In order to know if the desired coverage level has been
attained, we must measure the observability coverage for
each input data obtained from the input vector generator. We
use the observability coverage metric for embedded software
described in [2].

In that method, in order to achieve the observability target,
one keeps track of all the statements that assign a variable
and also of the conditions on which the branches depend. For
that purpose, for each variable in the program there is a list
of statements the variable depends on. When the execution

void fibonacci(int num)
{

int i;
int F1, F2, Fn;
if (num <= 0){
printf("%i not valid\n", num);

}
else if (num == 1 || num == 2){
printf("F(%i) = 1\\n", num);

}
else{
F1 = 1.0;
F2 = 1.0;
for(i = 2; i < num; i++){

Fn = F1 + F2;
F1 = F2;
F2 = Fn;

}
printf("F(%i) = %e\n", num, Fn);

}
}

0

1

2

3

4

5

6

7

8

9

10

num<=0

printf

num == 1 ||
num == 2

printf

F1 = 1.0
F2 = 1.0
i = 2

i < num

Fn = F1+F2
F1 = F2
F2 = Fn
i++

printf

Fig. 2. C code for the Fibonacci function and its CFG.

arrives at a statement the variable that will be assigned is
stored. For that variable a list of dependencies is built which
is the set union of the dependency lists of the variables that
are at the right hand side (RHS) of the assignment. In the case
of branches that depend on conditions (e.g., if statement),all
the statements in that branch will depend also on the variables
of the condition.

When an observable statement is reached, where the content
of some variable is passed to the exterior of the program, the
statements in its list of dependencies are the ones observable
from that output.

IV. PROGRAM DAG

From the source program code, we extract multiple control-
flow graphs (CFG), one for each function in the program (in
Figure 2 we have theCFG of the Fibonacci function). The
CFGs obtained are directed graphs, which can be cyclic if the
functions have loops. The vertices in theCFGs correspond to
the program statements and each vertex can have more than
one statement. That is represented by its weight. Also, the
vertices symbolize blocks of code that if one statement in that
block is executed all other are also executed. The vertices can
also represent conditions and in that case the vertex will have
two outgoing edges that correspond to the branches. Also, in
order to connect theCFGs as in the program, when we have
a function call vertex we mark on theCFG vertex whichCFG

the function call corresponds to.
In order to simplify the computation of thePBO expressions,

we build a new graph that starts in theCFG that corresponds to
the main function. We traverse theCFGs, expanding function
calls and loops along the way. In the end we get aDAG of the
program (Figure 3). Note that we do not expand function calls
and loops indefinitely. We just expand each once. The rest of
the expansion is done on demand:

• when all the paths of the current expanded graph are cat-
egorized as either feasible or infeasible and the coverage
metric was not yet achieved, or

• the input vector generator returns the path as infeasible
in a vertex that is the start of the loop because the loop

0

1

(1)

2

(1)

3
(1)

4

(1)

5
(3)

6
(1)

7

(4)

8
(1)

9
(0)

10

11

(1)

NULL

10

10

10

10

Fig. 3. Loop unrolling of the Fibonacci graph.

is not further expanded.
We refer to [3] for more details of function expansion and

loop unrolling.

V. PSEUDOBOOLEAN OPTIMIZATION

We model the problem of finding a path to increase our
observability coverage as a pseudo-boolean optimization prob-
lem. In order to increase our coverage we are interested in
getting a path that:

• was not yet executed or was not found to be infeasible;
• has the greatest number of statements in order to improve

our chances of covering the greatest number possible;
• has statements that were not yet observable by previous

paths.
All of these items can be modeled byPBO expressions.

The PBO problem solution will give us the values of the
boolean variables that indicate what the value of each program
condition should be. Afterwards, we test that solution in the
input vector generator. In the process of finding an input test
vector we get information about the feasibility of the path or
which was the vertex where the path became infeasible. This
information will be later used in subsequentPBO problems.

A. Path constraints

In Section IV we described how we obtained aDAG from the
CFGs of the functions. In order to obtain thePBO expressions
we attach for each decision vertex in theDAG a boolean
variable. Thus, if in thePBO solution we get a boolean variable
with value1, that means that we will follow the branch whose
respective vertex condition is true. If we obtain two boolean
variables which have values1 and0, then we will follow the
path whose first condition is1 and the second condition is0.
This means that we can specify a path as a product of literals.

Using the example on Figure 3 if we have the product of
literals:

x1 x3x6x11. (3)
that defines the path that goes through vertices0,1,3,5,6,7,
11,8,9,10. This indicates that in vertices1, 3 and 11 the

boolean variables must have value0 and in vertex6 the
boolean variable must have value1.

In this notation if we want to explicitly not to go through
some path then we equal its expression to0. Similarly, if
we want to always execute a certain path then we equal its
expression to1. If we want to go through vertices1,3 and5

we have,
x1 x3 = 1. (4)

Solving this expression, and since the variables are boolean,
we get as the only solutionx1 = 0 andx3 = 0. As expected,
this means that in order for the path to be executed we must
have the conditions in vertices1 and3 equal to false.

In order to specify in thePBO problem which of the vertices
that we want to execute, depending if they are already covered
or not, we have for each vertex aPBO expression. This
PBO expression represents the conditions necessary for its
execution.

The algorithm to compute the boolean expressions for each
vertex starts by ordering the vertices in a topological manner,
to a list, such that when we reach a vertex, all of its ingoing
vertices have already been processed. We go through that list
when propagating thePBO variables. For each vertex we first
test if the vertex is a condition vertex. If it is then we assign
a PBO variable to it. Next, we check its ingoing vertices. If
it is only one then we just copy thePBO expression to the
vertex and append itsPBO variable if the ingoing vertex is a
condition. If there are more than one ingoing vertices then we
must merge theirPBO expressions. The rationale here is that if
we have the same variable merging but in one of the ingoing
vertices it isx and on the other it isx then this means that
we are merging two paths that were disjoined in the vertex
corresponding to thePBO variable. In that case that variable
does not matter anymore. So we do not propagate it. Otherwise
we propagate the variable. We do this until all the vertices are
processed.

Armed with thePBO expressions for the execution of each
vertex and the boolean variables of each condition vertex we
can specify in ourPBO problem the longest path, the paths
that we do not want to execute and the vertices that we want
to execute.

B. Cost function computation

In trying to find the longest path, we want to maximize the
number of statements executed, thus defining the cost function
of the PBO problem. Thus, we give weights to all the vertices
in the graph (see Figure 3). The vertex weight multiplied by
its PBO expression will give us the number of statements if
that vertexPBO expression is equal to1. Therefore, thePBO

expression that we want to maximize is the sum of the products
of the vertices weights with theirPBO expression. In the case
of the graph in Figure 3 we have:

max : 1 + 1x1 + 1x1 + 1x1x3 + 3x1 x3 + 1x1 x3+

4x1 x3x6 + 1x1 x3x6 + 1x1 x3,
(5)

where the literals indexes correspond to the vertices numbers
of the graph.
This expression alone can define the problem of finding the
longest path in ourDAG. Note that the solution to this problem
will not give us a path that goes through all the vertices.
That is impossible in this graph and we turn it impossible

in our problem when we propagate thePBO expressions the
way we described in Section V-A. For instance, if the best
option is to pass through edge5 (with expressionx1 x3) we
are automatically excluding vertices 2 (x1) and 4 (x1x3).

C. Avoiding certain paths

As stated before, when we build theDAG for the first
time we only do one unrolling of the loop in order to have
all vertices in theDAG. Thus, there are certain paths in the
program that are not represented in theDAG. Therefore, when
we extract thePBO problem from theDAG we have to take
into account those paths. In the example of Figure 3, vertex11

has one edge that can not be followed. So, in thePBO problem
we have:

x11 = 0. (6)
This guarantees thatx11 will not be1 and the solution given by
the PBO problem will not contain that path. The same applies
to function expansion.

Once we have obtained a path, we do not want to obtain
that path again as a solution of thePBO problem. Thus, in the
subsequentPBO problems we equal thePBO expression of that
path to zero, thus, guaranteeing that the next solutions of the
PBO problem will not contain that path.

D. Observability vertices

Since we are interested in observability coverage we want
to execute at least one of the vertices that have observability
points. Thus, when building theCFG and later theDAG we
mark those vertices as observable. Later, when building the
PBO problem we force the problem to give as solution one path
that goes through at least one of those vertices. In Figure 3
we would have the expression:

x1 + x1x3 + x1 x3 >= 1, (7)
where each product of literals correspond to a vertex.

Note that expressions 5, 6 and 7 form the complete initial
PBO problem for the Fibonacci program.

E. Loop unrolling / function expansion

When thePBO problem is infeasible that means that there no
more unexplored paths in theDAG. Thus, and assuming the
specified coverage was not achieved, that means that some
loop must be unrolled or some function must be expanded.
This loop unrolling/function expansion is done on the least
possible number of loops/functions in order not to increase
greatly the size of theDAG.

F. Input vector generator

The input vector generator [6] is run to obtain the input
vector that allow execution of the path given by thePBO

solution. However, the path may be feasible or not.
If the path is feasible we obtain an input vector for that path.

Then, we run the program to obtain the coverage. The coverage
obtained will accumulate with the coverage of previous input
vectors. If the accumulated coverage is greater or equal to the
specified goal coverage then the algorithm ends and we have
a set of input vectors that allow for a certain observability
coverage. In case the specified coverage is not reached then
we get the next path by reformulating thePBO problem.
This reformulation involves turning the vertices weight of

TABLE I
PROGRAM STATISTICS.

Program lines input decisions statements
fibonacci 24 integer 3 13
dijkstra 141 integer 15 99
huffman 203 text 17 193

the covered vertices into zero. This will force the solution
of the PBO problem to give a path that goes through some
uncovered edges, since thePBO problem tries to maximize a
cost function.

If the path is infeasible then it means that at some decision
point, the path that we want to follow diverges from a feasible
path. The fact that thePBO problem gave a path that is not
feasible has to do with the fact that thePBO problem does
not take into account the values of the condition variables.
If it is possible to know the vertex where the paths diverge
then we assume as infeasible the path just until that vertex
(including the vertex). This information is used to reformulate
the PBO problem (Section V-C). If the vertex is not known
then we make the whole path infeasible. This later solution
will increase the number ofPBO problems to solve and
consequently the number of runs of the input vector generator.

VI. RESULTS

Our method to generate the minimum number of paths that
achieve a specified observability coverage was implemented
into a framework. The framework uses the methods described
in the previous sections to fully automate the process of finding
the input vectors given the program and the coverage we want
to achieve. To demonstrate the feasibility of the method we
used several example programs:

• fibonacci, which, given an integer, computes the
corresponding Fibonacci number;

• dijkstra, which computes the shortest path in a graph;
• huffman, which gives an Huffman coding given a string

of characters.

dijkstra belongs to MiBench [7], a commercially repre-
sentative embedded benchmark suite. The implementation of
huffman andfibonacci are found in Numerical Recipes
in C [13]. In Table I we have the statistics of these programs.
In it we show the size of the programs in number of lines, the
type of input, the number of decision points and the number
of statements.

The examples were submited to our framework to obtain
the input vectors. The machine where we run the tests was an
Intel R© PentiumR©4 running at 3.2GHz with 1GB of physical
memory. ThePBO solver we used wasbsolo [12].

In Table II we show the results we obtained. For each
program tested we have the feasible paths that increased the
observability coverage. For each of the feasible paths obtained
we show its observability coverage and also the accumulated
observability coverage. The size of thePBO problem necessary
to achieve various coverages is presented. We show the number
of its variables, constraints and literals. We also show the
number of PBO problems necessary to find a feasible path.
Also, for each path we show the accumulatedCPU time to
obtain the path.

TABLE II
RESULTS OF THE TESTS.

PBO problem accumulated accumulated
Program path # variables constraints literals % coverage % coverage CPU time

fibonacci

1st 1 14 24 84 69% 69% 0.002s
2nd 2 10 18 56 23% 77% 0.004s
3rd 3 10 20 57 15% 85% 0.005s
4th 5 11 22 65 85% 100% 0.007s

dijkstra 1st 1 87 146 1306 100% 100% 0.002s

huffman
1st 12 440 745 6675 93% 93% 39.644s
2nd 74 1087 2019 24157 88% 100% 1688.3s

In fibonacci (represented in Figure 2), the longest path
is by executing the loop once. This path will give us 69%
coverage. The other two paths will be for executing the
conditions when we have the input value equal to0 or 1.
But this does not give us 100% observability coverage. The
fourth path gives us an accumulated observability coverage
of 100%. Note that the coverage for that path is greater than
the one for the other paths. Since our method tries to find
the longest path, that can be explained by the fact that when
obtaining paths 1-3 we only unrolled the loop once. Looking
at the example in Figure 2 and Figure 3 we can see that there
are two statements inside the loop that will only be observable
if the loop is executed once more. In fact, we do not show it
in the table, but thePBO problem #4 results in infeasible and
thus the loop must be expanded once more.

In dijkstra, we get 100% observability coverage with
the first path. That can be explained by mention that this
program finds a fixed set of shortest paths in a graph. Thus,
the longest path will have several passages through the short-
est path computation. By combining the coverage of those
passages we obtain 100% observability coverage in the first
path.

In huffman, we achieved 93% with an input vector that
had only one value. To obtain 100% coverage we have to
further unroll the loops and also expand some recursive
functions. With that done we can obtain a new path whose
coverage combined with the first path coverage give us 100%
observability coverage. Note that the number ofPBO problems
is larger than in the other examples. That has to do, as
mentioned before, with the necessity of unrolling/expanding
the loops/functions.

The results obtained confirm the validity of this methodol-
ogy. The small size of the benchmark programs allow us to
understand and confirm the results obtained. One concern is
that, although the size ofPBO problems remain fairly small,
indicating that this methodology is scalable to larger reallife
embedded software programs, the solvers seem to have a
harder time obtaining a solution as we add paths to avoid
(either because they have been covered or have been found to
be infeasible). We are currently investigating why these few
additional clauses may cause this effect.

VII. C ONCLUSIONS

We presented an observability coverage-directed vector
generation method. In this method we address the problem
of finding a minimal set of execution paths that achieve a
user-specified level of observability coverage. We model this
problem as aPBO problem where we try to find the longest
feasible path. Thus in our greedy algorithm we get the longest

feasible path and, if the coverage was not achieved, we refine
our path search by inserting additional constraints in ourPBO

problem. Initial results demonstrate the validity of the method.
While the sizes of thePBO remain well within reach of
existing solvers, the solvers we have tried have some difficulty
computing some of the solutions. This is an issue we are
focusing our attention on.

Compared to the authors’ previously mentioned work [3],
this method has the potential to have the input vector gen-
eration phase integrated with thePBO formulation since both
methods are based on solving a linear constraints problem.

Also, in the future, we will be applying this method to
hardware descriptions in high-level description languages with
the objective of obtaining a coverage-directed co-validation
method for embedded systems.

REFERENCES

[1] E. Boros and P. Hammer. Pseudo-Boolean optimization.Discrete
Applied Mathematics, 123(1-3):155–225, 2002.

[2] J. Costa, S. Devadas, and J. Monteiro. Observability analysis of
embedded software for coverage-directed validation. InProceedings
of the Intl. Conference on Computer Aided Design, pages 27–32, 2000.

[3] J. Costa and J. Monteiro. Computation of the minimal set of paths
for observability-based statement coverage. In15th International Con-
ference on Mixed Design of Integrated Circuits and Systems,MIXDES
2008, pages 587–592, 2008.

[4] F. Fallah, S. Devadas, and K. Keutzer. OCCOM: Efficient Computationa
of Observability-Based Code Coverage Metrics for Functional Simula-
tion. In Proceedings of the35th Design Automation Conference, pages
152–157, June 1998.

[5] N. Gupta, A. Mathur, and M. Soffa. Generating test data for branch
coverage. InProceedings of the 15th IEEE International Conference on
Automated Software Engineering, pages 219–227, 2000.

[6] N. Gupta, A. P. Mathur, and M.Soffa. Automated test data generation
using an iterative relaxation method. InProcs. of the 6th ACM SIGSOFT
international symposium on Foundations of software engineering, pages
231–244, Lake Buena Vista, Florida, United States, November 1998.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.Mudge,
and R. B. Brown. Mibench: A free, commercially representative
embedded benchmark suite. InIEEE 4th Annual Workshop on Workload
Characterization, 2001.

[8] I. Harris. Hardware/software covalidation.IEE Proceedings of Comput-
ers and Digital Techniques, 152(3):380–392, 2005.

[9] B. Korel. A dynamic approach of test data generation. InProceedings
of the Conference on Software Maintenance, pages 311–317, 1990.

[10] E. A. Lee. Embedded software.Advances in Computers, 56:56–97,
2002.

[11] D. Lettnin, M. Winterholer, A. Braun, J. Gerlach, J. Ruf, T. Kropf,
and W. Rosenstiel. Coverage Driven Verification applied to Embedded
Software. In Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, ISVLSI’07, pages 159–164, 2007.

[12] V. Manquinho and J. Marques-Silva. Effective lower bounding tech-
niques for pseudo-Boolean optimization. InProceedings of the Design,
Automation & Test in Europe Conference, pages 660–665, 2005.

[13] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, second edition, 1993.

[14] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment
for automatic structural testing.Information & Software Technology,
43(14):841–854, 2001.

