Observability-based Coverage-directed Path Searc
using PBO for Automatic Test Vector Generation

José C. Costa José C. Monteiro
TU Lisbon, IST / INESC-ID
1000-029 Lisboa, Portugal
Email: {jose.costa, jcrh@inesc-id.pt

Abstract—In this paper, we address the problem of finding hardware or the software domains [8]. A number of these
a minimal set of execution paths that achieve a user-specifle models are based on the traversal of paths through a Control-
level of observability coverage. Under this metric, a progam oy Graph ¢FG) representing the system behavior. Normally,
statement is only considered covered if its execution hasfinence th ¢ d ibed in hiah | Ll h
on some output. We use Pseudo-Boolean Optimizatiorrg0) to e_se systems are described In high level languages such as
model the problem of finding the paths that are most likely to Verilog or VHDL for hardware, and C or Java for software,
increase code coverage. Generated paths are then validated among others. Having a system described in a high level
check for feasibility. This methodology was implemented itb a Janguage means that its description can be easily converted
fully .‘;‘.det.'O”ﬁ' to?' that is capable of handling real programs ntg crg descriptions. Having the hardware description and
specified in thec language. the software description both ioaFG format means that the

[. INTRODUCTION entire system can be in the same format. And having the

Validation of embedded systems is hard because of thelttire system described in the same format means that the
heterogeneity. Software and hardware should be simulag&me techniques applied to hardwares-based methods can
simultaneously, and furthermore, hardware and software sibe applied to software and vice-versa. The method proposed
ulations must be kept synchronized, so that they behaveigidoased on traversal of paths onc&c and thus can be
close as possible to the physical implementation. applied to either software or hardware high level languages

In the case of software, the developed techniques are Astditionally, the coverage metric we use is motivated by
directly applicable to embedded software (that interadth wwork on observability-based coverage metrics for hardware
hardware). The main reason is that research done in sdftodels described in a hardware description language [4]
ware compilation and validation techniques has been mairdigd afterwards by the same metrics applied for embedded
directed to general-purpose software. The importance of eg®ftware [2].
bedded software has been recognized [10], and research doriEhis paper is organized as follows. In Section I, we give
targeting general-purpose software is being retooled doessd an overview of the field of automated testing of embedded
the problem of embedded software. systems. Our method for obtaining the input vectors for ob-

Embedded software testing has become more importaetvability coverage is presented in Section lll. In Sectig,
with the dramatic increase of the size and complexity of thee present how we build the graph that includes the paths to
programs. This importance is even more critical since sfw be selected. How we model the problem of finding the longest
programs are error prone. Complete path testing, whichavoydath into a pseudo-boolean optimization problem is desdrib
give a 100% path coverage, is impractical. Testing only dlsman Section V. Some results are presented in Section VI.
set of input values and a small set of paths is the solution. Wenally, some conclusions and future work are presented in
are left with two problems: decide which set of paths neesection VII.
to be tested while guaranteeing a given confidence level; and
determine which inputs need to be applied to the program to Il. RELATED WORK
activate the selected paths.

In this paper, we address the first of these problems: givenSeveral methods have been proposed for coverage-directed
an embedded software program, find a minimal set of exe@pftware path generation. Some of those methods were in-
tion paths that guarantees a user-specified level of statemiended for general software, while others were intended spe
coverage. The method starts by modeling the problem edically for embedded software.
obtain the path with the greatest number of statements as &volutionary testing searches test data that fulfill a given
Pseudo-Boolean Optimizatiorg0) problem [1]. This path is structural test criteria by means of evolutionary compatat
then validated against an input value generator [6] to tsst In general it starts with an initial test vector that is gerted
feasibility, and if feasible its observability-based caage is at random. Afterwards, the test vectors are evaluated to de-
computed. The coverage obtained directs the choosing of teemine their fitness value. The test vectors are then subjec
next path by changing theso problem accordingly. Paths areto mutations and/or combinations in order to obtain new test
generated until the specified coverage is achieved. vectors that try to fulfill the test criteria. In [14] an evtinary

Many of the co-validation fault models currently appliedest method was presented that could be applied to statement
to hardware/software designs have their origins in either ttests, branch tests, condition tests and segment tests.

Dynamic methods generate input data by running the pro-

gram and gathering information along its execution. In [5] @
input data for branch coverage, which consists of exergisin
all alternatives for every branch of the program, is gemerat

by dynamically selecting a path in an attempt to exercise a

test branch in a given program. It uses the approach presente

in a test generation relaxation technique [6] to guide thé pa

selection. The path selection is done by dynamically switgh
execution to a path that offers less resistance in order to

Obtain path

&

force execution to reach the given branch. The resistance of use previously

a branch tries to measure how difficult it is for that branch to information to

be executed. reformulate problem
Another dynamic method [9] was proposed for branch

coverage. The approach starts by executing a program for an vEs

arbitrary program input. The execution flow is monitored as

the program is executed. For each executed branch, a search

procedure decides whether the execution should continue

through the current branch or an alternative branch should

be taken if, for instance, the current branch does not lead

to the execution of the selected statement. If an undesirabl YEs

execution flow at the current branch is observed, then a real-

valued function is associated with this branch. The fumctio

value depends on the branch predicates and the lesser the

function value the more likely it is to execute that branch. Fig. 1. Input test vectors generation methodology.
Afterwards, function minimization search algorithms ased

to automatically locate values of input variables Wh'ChIW'Iaccumulated test coverage was not achieved, or the testied pa

change the flow of execution at the branch. was infeasible, then we have to compute another path
A method intended specifically for embedded software was ' P pain.

presented in [11]. This method is based on a coverage—driver-{he.focu.S of this paper is on determining the path that
A .) otentially increases the already calculated coverage. Fo
validation approach in order to stress and cover variabies %D

function calls in embedded software, running on a System t we use information obtained from the previous steps to
. ' 9 y reformulate the problem of finding the path. In the remaining
model of a PowerPC microprocessor.

st?ps (namely, computing the input test vector and evalgati

While the methods mentioned here are representauvei coverage) we use methods available in the literature.

the area, there are many other variations of coveragetddec In the rest of this section we state the methods we use in the

m_ethods for_ software. '!‘hese methods are simply concer er%blem we focus on, determining the next path. In the next
with executing a certain percentage of the program co

under test. Yet, knowing which executed percentage has so Scnon, we present how we integrate everything to obtain an

. . gﬂi%ervability-based coverage-directed method for saftwa
influence on the program outputs is even a more relevan

measure. Recently the authors have proposed a method B3]Pseudo-boolean optimization problems

that takes into account whether the statements executedl hav jnear pseudo-boolean optimizatiorgo) problems, also
any influence on the program’s output. That previous methelown as 0-1 integer linear programming problems, can be
uses a tree graph representation to compute the path that ngesined as follows,

likely would increase previous obtained coverage. In thisqy

we use aPBO formulation to compute the paths. minimize Y " ¢; -, 1)
JEN
Ill. PROPOSED METHODOLOGY subject to Z ai;l; > b,)
In this section, we make an overview of our method and JEN
present tools that are used in different steps. j,1; € {0,1}, a5, b € NI i € M,
A. Overview of the method N={1l,....n},M ={1,...,m}

Our methodology to generate input test vectors is illusttatwherec; is a non-negative integer cost associated with variable
in Figure 1. The first step of the method is to determine &, j € N anda;; denote the coefficients of the literdlsin
path which increases the current coverage the most. The péi set ofm linear constraints. A literal; denotes either a
is then tested for its feasibility and, if feasible, we corgpu variablex; or its complement;;. A literal will have valuel
the coverage attained by running the program with the inputsl; = z; andz; = 1 or [; = z; andz; = 0. Otherwise it
determined to exercise the path. If the accumulated levelstf will have valueO.
coverage reaches the user-specified level, then we stoipghav In the case of non-linear pseudo-boolean expressions, they
obtained a minimal set of test vectors for this coveragehdf t can be easily reduced to linear ones, since the literals have

valueO or 1. In our method we use non-linear pseudo-boolean
expressions, thus through out the rest of the paper we will be
referring to the non-linear pseudo-boolean optimizatio®bp i« i bonacci (i nt num

lem as simply Pseudo-Boolean OptimizatierB¢) problem. ¢, ;. pum == 1 |
Using PBO to model the problem of finding the path we | hin = o num == 2 (5)
can: printf("% not valid\n", nunm;
. . Ise if (=11 == 2){
. specify a cost function that states the best statemen'geszrei ntr(EO) = T o
that we want our path to execute in order to increasersst_ i< num rimpfimf
accumulated coverage; F2 - 1.0

or(i =2; i < num i++){

« specify which statements that we want our path to have; f Pz FLe
« specify which paths we do not want to execute (because} F2 = Fni
they are infeasible or were already tested). | PrICROS) = vt mum o

To obtain apBO problem from the test program we first
obtain its Directed Acyclic Graphp@G) representation V.
The vertices of thiDAG are then mapped inteBo variables.

The reason why we model the problem of finding the longest _)) ’]
path with PBO is that while the first longest path can be Fig. 2. C code for the Fibonacci function and its CFG.
obtained in linear time, the same is not true for the conseique
longest paths. Because by inserting into the problem thie fac
that there are several path that already have been tested &YyeS at a statement the variable that will be assigned is

we do not want to obtain them again, brings extra complexi orhed. For that vafrifra]bleaa "StdOf depl_ender;ciﬁs Is pugtldvhih
to the problem, and thus a linear time solution is no long the set union of the dependency lists of the variables that
possible. are at the right hand sid&#is) of the assignment. In the case

of branches that depend on conditions (e.g., if statemalit),
C. Input vector generation the statements in that branch will depend also on the vasabl

The solution to theso problem will give us a path. In order Of the condition. .
to test its feasibility, and if feasible to measure its cager, _hen an observable statement is reached, where the content

we must use an input vector generation method. We usézSome variable is passed to the exterior of the program, the
dynamic method based on relaxation techniques proposed%@teme”ts in its list of dependencies are the ones obdervab
Gupta et al [6]. In this method test data generation s irtla TOM that output.
yvith an arbitrgrily _chosen _input from a given domain. This IV. PROGRAM DAG
input is then iteratively refined to obtain an input on which _
all the branch conditions on the given path evaluate to theFrom the source program code, we extract multiple control-
desired outcome. In each iteration the program statemeHfV graphs CFc), one for each function in the program (in
relevant to the evaluation of each branch condition on tfdgure 2 we have the&rc of the Fibonacci function). The
path are executed, and a set of linear constraints is derivefGS obtained are directed graphs, which can be cyclic if the
The constraints are then solved to obtain the input for tfgnctions have loops. The vertices in theGs correspond to
next iteration. The relaxation technique used in deriving t the program statements and each vertex can have more than
constraints provides feedback on the amount by which ea@f€ Statement. That is represented by its weight. Also, the
input variable should be adjusted for the branches on thgrtices symbolize blocks of code that if one statementan th
path to evaluate to the desired outcome. When the brarfRck is executed all other are also executed. The vertiaas ¢
conditions on a path are linear functions of input variapledlS0 represent conditions and in that case the vertex wittha
this technique either finds a solution for such paths in oW outgoing edges that correspond to the branches. Also, in
iteration or it guarantees that the path is infeasible. order to connect thercs as in the program, when we have
If it is infeasible then the information of where in the pattf function call vertex we mark on therG vertex whichcrc

it became infeasible is added to theo problem (Section V). the function call corresponds to. .
In order to simplify the computation of ttrBO expressions,

D. Software observability coverage metric we build a new graph that starts in tbec that corresponds to

In order to know if the desired coverage level has bedRe main function. We traverse thleFcs, expanding function
attained, we must measure the observability coverage fétls and loops along the way. In the end we geias of the
each input data obtained from the input vector generator. \REgram (Figure 3). Note that we do not expand function calls
use the observability coverage metric for embedded soéwand loops indefinitely. We just expand each once. The rest of
described in [2]. the expansion is done on demand:

In that method, in order to achieve the observability target « when all the paths of the current expanded graph are cat-
one keeps track of all the statements that assign a variable egorized as either feasible or infeasible and the coverage
and also of the conditions on which the branches depend. For metric was not yet achieved, or
that purpose, for each variable in the program there is a liste the input vector generator returns the path as infeasible
of statements the variable depends on. When the execution in a vertex that is the start of the loop because the loop

Fn = F1+F2
()FL =F2

F2 = Fn
i++

printf

boolean variables must have val@eand in vertex6 the
boolean variable must have valle

In this notation if we want to explicitly not to go through
some path then we equal its expressionOtoSimilarly, if
we want to always execute a certain path then we equal its
expression td. If we want to go through verticet,3 and 5

we have, =7 = 1. 4)

Solving this expression, and since the variables are bnplea
we get as the only solutiom; = 0 andzs = 0. As expected,
this means that in order for the path to be executed we must
have the conditions in verticdsand 3 equal to false.

In order to specify in theso problem which of the vertices
that we want to execute, depending if they are already cdvere
or not, we have for each vertex mBO expression. This
PBO expression represents the conditions necessary for its
execution.

The algorithm to compute the boolean expressions for each
Fig. 3. Loop unrolling of the Fibonacci graph. vertex starts by ordering the vertices in a topological neann
to a list, such that when we reach a vertex, all of its ingoing
vertices have already been processed. We go through that lis

is not further expanded. when propagating theso variables. For each vertex we first

We refer to [3] for more details of function expansion anéest if the vertex is a condition vertex. If it is then we assig
loop unrolling. a PBO variable to it. Next, we check its ingoing vertices. If
it is only one then we just copy theBo expression to the

V. PSEUDOBOOLEAN OPTIMIZATION vertex and append it8Bo variable if the ingoing vertex is a

We model the problem of finding a path to increase owondition. If there are more than one ingoing vertices then w
observability coverage as a pseudo-boolean optimizatiol-p must merge theipBO expressions. The rationale here is that if
lem. In order to increase our coverage we are interestedvie have the same variable merging but in one of the ingoing
getting a path that: vertices it isz and on the other it i then this means that

« was not yet executed or was not found to be infeasibl&¥e are merging two paths that were disjoined in the vertex
« has the greatest number of statements in order to imprdiresponding to theso variable. In that case that variable
our chances of covering the greatest number possible does not matter anymore. So we do not propagate it. Otherwise

« has statements that were not yet observable by previd¥g propagate the variable. We do this until all the vertiaes a
paths. processed.

All of these items can be modeled BBO expressions. Armed with thePBO expressions for the execution of each
The PBO problem solution will give us the values of thevertex and the boolean variables of each condition vertex we
boolean variables that indicate what the value of each pragr€@" SPecify in ourrBo problem the longest path, the paths
condition should be. Afterwards, we test that solution ia th'at We do not want to execute and the vertices that we want
input vector generator. In the process of finding an input t¢§ €Xecute.
vector we get information about the feasibility pf the_path ®B. Cost function computation
which was the vertex where the path became infeasible. Thi

information will be later used in subsequeTgO problems. in trying to find the longest path, we want to maximize the

number of statements executed, thus defining the cost mcti

A. Path constraints of the PBO problem. Thus, we give weights to all the vertices
in the graph (see Figure 3). The vertex weight multiplied by
its PBO expression will give us the number of statements if
that vertexpPBO expression is equal tb. Therefore, theeBO

eexpression that we want to maximize is the sum of the products

f the vertices weights with therBoO expression. In the case

f the graph in Figure 3 we have:

In Section IV we described how we obtainedac from the
CFGs of the functions. In order to obtain tirs0 expressions
we attach for each decision vertex in tlmaG a boolean
variable. Thus, if in theBo solution we get a boolean variabl
with value1, that means that we will follow the branch whos&
respective vertex condition is true. If we obtain two boaolea® A o
variables which have valugsand0, then we will follow the maz : 14 1z, +127 + 17123 + 321 %5 + 171 T3+ (5)
path whose first condition i$ and the second condition i A7y Tywe + 121 T3 + 171 T,

This means that we can specify a path as a product of "terﬁ-\ere the literals indexes correspond to the vertices nunbe

. . . ‘the graph.
”tet;';;gg the example on Figure 3 if we have the product his expression alone can define the problem of finding the

T1T3T6T11- (3) longest path in oupAG. Note that the solution to this problem
that defines the path that goes through verti6ds3,5,6,7, will not give us a path that goes through all the vertices.
11,8,9,10. This indicates that in vertice$, 3 and 11 the That is impossible in this graph and we turn it impossible

TABLE |

in our problem when we propagate theo expressions the PROGRAM STATISTICS
way we described in Section V-A. For instance, if the best [Program [lines [input | decisions| statements]
option is to pass through edde(with expressiorz; z3) we fibonacci 24 | integer 3 13
are automatically excluding vertices 2,§ and 4 {1z3). dijkstra || 141 | integer 15 99
huf f man 203 text 17 193

C. Avoiding certain paths

As stated before, when we build theac for the first
time we 0n|y do one unro”ing of the |00p in order to havéhe covered vertices into zero. This will force the solution
all vertices in thepAG. Thus, there are certain paths in th@f the PBO problem to give a path that goes through some
program that are not represented in thres. Therefore, when uncovered edges, since theo problem tries to maximize a
we extract therBo problem from thebaG we have to take cost function.
into account those paths. In the example of Figure 3, vartex If the path is infeasible then it means that at some decision

has one edge that can not be followed. So, infthe problem point, the path that we want to follow diverges from a feasibl
we have: path. The fact that theso problem gave a path that is not

z11 = 0. (6) feasible has to do with the fact that th@o problem does

This guarantees that; will not be 1 and the solution given by not take into account the values of the condition variables.
the PBO problem will not contain that path. The same applieg it is possible to know the vertex where the paths diverge
to function expansion. then we assume as infeasible the path just until that vertex

Once we have obtained a path, we do not want to obtgifcluding the vertex). This information is used to refolate
that path again as a solution of theo problem. Thus, in the the pgo problem (Section V-C). If the vertex is not known
subsequeriBo problems we equal theso expression of that then we make the whole path infeasible. This later solution
path to zero, thus, guaranteeing that the next solutionsef {yj|| increase the number oPBo problems to solve and
PBO problem will not contain that path. consequently the number of runs of the input vector generato

D. Observability vertices VI

Since we are interested in observability coverage we want

to execute at least one of the vertices that have obsentyabili Our method to generate the minimum number of paths that
. L achieve a specified observability coverage was implemented
points. Thus, when building therFG and later theDAG we

: - into a framework. The framework uses the methods described

mark those vertices as observable. Later, When_ building t She previous sections to fully automate the process ofrfgid

PBO problem we force the prablem to give as S.OIUt'on one pak input vectors given the program and the coverage we want

\t/t/]:tvx?oouelg :g\?g%?eaéxlefsts?onn? of those vertices. In Flgureto achieve. To demonstrate the feasibility of the method we
P i used several example programs:

Tiz3 +T17T3 >=1 7)

1+ T3 + Ty T ’ (), fi bonacci , which, given an integer, computes the
where each product of literals correspond to a vertex. . ; .)
corresponding Fibonacci number;

Note that expressions 5, 6 and 7 form the complete initial . di j kst r a, which computes the shortest path in a graph:

PBO problem for the Fibonacci program. « huf f man, which gives an Huffman coding given a string
E. Loop unrolling / function expansion of characters.

When therBo problem is infeasible that means that there no di j kst r a belongs to MiBench [7], a commercially repre-
more unexplored paths in theac. Thus, and assuming thesentative embedded benchmark suite. The implementation of
specified coverage was not achieved, that means that sdéf man andfi bonacci are found in Numerical Recipes
loop must be unrolled or some function must be expandé@l.C [13]. In Table | we have the statistics of these programs.
This loop unrolling/function expansion is done on the leadt it we show the size of the programs in number of lines, the
possible number of loops/functions in order not to incread¢e of input, the number of decision points and the number

. RESuULTS

greatly the size of th@Ac. of statements.
The examples were submited to our framework to obtain
F. Input vector generator the input vectors. The machine where we run the tests was an

The input vector generator [6] is run to obtain the inpuntel® Pentiun®4 running at 3.2GHz with 1GB of physical
vector that allow execution of the path given by thReo memory. TherPBO solver we used wabsol o [12].
solution. However, the path may be feasible or not. In Table Il we show the results we obtained. For each

If the path is feasible we obtain an input vector for that patiprogram tested we have the feasible paths that increased the
Then, we run the program to obtain the coverage. The coveraggservability coverage. For each of the feasible pathsmdada
obtained will accumulate with the coverage of previous tnpwe show its observability coverage and also the accumulated
vectors. If the accumulated coverage is greater or equéleto bbservability coverage. The size of theo problem necessary
specified goal coverage then the algorithm ends and we haweachieve various coverages is presented. We show the mumbe
a set of input vectors that allow for a certain observabilitgf its variables, constraints and literals. We also show the
coverage. In case the specified coverage is not reached thember of PBO problems necessary to find a feasible path.
we get the next path by reformulating ttreso problem. Also, for each path we show the accumulatedu time to
This reformulation involves turning the vertices weight obbtain the path.

TABLE I
RESULTS OF THE TESTS

PBO problem accumulated| accumulated

Program path | # [variables | constraints| Titerals | % coverage| % coverage| CPUtime
Ist | 1 14 24 84 69% 69% 0.002s

. . 2nd | 2 10 18 56 23% 7% 0.004s
fibonacei || 3y | 3| 10 20 57 15% 85% 0.0055
4th | 5 11 22 65 85% 100% 0.007s

dijkstra Ist | 1 87 146 1306 100% 100% 0.002s
huf f man Ist | 12 440 745 6675 93% 93% 39.644s
2nd | 74 1087 2019 24157 88% 100% 1688.3s

In fibonacci (represented in Figure 2), the longest patfeasible path and, if the coverage was not achieved, we refine
is by executing the loop once. This path will give us 69%ur path search by inserting additional constraints in R
coverage. The other two paths will be for executing thgroblem. Initial results demonstrate the validity of thethwoesl.
conditions when we have the input value equalOtmr 1. While the sizes of therBO remain well within reach of
But this does not give us 100% observability coverage. Tleisting solvers, the solvers we have tried have some difficu
fourth path gives us an accumulated observability coveragemputing some of the solutions. This is an issue we are
of 100%. Note that the coverage for that path is greater théotusing our attention on.
the one for the other paths. Since our method tries to findCompared to the authors’ previously mentioned work [3],
the longest path, that can be explained by the fact that whilnis method has the potential to have the input vector gen-
obtaining paths 1-3 we only unrolled the loop once. Lookingration phase integrated with tirso formulation since both
at the example in Figure 2 and Figure 3 we can see that themethods are based on solving a linear constraints problem.
are two statements inside the loop that will only be obsdevab Also, in the future, we will be applying this method to
if the loop is executed once more. In fact, we do not show liardware descriptions in high-level description langsagith
in the table, but theBO problem #4 results in infeasible andthe objective of obtaining a coverage-directed co-vaiiohat
thus the loop must be expanded once more. method for embedded systems.

In _di j kstra, we get 100% ob_servability coverage with_ REFERENCES
the first path. That can be explained by mention that this o
program finds a fixed set of shortest paths in a graph. ThuE! ibﬁic;ﬁ,lgg%rf aﬂ'gi‘l??(efis);fsssefggé?"z%'g?.” optimizatioDiscrete
the longest path will have several passages through thé-shop] 3. Costa, S. Devadas, and J. Monteiro. Observabilitylyai® of
est path computation. By combining the coverage of those embedded software for coverage-directed validation. Praceedings

. 0 T : : of the Intl. Conference on Computer Aided Desigages 27-32, 2000.
passages we obtain 100% observability coverage in the f”ﬁﬁ J. Costa and J. Monteiro. Computation of the minimal sepaths

path. for observability-based statement coverage1%th International Con-
In huf f man, we achieved 93% with an input vector that ference on Mixed Design of Integrated Circuits and SystéiXDES

; 2008 pages 587-592, 2008.
0
had only one value. To obtain 100% coverage we have F. Fallah, S. Devadas, and K. Keutzer. OCCOM: Efficientrpatationa

further unroll the loops and also expand some recursive of Observability-Based Code Coverage Metrics for Funetiddimula-
functions. With that done we can obtain a new path whose tion. In Proceedings of thé5'" Design Automation Conferencpages

. . . . 152-157, June 1998.
0, y
coverage combined with the first path coverage give us 100(%’] N. Gupta, A. Mathur, and M. Soffa. Generating test data ticanch

observability coverage. Note that the numbepsb problems coverage. IrProceedings of the 15th IEEE International Conference on
is larger than in the other examples. That has to do, as Automated Software Engineeringages 219-227, 2000.

; ; ; : : [6] N. Gupta, A. P. Mathur, and M.Soffa. Automated test datmeagation
mentioned before, with the necessity of unrollmg/expagdl using an iterative relaxation method. Pmocs. of the 6th ACM SIGSOFT

the loops/functions. international symposium on Foundations of software ereging, pages
The results obtained confirm the validity of this methodol-_ 231-244, Lake Buena Vista, Florida, United States, NoveraBes.

; 1 M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,Mudge,
ogy. The small size of the benchmark programs allow us tg and R. B. Brown. Mibench: A free, commercially represenati

understand and confirm the results obtained. One concern is embedded benchmark suite. IBEE 4th Annual Workshop on Workload
that, although the size afBo problems remain fairly small, Characterization 2001.

TR . . : 8] |. Harris. Hardware/software covalidatiotEE Proceedings of Comput-
indicating that this methodology is scalable to larger tidgal ers and Digital Techniquesi52(3):380-392, 2005,

embedded software programs, the solvers seem to have[od B. Korel. A dynamic approach of test data generation.Phoceedings
harder time obtaining a solution as we add paths to avoid_ of the Conference on Software Maintenanpages 311-317, 1990.

(either because they have been covered or have been found%o EboAz' Lee. Embedded softwareAdvances in Computer$6:56-97,

be infeasible). We are currently investigating why these fe[11] D. Lettnin, M. Winterholer, A. Braun, J. Gerlach, J. RdF. Kropf,
additional clauses may cause this effect. and W. Rosenstiel. Coverage Driven Verification applied tobEdded
Software. In Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, ISVLSI'Ogages 159-164, 2007.
VIl. CONCLUSIONS [12] V. Manquinho and J. Marques'—S'ilva: Effective I_ower hding tech—
We presented an observability coverage-directed vector niques for pseudo-Boolean optimization. Pnoceedings of the Design,

. . Automation & Test in Europe Conferen es 660-665, 2005.
generation method. In this method we address the problefy . . press, B. P. ,:lanngry S A Tgﬁg,sky and W. T.taéing.

of finding a minimal set of execution paths that achieve a Numerical Recipes in C: The Art of Scientific Computirgambridge

user-specified level of observability coverage. We modisl t University Press, second edition, 1993.
P Y 9 14] J. Wegener, A. Baresel, and H. Sthamer. Evolutionasy éavironment

prOb_lem as &Bo pr_oblem where we tr_y to find the longes for automatic structural testingInformation & Software Technology
feasible path. Thus in our greedy algorithm we get the lohges 43(14):841-854, 2001.

