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SPARE—A Scalable Algorithm for Passive,
Structure Preserving, Parameter-Aware

Model Order Reduction
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Abstract— This paper describes a flexible and efficient new
algorithm for model order reduction of parameterized systems.
The method is based on the reformulation of the parameterized
system as a perturbation-like parallel interconnection of the
nominal transfer function and the nonparameterized transfer
function sensitivities with respect to the parameter variations.
Such a formulation reveals an explicit dependence on each
parameter which is exploited by reducing each component
system independently via a standard nonparameterized structure
preserving algorithm. Therefore, the resulting smaller size inter-
connected system retains the structure of the original system with
respect to parameter dependence. This allows for better accuracy
control, enabling independent adaptive order determination with
respect to each parameter and adding flexibility in simulation
environments. It is shown that the method is efficiently scalable
and preserves relevant system properties such as passivity. The
new technique can handle fairly large parameter variations
on systems whose outputs exhibit smooth dependence on the
parameters, also allowing design space exploration to some
degree. Several examples show that besides the added flexibility
and control, when compared with competing algorithms, the
proposed technique can, in some cases, produce smaller reduced
models with potential accuracy gains.

Index Terms—Model order reduction (MOR), parameterized
models, parameterized reduction, projection methods, simulation.

I. Introduction

MODEL order reduction (MOR) techniques are a set of
numerical procedures which aim at replacing a large-

scale model of a physical system by a lower dimensional
(or reduced order) model which exhibits similar input–output
behavior. This order reduction enables efficient simulation and
verification of large systems [2], [3]. Since the first attempts in
this area, the methods for linear model reduction have greatly
evolved and can be broadly characterized into those based on
transfer function matching [4], [5] and projection methods.
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Among the former, it can be distinguished between moment
matching [6], [7], those based on balancing techniques [8],
[9], and sampling based methods [10]–[12].

Although previously ignored, variability can no longer be
disregarded as it directly impacts system behavior and perfor-
mance. Accounting for the effects of process and geometric
parameters, temperature, etc., leads to parameterized models
whose complexity must be tackled both during the design and
verification phases. Therefore, parameterized MOR (pMOR)
techniques, able to generate reduced models that accurately
capture the effects of the variability, are being considered as
essential in the determination of correct system behavior.

Several pMOR techniques have been developed for mod-
eling large-scale parameterized systems. Although the first
attempts were based on perturbation, such as [13], [14], the
most common and effective ones appear to be extensions
of the basic projection-based MOR algorithms [6], [10] to
handle parameterized descriptions. These projection based
pMOR techniques can be broadly cast into multidimensional
moment matching [15]–[19], whose projector is built from a
selection of the orthonormalized moments of the multidimen-
sional transfer function, or into sample-based techniques [16],
[18], [20], which generate the projector from samples in the
multidimensional space.

Most of those pMOR methods are oriented toward handling
small variations of process parameters, and seem particularly
suited for simple interconnects, such as buses and clock trees,
whose parameterized response can be captured by slightly
increasing the dimension of the projection basis. On the other
hand, in the performance of analog mixed-signal systems,
designed-in passives, such as integrated spirals and capacitors,
play a fundamental role. Here, detailed electromagnetic (EM)
models are needed for taking into account all possible effects.
Whenever the geometrical layout parameters are changed, a
new EM model must be generated and simulated, which leads
to efficiency loss, as design parameters may have a large range,
and may completely modify the behavior of the system. In
this scenario, although the variation on the output due to the
parameters may be smooth, the subspace to match is highly
increased, and so is the size of the reduced order model (ROM)
given by standard pMOR methodologies.

A different approach, based on a Taylor series representation
of the effect of parameters on the output of the system,
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was proposed in [21]. This approach directly captures the
parameterized dependence in an explicit sense, being able
to tackle fairly large parameter variations in some scenarios.
Unfortunately the technique does not guarantee passivity, and
the parameterized dependence is lost after reduction. There-
fore, the method is not efficiently scalable if higher order
approximation on the parameters is required.

In this paper, we present an algorithm for pMOR that,
similarly to [21], is based on the reformulation of the
parameterized system, revealing an explicit dependence on
each parameter. Unlike [21], however, here this dependence
is directly exploited by reducing each component system
independently. Therefore, in the proposed approach, the
resulting reduced model retains the structure of the original
with respect to parameter dependence. This allows for
better accuracy control, enabling independent adaptive order
determination with respect to each parameter and adding
flexibility in simulation environments. Furthermore, the
procedure is shown to preserve passivity and is efficiently
scalable if higher accuracy, thus, higher order is required.

This paper is structured as follows. In Section II, an
overview of pMOR and a discussion of existing techniques is
presented. In Section III, the new scheme will be introduced,
starting with a description of the underlying representation and
the methodology for reduction. We argue that the reduction
effort and the ROM size are fairly independent from the
variation range envisioned. We also show that the procedure
preserves passivity of the model. Section IV will introduce
some implementation and computational considerations about
the proposed methodology. In Section V, several examples are
shown that illustrate the efficiency of the proposed technique,
and in Section VI, the conclusion is drawn.

II. Background

A. Parameterized Systems

Parameter aware modeling stages lead to parameterized
state-space system representations with the next descriptor
form

C(λ)ẋ(λ) +G(λ)x(λ) = Bu, y(λ) = Ex(λ) (1)

where C,G ∈ Rn×n are, respectively, the dynamic and static
matrix descriptors, B ∈ Rn×m relates the input vector u ∈ Rm
to the state vector x ∈ Rn, and E ∈ Rn×p links those inner
states to the outputs y ∈ Rp. The elements of C and G,
as well as the states x, depend on a set of Q parameters
λ = [λ1, λ2, . . . , λQ] which model the effects of the mentioned
variability. Usually, the system is formulated such that the
matrices related to the inputs and outputs (B and E) do not
depend on the parameters. The associated parameter dependent
frequency response modeled via the transfer function

H(s, λ) = E(sC(λ) +G(λ))−1B (2)

for which we seek to generate a reduced order approxima-
tion, able to accurately capture the input–output behavior of
the system for any point in the joint frequency-parameter space

Ĥ(s, λ) = Ê(sĈ(λ) + Ĝ(λ))−1B̂. (3)

In general, one attempts to generate a ROM whose structure
is as similar to the original as possible, i.e., exhibiting a
similar parameter dependence. The most common procedure
to achieve this goal is to use some form of projection scheme.
Once a suitable subspace basis V is computed, the system can
be projected into that subspace, and a reduced model such
as (3) can be obtained, that captures the behavior of the system
under parameter variations

Ĉ(λ) = VTC(λ)V Ĝ(λ) = VTG(λ)V
B̂ = VTB Ê = EV x(λ) = V x̂(λ)

(4)

where V ∈ Rn×q spans the projection subspace of reduced
dimension q, and Ĉ, Ĝ ∈ Rq×q, B̂ ∈ Rq×m, Ê ∈ Rq×p, and
x̂ ∈ Rq define the ROM.

B. Representation as a Matrix Taylor Series Approximation
The state space descriptor system in (1) is a mathematical

representation of a physical system depending on a set of
parameters. The matrices G(λ) and C(λ) usually represent a
discrete characterization of the physical system in terms of
electrical elements, which in this case depend on a set of
physical parameters. Existing literature [15] advocates for a
Taylor series expansion of the elements of these matrices with
respect to the parameters, which leads to

G(λ) = G0...0 +
∑

ψ1...ψQ
�ψ1...ψQGψ1...ψQ

C(λ) = C0...0 +
∑

ψ1...ψQ
�ψ1...ψQCψ1...ψQ

(5)

where G0···0 and C0···0 are the nominal values for the matri-
ces, Gψ1...ψQ and Cψ1...ψQ are the joint sensitivities of order
(ψ1 . . . ψQ) with respect to the Q parameters, and �ψ1...ψQ =
λ
ψ1
1 . . . λ

ψQ
Q . For simplicity and without loss of generality, we

assume that each λ has a normalized variation around the
nominal value to a maximum of |λ| ≤ 1. The Taylor series can
be extended up to the desired (or required) order, including
cross terms, for the sake of accuracy. This representation
of G(λ) and C(λ) can be included in (1) to generate a
state space Taylor series representation, which provides some
advantages. One of the most relevant comes from compatibility
with respect to extraction methods, which usually take into
account variability by using sensitivity analysis, and thus,
directly provide the matrix terms of this representation (see,
for example [22]–[24]). Another advantage is the fact that a
projection based reduction leads to a ROM of the same form,
i.e., a state space Taylor series representation whose matrices
have smaller dimensions. This allows for an explicit parameter
representation, and thus, the same ROM can be efficiently
evaluated for different parameter settings (notice, however, that
any parameter change implies solving the system again).

A relevant issue to take into account for this kind of
representation is the stability and passivity of the system.
Any physical linear system, independently of the values of
the parameters it depends on, is passive, as it is unable to
generate energy. In mathematical terms, passivity is associated
with positive realness of its transfer function. A matrix transfer
function H(s) is positive real if

H(s) = H̄(s̄)
H(s) is analytic in Re[s] > 0
H(s) +H∗(s) is PSD in Re[s] > 0

(6)
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where Re stands for real part, ∗ for Hermitian (transpose
conjugate), and PSD stands for positive semidefinite. These
conditions are complied by electrical circuits under certain
structural representations. In [6], it was shown that B = ET

and C,G be PSD are sufficient conditions for passivity in an
LTI system. In the case of parameterized systems, the positive
realness should be extended to any parameter value in the
domain of interest (let us denote � as the appropriate set of
values for λ that makes sense for the application). Therefore
H(s, λ) should be analytic in Re[s] > 0 and H(s, λ)+HT (s∗, λ)
be PSD ∀Re[s] > 0 and ∀λ ∈ �. In terms of state space
descriptor, sufficient conditions for passivity are B = ET and
C(λ),G(λ) are PSD ∀λ ∈ �.

It is clear that passivity of a parameterized system depends
on the parameter values, and the range of variation of these
parameters is limited if passivity is to be assured. If a stamping
methodology is used to build the matrices, it should be assured
that the physical meaning of any stamped element remains
the same for the range of variation of the parameters. This
means that a conductance, capacitance, inductance, etc, should
remain as such for any parameter value. Consider, for example,
a conductance g as a function of a set of parameters. If
the parameters represent physically meaningful variations, it
should be guaranteed that g(λ) ≥ 0 ∀λ ∈ �

g(λ) = g0...0 +
∑
ψ1...ψQ

�ψ1...ψQ gψ1...ψQ ≥ 0 ∀λ. (7)

If the sensitivities are built blockwise (e.g., via direct differ-
entiation), a similar result should be enforced.

Regarding the reduction of such representation, the passivity
of the ROM is guaranteed if a congruence projection, as the
one in (4), is applied (see [6] or Section VI of [25]), with the
additional advantage that an equivalent, yet reduced, Taylor
series representation is generated.

C. Projection Based Reduction

Most of the techniques appearing in the literature extend the
moment matching paradigm [6], [7] to the multidimensional
case. They usually rely on the implicit or explicit matching of
the moments of the parameterized transfer function (2). These
moments depend not only on the frequency, but also on the
set of parameters affecting the system, and thus, are denoted
as multidimensional or multiparameter moments

x(s, λ) =
∑

ψsψ1...ψQ

Mψ,ψsψ1...ψQs
ψs�ψ1...ψQ (8)

where Mψ,ψsψ1...,ψQ is a ψth (ψ = ψs + ψ1 + . . . + ψQ) order
multiparameter moment corresponding to the coefficient term
sψs�ψ1...ψQ . Following the same idea used in the nominal
moment matching techniques, a basis for the subspace formed
from these moments can be built

colspan[V ] = span{M0,00...0, . . . ,Mψ,ψsψ1...ψQ} (9)

and the resulting matrix V can be used as a projection matrix
for reducing the original system. The generated parameterized
ROM matches up to the ψth order multiparameter moment of
the original system. Different approaches differ in which mo-
ments are matched and how these moments are generated. The

straightforward approach, denoted multiparameter moment
matching [15], is to match all the combinations. Some schemes
try to improve this paradigm by low-rank approximations [16],
others obtain the projector from an overall basis of multiple
disjoint subspaces, built separately for each dimension, i.e., the
frequency s (for which ψs block moments are obtained) and for
each parameter λi (generating ψi block moments) [17]. Recent
approaches [18], [19] rely on a recursive procedure to compute
the frequency moments of different order approximation in the
parameters. This adds flexibility as the number of moments to
match with respect to each parameter and the frequency can
be different.

In general, these methods, which rely on local matching,
suffer from oversize of the models when the number of
moments to match is high, either because of large frequency
ranges, or because the number of parameters is large, and
their variation can lead to vastly different dynamics changes
in different frequency ranges.

Although based on moment matching paradigms, some
methods rely on sampling, either to generate Krylov subspaces
for the systems when evaluated at different parameter sets
(λ = λk), as advocated in [16], or to select the most rele-
vant or probable moments, as in [18]. A different sampling
based approach presented in [20] extends the poor man’s
truncated balanced realization (PMTBR) [10] algorithm to
include variability by means of a statistical interpretation.
The method relies in a multidimensional sampling of the
joint frequency plus parameter space. It can also use statis-
tical information available for λ to guide the sampling or
apply a weighting scheme in the parameter space. After the
sampling, the most relevant vectors are selected via singular
value decomposition (SVD) in order to build a projection
matrix. Noticeable advantages are that easy to compute proxies
for error bounds estimates can be obtained (via analysis of
the eigenvalues of the SVD), and the size of the reduced
model is less sensitive to the number of parameters, or how
the parameter dependence is modeled. On the other hand,
the issue of sample selection, already an important one in the
nonparameterized version, becomes even more relevant, since
a much higher-dimensional space must be sampled.

D. Explicit Parameter Matching

A different approach was previously presented in the com-
pact order reduction for parameterized extraction (CORE)
algorithm [21], which proposes an explicit moment matching
with respect to the parameters. The system is reformulated by
expanding it in Taylor series, supposedly accurate enough in
the range of variation of the parameter set [λ1 . . . λQ]. This
is achieved by a Taylor series representation of the matrices
C(λ) and G(λ) as in (5), plus an expansion of the state vector
in Taylor series with respect to the parameters, but not with
respect to the frequency

x(s, λ) = x0···0(s) +
∑
ψ1...ψQ

�ψ1...ψQxψ1...ψQ (s) (10)

where the subscript indicates parameter dependence and fre-
quency dependence is explicitly stated. Again, and although
in [21] only first order was used, it can be extended up to



928 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 6, JUNE 2010

the desired (or required) order, including cross derivatives,
for the sake of accuracy. Mimicking the procedure of matching
the coefficients of the same powers, an augmented system can
be obtained. As an illustration, let us suppose two parameters,
λ1 and λ2, with second order expansion, and one cross term
[following (5)], subindex ψ, ϑ indicates ψth order with respect
to the first parameter and ϑth order with respect to the second)

x00(s) = (G00 + sC00)−1Bu

x10(s) = −(G00 + sC00)−1(G10 + sC10)x00(s)
x01(s) = −(G00 + sC00)−1(G01 + sC01)x00(s)
x20(s) = −(G00 + sC00)−1(G10 + sC10)x10(s)

−(G00 + sC00)−1(G20 + sC20)x00(s)
x02(s) = −(G00 + sC00)−1(G01 + sC01)x01(s)

−(G00 + sC00)−1(G02 + sC02)x00(s)
x11(s) = −(G00 + sC00)−1(G11 + sC11)x00(s)

−(G00 + sC00)−1(G10 + sC10)x01(s)
−(G00 + sC00)−1(G01 + sC01)x10(s).

(11)

Using the state vector x =
[
xT00 x

T
10 x

T
01 x

T
20 x

T
02 x

T
11

]T
, we

can generate a nonparameterized augmented system, in which
the states no longer depend on the parameters, and the param-
eter dependence is shifted into the output matrix (see [21] for
details). This system is then used as initial formulation for the
parameterized model. CORE uses this new representation to
generate a q-order basis for the new state vector x, via nominal
moment matching approaches [6]. The system is then reduced
via orthogonal projection x = V x̂.

Advantages of this approach are that in this representation
the states only depend on the frequency, and thus, any nominal
MOR approach can be applied. Another advantage is the fact
that by projecting this system with a Krylov moment matching
approach to a given reduced order q, q frequency moments of
the x vector are matched, and thus, the parameter effect of the
augmented system is captured (for any parameter value).

On the other hand, there are some relevant disadvantages to
the CORE approach. Projection of the matrices leads to full
reduced matrices, in which all the structure is lost. Moreover,
the parameter dependence is shifted to the output matrix,
and thus, the parameter dependence is lost after reduction
due to the projection, making model evaluation for different
parameter values expensive and decreasing flexibility. Also,
the method is not scalable, as the expansion order with respect
to the parameters must be decided a priori. Furthermore,
accuracy considerations for the frequency moment matching
based on a single expansion point may require high orders in
large frequency ranges. A last critical drawback is the passivity
preservation. Orthogonal projection on the augmented system
guarantees stability preservation (see [21] for details), but on
the other hand the B = ET condition is no longer complied,
which means that no guarantee can be given with respect to
passivity preservation.

III. Scalable Parameter Aware Reduction

In this section we outline scalable parameter aware reduc-
tion (SPARE), which exhibits the following properties.

• Explicit structural dependence on the parameter set is
maintained which implies that reevaluation of the model
for different parameter values is very efficient.

• Model evaluation is efficient as the reduced model is
described by a sparse block lower triangular form, that
allows to apply recursive procedures.

• Model is accurate for smooth output dependence on the
parameters, as any range of variation is perfectly matched
as long as the underlying output Taylor series formulation
is accurate enough.

• Accuracy control is enhanced as independent adaptive
order determination with respect to each parameter (i.e.,
for each parameter related transfer function) is possible.

• Algorithm and model are scalable as terms can be added
or removed at any stage to modify the order, depending on
the accuracy required, with data reuse. The accuracy/order
trade off can be easily determined from the output sensi-
tivities, and model size increases linearly the number of
terms.

• Passivity is preserved in the reduction process, as long
as the proposed projection based methodology is applied.

• Model construction is flexible in the sense that any nom-
inal (nonparameterized) MOR can be used for reducing
each parameter related transfer function. Even different
approaches can be used for different transfer functions,
although it can have consequences on the efficiency.
As we shall see either moment matching or sampled
techniques can be efficiently applied.

• Design parameters can be handled up to some degree,
as long as they have a smooth effect on the output.
This feature in combination with the efficient model
evaluation allow a fast first approach to optimal values
in optimization steps.

A. SPARE Representation

As mentioned, the approach followed is akin to the one
developed in [21] in terms of representation, but, as we shall
see, it deviates from it afterward. Therefore, we follow the
same steps so that we arrive to the representation of multiple
states as in (11). In a general case

H(s, λ) = H0...0(s) +
∑
ψ1...ψQ

�ψ1...ψQHψ1...ψQ (s) (12)

where Hψ1...ψQ = Exψ1...ψQ , making the parameterized de-
pendence clearly explicit. In other words, the parameterized
transfer function can be written as the contribution of the
nominal transfer function plus the one of the nonparameterized
transfer function sensitivities with respect to the parameters,
i.e., a linear combination of the multiple nonparameterized
transfer functions weighted by the parameter variation. Recall
that this representation can be extended up to any order on
the parameters, including cross-terms and, as we shall see,
additional terms can be added at a later stage with little extra
cost.

Every transfer function in (12) can be easily represented in
its state space descriptor starting from the nominal matrices
and the sensitivities of the Taylor series expansion (5). Again,
we will illustrate the representation using the two parameter
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system shown in (11). A compact formulation in state-space
form for the complete system generating the individual transfer
functions is as follows:

H(s) = E(sC + G)−1B (13)

H(s, λ) = [1 λ1 λ2
1 λ2 λ2

2 λ1λ2 ] H(s) (14)

where

B = diag{B, B, B, B, B, B}
E = diag{E, E, E, E, E, E}

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C00

C10 C00

C20 C10 C00

C01 C00

C02 C01 C00

C11 C01 C10 C00

⎤
⎥⎥⎥⎥⎥⎥⎦

x = [xT00 xT10 xT20 xT01 xT02 xT11]T

u = [uT 0 0 0 0 0]T

y = [yT00 yT10 yT20 yT01 yT02 yT11]T . (15)

G, omitted for space considerations, has exactly the same
structure as C, and diag{B, B, . . .} represents a block diagonal
matrix.

The choice of B (and its effect on the definition of u) may
appear strange. However, it implies that B = ET in the special
and relevant case that B = ET which, as we shall see, has
important implications, among which, and unlike CORE, are
the passivity preservation, scalability and flexibility.

A graphical depiction of the above system representation
is shown in Fig. 1. It shows the hierarchy generated for the
different orders. Nominal states only depend on the inputs.
First level (first order) sensitivities depend on its inputs and
the nominal states (through the matrix sensitivities). Second
level (pure second order and first order cross terms) depends
on its inputs, but also on the nominal and the first order states
(through the second order matrix sensitivities). Therefore, each
level depends on the previous levels (but only on those to
which there are links via the sensitivities), and on its inputs.
However, as can be seen in (11), only the nominal states are
excited by external inputs, and thus, the inputs related to the
parameterized behavior can be set to zero [see (15)].

The state-space descriptor matrices in (15) have a very char-
acteristic structure that can be further exploited: the matrices
can be stored block-wise, so the system can be easily “assem-
bled” for computation. Furthermore, if we only need to work
with a subset of the parameters, it is not necessary to build the
complete system, just the structure related to the interesting
parameters up to the required order. Additionally, the block
lower triangular structure enables using recursive procedures
for model evaluation of the individual responses, from which
the global output can be obtained through linear combination
of terms. Furthermore, parallel computations can be applied
at each level, as each response only depends of the previous
levels. The effect of a change in the parameter values can be
efficiently addressed by a weighted sum of such terms, sparing
from extra evaluations. This adds flexibility, making it possible

Fig. 1. Illustration of a parameterized system representation as a cascade of
nonparameterized systems (second order representation).

to, on the fly, generate a model as comprehensive as necessary,
and is an interesting side benefit of the method. Preserving
the structure is in itself a worthwhile endeavor, as discussed
in [26], [27]. However, it turns out that in this case it can lead
to further advantages in terms of reduction and simulation.

B. SPARE Reduction

In order to maintain the explicit parameter dependence and
avoid high computational costs after reduction, it is interesting
to preserve the structure of the system, not only in terms of the
structure of the underlying electrical circuit (thus in the sense
described in [26]) but also in terms of the interconnection
of systems prescribed in (11) and Fig. 1. Due to the special
structure of this representation, it is possible to apply a block
structure preserving (BSP) technique [26], [27] in order to
maintain the block structure of the complete system. These
techniques rely on the computation of a projector for the com-
plete system that later on is split and expanded according to
the block sizes into a block diagonal projector. This projector
spans the same subspace as the original, but if applied in a
congruence transformation the block structure of the system
is maintained. The expanded basis leads to larger reduced
models, but this reduction has additional advantages, notably
in terms of accuracy (see [27] for details), but also in terms
of sparsity as we will see in the computational experiments.

In the present case, the input of every system depends on
previous states (and the nominal states on the external inputs),
and the output is the contribution of all the partial outputs
weighted by the parameter values (see Fig. 1). From this
viewpoint, the BSP projector can be built block-wise in a
recursive manner. Each block must span a basis that, after
projection, captures the most relevant behavior of each block
of states xψϑ in (11), so the complete reduced system will
capture the most relevant behavior of the parameterized system
for any parameter variation. We point out that any technique
that produces a suitable projector can be used at this point,
attesting to the generality and flexibility of the algorithm.
For instance, one can compute a basis for a space that spans
the moments of that particular sub-system. This can be done
efficiently and in a numerically stable fashion. It is in fact akin
to the computation of the multiparameter moments as defined
in [18], [19] but here performed on an individual basis, which
adds flexibility in that only the desired moments need to be
computed. An alternative is to use a sampling-based technique
such as [10], a technique which has been shown to enable
considerable reductions while providing a good heuristic error
bound, useful to control the reduction size as a function of
accuracy. For illustration, this is the approach that we now
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outline. To apply PMTBR to the multiple interconnected,
individual systems can be very expensive due to the sample
effort required. However, careful consideration of the structure
of the system matrices and of the computation involved can
lead to considerable savings

H10 = −E(G00 + sC00)−1(G10 + sC10)(G00 + sC00)−1B.

In order to sample this function in the PMTBR scheme we
need to obtain the sample vectors

z10k = (G00 + skC00)−1(G10 + skC10)(G00 + skC00)−1B.

The term (G00 + skC00)−1 is common to the nominal and
all sensitivity transfer functions. Thus, it only needs to be
generated once for each sample, factored and then reused in
ensuing computations. This computation requires care in order
to ensure numerical stability. In fact, a single LU factorization
at each sample point can allow us to obtain the sampled
vectors of all the transfer functions in (12) with much less
computational effort. Once the samples are obtained for each
transfer function (i.e., for every xψϑ), an SVD is applied to
orthonormalize the vectors, and the vectors whose associated
singular value falls below a settled tolerance are dropped.
The remaining (dominant) vectors generate an orthonormal
projector, Vψϑ. A BSP-type projector [27] V , generated from
the block projectors Vψϑ, is then obtained

V = diag{V00, V10, . . . , Vψϑ}
and applied to the augmented system (15). The reduced
matrices have the same structure as the ones in (15), with
the same block-sparsity pattern, and in which each block
is independently reduced (here subindex i, j indicate block
position, not sensitivity index)

Ĉij = VTi CijVj B̂i = VTi B

Ĝij = VTi GijVj Êj = EVj.
(16)

It is important to notice that if a sensitivity block has only zero
entries, it will remain empty after the reduction, increasing the
matrix sparsity.

Under a good sampling scheme, a small number of vectors
is sufficient for accurately characterizing the system (whereas
more samples are required to cover a multidimensional space).
This approach also allows us to control the frequency sampling
range, focusing on the more interesting areas or the more
affected by the variation. A posteriori error bound can be used
to control the error in every transfer function (see [10] for
details). An algorithm is presented as Algorithm 1.

C. Stability and Passivity Preservation

An important property of any model reduction algorithm is
the preservation of stability and passivity, which implies that
the original model satisfies these constraints itself.

As already presented, a sufficient condition for passivity
of an arbitrary system is that B = ET and C,G are positive
semidefinite (PSD). The proposed representation for SPARE
complies with the first condition. With respect to the second
condition, for a real matrix G to be PSD, a necessary and suf-
ficient condition is that its symmetric part GSym = (G+GT )/2

Algorithm 1 SPARE-(PMTBR-based version)
From matrices C00,G00, B,E Cψϑ,Gψϑ.

1: Select a quadrature rule of K points in the frequency space, and
for each frequency point sk:

2: Compute the LU decomposition: LU = (skC00 +G00)
3: For each transfer function, obtain the sampled vector

z00k = U−1L−1B

z10k = −U−1L−1(skC10 +G10)z00k
z20k = −U−1L−1[(skC20 +G20)z00k+

+(skC10 +G10)z10k ]
. . .

4: For each Transfer Function compose the matrices, and perform
SVD on each one

Zψϑ = [zψϑ1
. . . zψϑk ]

Zψϑ = VψϑSψϑUψϑ

5: For each matrix Vψϑ drop the columns whose singular values fall
below the desired tolerance.

6: Build a Block Structure Preserving Projector from the remaining
columns

V = diag
{
V00 V10 . . . Vψϑ

}
7: Apply V in a congruence transformation on the augmented

system C,G,B,L in (15)

Ĉ = VTCV, Ĝ = VTGV, B̂ = VTB, Ê = EV

be PSD. For a symmetric matrix to be PSD, a necessary and
sufficient condition is that all its eigenvalues be nonnegative
(see Section VI-C of [25]). We will use these results to prove
that the SPARE matrices are PSD by construction.

Let us take a single parameterized electric element a(λ)
dependent upon a set of parameters λ, each of which is normal-
ized to a maximum value |λk| ≤ 1. The representation of the
element in terms of λ is a(λ) = a0...0 +

∑
ψ1...ψQ

�ψ1...ψQaψ1...ψQ ,

with �ψ1...ψQ = λ
ψ1
1 . . . λ

ψQ
Q . We will further assume that for

every element, the following conditions are always met:

a00...0 ≥ 0
a00...0 ≥ ∑

ψ1...ψQ

∣∣aψ1...ψQ

∣∣ . (17)

While the first condition is obvious from a physical per-
spective, the second condition merely states that for any
element, the perturbation caused by parameter variability has
magnitude smaller than the nominal value. This is a reasonable
assumption that ensures that under any parameter setting all
element values remain positive, thus, physical.

Lemma 3.1: A matrix corresponding to a SPARE stamping
of a single element, for arbitrary order and number of param-
eters, is PSD if the conditions in (17) hold for the element.

Proof: If we consider a single element a between two
arbitrary nodes κ and γ , the symmetric part of the SPARE
matrix A for an arbitrary order and number of parameters,
related to the stamping of this element is of the form

ASym(a, κ, γ) =

⎡
⎢⎢⎢⎣

2A11 A21 A31

A21 2A11 A32 . . .

A31 A32 2A11
...

. . .

⎤
⎥⎥⎥⎦ (18)
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where subindexes ij indicates block position, not sensitivity
index. Each block ij has the corresponding stamping (nominal
in the diagonal blocks, or sensitivity in the off diagonals). As
an illustration, for the diagonal block

κ γ

A11 =

[
a0...0 −a0...0

−a0...0 a0...0

]
κ

γ

(19)

where a0...0 ≥ 0 is the nominal value of the element. The block
is symmetric with eigenvalues a0...0 and zero, and therefore
PSD. All the blocks in (18) have the same structure, with
one zero eigenvalue, and another equal to the stamped value.
Notice that in the SPARE formulation, the number of nonzero
off-diagonal blocks in a column is at most equal to the number
of sensitivities of (5), with each nonzero off-diagonal block
corresponding to a different sensitivity.

The matrix in (18) can be rewritten as

ASym = AD +
∑
ij

AO
ij (20)

where AD is a block diagonal matrix with

diag(AD, j, j) = ADjj = 2A11 −
∑
i

A+
ij (21)

where A+
ij = Aij if the block Aij in (18) is PSD (i.e., the

sensitivity is positive), or A+
ij = −Aij if the block Aij is negative

SD (i.e., the sensitivity is negative). It is straightforward that
A+

ij is PSD, with its nonzero eigenvalue positive and equal
to the module of the corresponding sensitivity value aij. The
block matrices AO

ij in (20) are

i j

AO
ij =

[
A+

ij Aij

Aij A+
ij

]
i

j.

(22)

By the hypothesis of the conditions in (17), the blocks ADjj
are PSD (the related element is always positive, and thus,
the nonzero eigenvalue is positive), and thus, AD is PSD.
Regarding AO

ij , the matrices are symmetric and singular. A
block row and column elimination leads to a matrix with a
single diagonal block, equal to A+

ij. The nonzero eigenvalues
of this matrix are the same as the eigenvalues of A+

ij, which are
nonnegative. Since the matrix is symmetric with nonnegative
eigenvalues, we can state that it is PSD.

Therefore, the symmetric part of the stamping matrix, shown
in (18), is as a sum of PSD matrices, and thus, a PSD matrix.

Lemma 3.2: The SPARE matrices G and C are PSD for
an arbitrary order and number of parameters, for any number
of elements, as long as every element complies with the
conditions in (17).

Proof: For an arbitrary number of components the SPARE
matrix can be generated by the sum of the matrices with the
individual stamping of each component. Each one of these
individual matrix is PSD, and thus, their sum is a PSD matrix.

The above results can be applied to any formulation that
complies with the assumptions presented. Some methods

may include incidence blocks [e.g. modified nodal analysis
(MNA) stamping of an inductor]. In this case the sensitivities
of the incidence values are zero (the parameters affect the
value of the element, not its connections). Furthermore, such
blocks are zeroed out when computing the symmetric part of
the diagonal blocks (see (26) in [6]).

The consequences of these results, subject to the conditions
in (17) limit the acceptable range of variation for the param-
eters so that the maximum perturbation of an element is still
smaller than the nominal value. While this could theoretically
be conceived as a limitation of the present technique, in most
cases this condition is reasonable if we take into account the
physical nature of the problem (perturbations larger than the
nominal value could lead to negative elements). Furthermore,
most extraction methods only provide first order sensitivities,
and thus, this limitation is no more restrictive than the one
proposed in Section II-B.

With respect to the passivity of the SPARE ROM,
the congruence projection preserves the PSD character of the
matrices. Therefore the reduced matrices maintain the same
structure and properties as the original, and since B̂ = ÊT , the
ROM is guaranteed passive subject to the same restrictions as
the original SPARE representation.

IV. Computational Considerations

A. Reduced Model Generation

The cost of the procedure depends on the underlying nom-
inal MOR scheme chosen. We will study the case of PMTBR
based approaches. For K frequency sampling points, we must
perform K factorizations (one for each frequency point sk)
of the matrix Ak = Csk + G. For sparse matrices, the cost
of each factorization is O(nβ), with n the size matrix, and
typically 1.1 ≤ β ≤ 1.5. Once the matrix factors are obtained,
we must perform a set of matrix operations to generate the
nominal vector x0. These operations have an associated cost
of O(nα), with 1 ≤ α ≤ 1.2 for sparse matrices. For each extra
vector xi we must perform P (with P the number of transfer
functions sensitivities at the output) similar matrix operations,
with a cost of O(nα). Once all the vectors are computed for
the various transfer functions, the SVD is applied, at a cost of
O(nq2

i ), with qi the reduced order for each transfer function.
Thus, the total cost of the procedure is

O(Knβ +K(P + 1)nα +
P∑
i=0

nq2
i ). (23)

Let us compare this result with the total cost of the variational
PMTBR (VPMTBR) approach [20], which is the closest
methodology. In the VPMTBR, K̃ samples must be taken
in frequency plus parameters subspace. For each point, a
factorization and solve is required to generate the vectors, with
a cost O(nβ + nα). A SVD must be applied to the vectors to
obtain the basis, with cost O(nq2), in which q is the global
number of vectors. The global cost is

O(K̃nβ + K̃nα + nq2). (24)

When comparing (23) and (24) we must notice that for
the VPMTBR approach, the number of samples K̃ is larger
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(K̃ > K as we must sample a higher dimensional space),
and the size of the ROM, q, is (as we will see in the next
sections) at least equal to the size of the SPARE global matrix
(
∑P

i=0 qi). Knowing that the dominant factor in the cost of
MOR algorithms comes from the factorizations, it is clear
that the cost of the SPARE algorithm is smaller than for the
VPMTBR approach. This assessment will be validated with
experimental results in the following sections.

We would also point out, although beyond the scope of this
paper, that the procedure is highly parallelizable, in particular
the PMTBR-based approach, as the computation of the vec-
tors at different sampling points is completely independent.
Furthermore, the recursive procedure is independent for every
parameter (as long as no cross terms are taken into account).
Therefore, different levels of parallelism can be taken into
account. For example the frequency sampling level, as the
vectors xi can be generated independently for every one of the
K frequency points sk. Another is the order level, as for each
sampling point, the vector of each transfer function level only
depends on previous levels (see Fig. 1). Parallelization can also
be applied on the orthonormalization stage, since independent
SVD are applied to the multiple basis generated, in order to
obtain the orthonormalized vectors.

Orthogonalization between the different sets of vectors
(i.e., V0, V1, ...) is not an issue, as they are applied to
different transfer functions. However, for high orders in the
sensitivities with respect to the parameters, differences in the
condition number of the nominal matrices and the sensitivities
can lead to numerical errors. To avoid such pitfalls, a simple
scheme for scaling the matrices can be performed. Another
consideration we have to take into account is the fact that
we are treating every transfer function Hi independently,
and thus, the parameter and block related to such transfer
function can be scaled independently without consequences
both before and after SPARE reduction.

A different issue may arise from the use of Taylor series
approximation of the parameterized behavior. Taylor series
were chosen here for simplicity and because it is the de
facto standard in pMOR, for which lower orders are usually
sufficient for capturing the parameterized behavior. However,
it is important to notice that the methodology proposed can
be combined with any representation of the parameterized
behavior. For example, it can be combined with functions
depending on several parameters

G(λ) = G0 + f1(λ)G1 + f2(λ)G2 + . . .
C(λ) = C0 + f1(λ)C1 + f2(λ)C2 + . . .
H(s, λ) = H0(s) + f1(λ)H1(s) + f2(λ)H2(s) + . . .

(25)

where f1(λ) and f2(λ) can be any function depending on the
set (of subsets) of parameters λ. This fact opens the possibility
of using different representations of the parameterized sys-
tems, based on approximations of quasi-linear behavior at the
output via regression, orthogonal basis, kernel functions, etc.
Good representations could lead to better accuracy for lower
order at the output, or to parameter clustering (capture the
behavior of several physical parameters via a single numerical
function). Although interesting for future studies, these issues
are beyond the scope of this paper.

B. Model Evaluation

As it has been already pointed out, the preservation of the
structure in the reduction step allows for faster evaluation
of the model. The typical Taylor series reduced models are
described by a set of full reduced matrices of size q. To solve
the system for each frequency (or time step in time-domain
simulations), we must evaluate the system for the parameter set
λk, and then solve it for the frequency value sk (or equivalent
time point). This implies solving (3) with {sk, λk}, which has
an associated cost dominated by O(q3) since the model is
now essentially full. Every time a parameter or the frequency
change, a complete solve must be done.

The block lower triangular matrices in the SPARE models
can be exploited in a recursive fashion (although diagonal
blocks are different), and thus, for each frequency (or time
step in time-domain simulations), we must solve a number of
nominal transfer functions P , each of order qi. For instance,
in the frequency domain and for first order with one parameter

x̂00(sk) = (Ĝ00 + skĈ00)−1B̂00

Ĥ00(sk) = Ê00x̂00

Ĥ10(sk) = Ê10(Ĝ00 + skĈ00)−1(Ĝ10 + skĈ10)x̂00

(26)

which requires two solves with full block matrices and a
matrix-vector multiplication: O(q3

0 + q3
1 + q0q1), with q0 and

q1 the sizes of the blocks, respectively. In the general case
the associated cost is dominated by O(

∑P
i=0 q

3
i ), in which

the sizes qi are smaller. For the same matrix size (i.e.,
q =

∑P
i=0 qi), it is clear that the cost of using the SPARE

models is smaller than for the traditional full Taylor series

models: O
(∑P

i=0 q
3
i

)
< O

((∑P
i=0 qi

)3
)

.

The parameterized response is obtained by linear combi-
nation of the multiple transfer functions, as shown in (12),
the cost of which is negligible. Furthermore, any change of
a parameter (value setting) simply requires evaluating such
linear combination, with no need for system solving.

V. Experimental Results

A. Subspace Growth

In this section, we illustrate the effect that parameters
have on the subspaces generated for projection. For several
different parameterized systems a fairly exhaustive sampling
is performed. First, the nominal case is considered, and only
the frequency is sampled, with all the parameters set to their
nominal value. Second, we consider the parameter effect,
and thus, sampling is done in the complete frequency plus
parameter space (including cross samples). In each case, for
each system, an SVD is applied to the resulting set of vectors,
and a threshold is set allowing truncation of the respective
subspace. All vectors associated with singular values within
1e-6 of the largest singular value (σ1) are kept. The size of the
resulting dominant subspace is then compared. The examples
used in this experiment are given below.

1) Two electromagnetically coupled lossy lines on the same
metal layer. They are subject to the variation of six geo-
metrical parameters, modifying the width and thickness
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TABLE I

Subspace Growth With Parameter Effect

Example Coupled Lines PEEC LSP + CMIM
(Size 6002) (Size 304) (Size 11005)

Nominal 26 38 58
Parameterized 54 63 446

(six parameter) (one parameter) (two parameter)

of the metal, each parameter inducing a variation up to
±30% element-wise. Each line and the couplings are
modeled via distributed elements, with a total model
order of 6002 states.

2) A well known 304 states partial element equivalent cir-
cuit (PEEC) based example [7], in which the conductive,
capacitive and inductive parts are perturbed up to 30%
with a single artificial parameter.

3) A full wave EM model of a typical industrial analog
planar spiral inductor connected in series with a metal-
insulator-metal capacitor (CMIM), including surround-
ing and substrate. The model, obtained via finite inte-
gration technique, FIT [28], has a size of 11 005, and is
dependent on two parameters. One is the length of the
side of the square that forms the spiral, and the other
is the insulator width. First order sensitivities relative to
these parameters are obtained for G and C [22], [24].

Table I shows (for each of the examples) the size of the
relevant subspace for the nominal system, and for the complete
parameterized system. It can be seen that perturbations on sim-
ple examples, such as the coupled lines and PEEC, although
they may largely affect the output response, generate few extra
vectors to add to the subspace, and thus, such subspace can be
efficiently matched with standard pMOR techniques. However,
for the EM example, the effect of the perturbations drastically
increases the number of vectors of the relevant subspace. In
this scenario, the standard pMOR techniques must match this
subspace in order to maintain the accuracy for the complete
range of variation of the parameters. Therefore, the size of
the ROM is drastically increased (it should be at least of the
same size), and its full matrices may lead to small advantage
in simulation steps over the original unreduced model.

In the next sections, we benchmark the proposed methodol-
ogy against competing algorithms: the procedures presented
in [20], denoted as VPMTBR, in [21], denoted as CORE,
and in [19], denoted as parameterized interconnect macromod-
eling via a two-directional Arnoldi process (PIMTAP). The
advocated methodology will be combined with either moment
matching or PMTBR underlying schemes for generating the
projector, and will be denoted as K-SPARE and BT-SPARE,
respectively. The nonreduced model response, formulated as
in (5), will be denoted as nominal or parameterized, depending
on whether a variation of the parameters has been applied. In
all cases, first order Taylor series sensitivities will be used,
both for matrices and for the transfer functions.

B. First Order Approximation: Coupled Lines Example

The first example will be the two coupled lossy metal lines.
The figure of merit selected for this benchmark is to capture
the cross-talk between lines, i.e., the transfer function between
the input of the first line, and the output of the second line.

TABLE II
n = 6002-States Coupled Lines Example: pMOR Features

NNZ (G C) Gen. Effort Speed-Up
& Sparsity (One Eval)

Original 16 000 8000 – 1×
size 6002 4e-4 2e-4 –
VPMTBR [20] 784 100 Spl.(w+λ) ≈20×
size 28 1.00 SVD(n× 28)
PIMTAP [19] 784 2 BM ≈20×
size 28 1.00 QR(n× 28)
CORE [21] 784 14 BM ≈20×
size 28 1.00 QR(7n× 28)
K-SPARE 2548 7 BM ≈20×
size 98 (14) 0.265 7×QR(n× 14)
BT-SPARE 2548 25 Spl.(w) ≈20×
size 98 (14) 0.265 7×SVD(n× 14)

Fig. 2. Coupled lines example. (a) Transfer function for nominal and pa-
rameterized models, and ROMs for a single parameter point. Curves are
virtually indistinguishable, although Krylov based models lose accuracy at
high frequencies. (b) Transfer function for the parameterized and BT-SPARE
models for different parameter settings.

The geometrical parameters largely affect this coupling effect
between lines.

For this first comparison, we fix the order for the VPMTBR
to obtain a model with very good accuracy (absolute error less
than 1e-3). In this case, the order is set to 28. The orders for
the rest of the pMOR models are obtained so that the speed-up
for a single evaluation is approximately the same. In the case
of the PIMTAP and CORE approaches, the size of the ROM
must be the same, whereas for the SPARE based approaches
we fix the block size to 14 for each transfer function, which
generates a system with 98 states and matrices with a block
lower triangular (BLT) structure. The effort in evaluate these
models for a single point is approximately the same than for
an order 28 full matrix (see Section IV-B for details). Table II
shows the relevant characteristics of the models and algorithms
used, namely the number of nonzero elements in the model
(NNZ), the sparsity factor (ratio of NNZ to size), the cost of
model generation (Gen. Effort, in which BM stands for block
moments, and Spl. stands for samples) and evaluation speed-
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Fig. 3. Coupled lines example. Monte Carlo analysis on 15 625 parameter
settings. On the vertical axis are the number of occurrences, whereas on the
horizontal axis are the maximum relative error for the complete frequency
range with respect to the original parameterized model. From (a) to (e),
the models are VPMTBR, PIMTAP, CORE, K-SPARE, and BT-SPARE,
respectively.

up (a ratio of the time spent evaluating the reduced versus
the original models, and which is related to discussion on
Section IV-B). In the case of PIMTAP, CORE, K-SPARE, and
BT-SPARE, the ROMs are obtained for first order with respect
to the parameters (linear approximation). The top plot (a) in
Fig. 2 shows the frequency transfer function for the nominal,
the perturbed Taylor series original system and various ROMs,
for a single parameter setting. All the pMOR methodologies
capture the parameterized behavior with good accuracy for this
setting. The bottom plot (b) in the same figure shows how the
transfer function varies for different parameter settings, and
how the BT-SPARE approach is able to capture this behavior.

Let us now study the behavior of the ROMs when the
parameters are varied to different settings. To this end, we
perform a Monte Carlo (MC) analysis with 15 625 parameter
settings covering all the space (and for each parameter setting
a fine frequency sweep is done). For each ROM we calculate
the transfer function for the current parameter setting, and
obtain the maximum absolute error for the complete frequency
sweep with respect to the original parameterized model. Fig. 3

Fig. 4. Coupled lossy lines example. (a) Minimum real part of eigenvalues of
(H(s) +HT (s∗)) along the frequency for a single parameter set. (b) Minimum
real part of eigenvalues of (H(s) +HT (s∗)) as the parameter values increase.

shows, for each methodology, the number of parameter settings
against the maximum absolute error of the ROM transfer
function in the whole frequency sweep. It can be seen that
VPMTBR is the most reliable framework, with a very low
error for all the samples. BT-SPARE also generates good
results, due to the sampling scheme that provides better
frequency-wise overall models. Krylov based approaches lose
accuracy at high frequencies due to the inherent locality of
the methodologies, although for the frequency range studied
the accuracy provided by the number of moments matched is
good. K-SPARE and CORE approaches rely on capturing the
transfer function parameterized behavior by a Taylor series ap-
proximation (linear in this case). For this reason, the minimum
error will be the one generated by the nominal, and for any
parameter variation, the error will increase by the difference
between the real output behavior and the approximation. This
is why the largest error in these approaches is higher. However,
the accuracy of the K-SPARE approach is better than the
one of the CORE model, even though the number of block
moments generated is smaller (see Table II). PIMTAP model
applies the projector with multidimensional moments on the
parameterized system, and in this case it provides a good
agreement even for a small number of block moments.

C. Passivity Preservation

In this section, we will present results that validate the
theoretic results for passivity preservation. To this end, we
use some of the models generated in the previous section, that
is, the ROMs obtained via VPMTBR, CORE and SPARE for
the coupled lossy lines example. The VPMTBR retains the
original matrix Taylor series formulation, and in consequence
its passivity attributes.

For these models, we vary the parameter values and check
the passivity of the resulting model. For zero and small
variations all the models, including CORE, remain passive.
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TABLE III

n = 11005-States EM Example: pMOR Features

NNZ (G C) Gen. Effort Speed-Up
and Sparsity (One Eval)

Original 48 708 13 510 – 1×
size 11 005 4e-4 1.1e-4 –
VPMTBR 22 500 22 500 75 Spl.(w+λ) ≈250×
size 150 1.00 1.00 SVD(n× 150)
PIMTAP 22 201 22 201 25 BM ≈250×
size 149 1.00 1.00 QR(n× 149)
CORE 22 500 22 500 75 BM ≈250×
size 150 1.00 1.00 QR(3n× 150)
K-SPARE 12 500 12 500 25 BM ≈800×
size 150 (50) 0.55 0.55 3 × QR(n× 50)
BT-SPARE 12 500 12 500 25 Spl(w) ≈800×
size 150 (50) 0.55 0.55 3 × SVD(n× 50)

However, as we increase the parameter variation, we have
noticed that the CORE models quickly become nonpassive.
This could be understood by noticing the larger the parameter
value, the larger the difference between B and E matrices for
the CORE model (recall that CORE included the parameter
effect in the E matrix). On the other hand, both SPARE and
VPMTBR models remain passive for any perturbation (as long
as they comply with the presented theoretical results).

From the conditions of the positive real lemma (6), for a
passive system the real part of the eigenvalues of H(s)+HT (s∗)
should be positive for any s ∈ R(s) > 0. Fig. 4 shows the
minimum real part of the eigenvalues of (H(s) + HT (s∗)) for
all the frequency points. The top plot shows this curve for
the three perturbed models. It is clear that the CORE curve
falls below zero, and thus, it is nonpassive. The bottom plot
presents the same curve for SPARE and CORE models for
different parameter sets, starting at zero variation (nominal)
and increasing until maximum variation. It can be seen that
the CORE model becomes nonpassive as the parameter values
are increased.

D. Models of Same Order: EM-Based Example

As a second benchmark we use the spiral inductor and
CMIM EM-based model, which depends on two parameters.
The same algorithms are used here: VPMTBR, PIMTAP,
CORE, and SPARE based methodologies. In all cases the
ROMs are obtained for first order with respect to each param-
eter (linear approximation). Table III shows the same relevant
characteristics of the models and algorithms used. The sizes of
all the ROMs are set to 150 for comparison. The effort needed
for generating such models varies: Krylov based techniques,
such as CORE and K-SPARE, are cheaper. However, the
number of BM computed for K-SPARE is one third of that
computed in CORE (see Table III), as the basis is expanded.
The cost of BT-SPARE is lower than that of VPMTBR, as it
only samples the frequency, and the SVD is applied on a much
smaller number of vectors. The VPMTBR model is computed
using the same frequency samples as BT-SPARE, plus param-
eter samples around those frequency points. The evaluation of
the models is again much faster in the SPARE-based models,
as their matrices are sparser and block lower triangular (see
Table III, where the ROM, and the blocks sizes in the SPARE
case are shown below the method name) whereas VPMTBR,
PIMTAP, and CORE yield full models. Furthermore, any

Fig. 5. Spiral and CMIM example. |Z11| versus frequency for a single
parameter set. (a) Transfer function for nominal, perturbed TS and ROMs.
(b) Relative error with respect to TS for the ROMs.

Fig. 6. Spiral and CMIM example. relative error of the ROMs versus the
parameter variation for (a) p1 and (b) p2 at 1 GHz.

change in the parameter values implies a complete reevaluation
of the model for all techniques but SPARE. For SPARE this
cost is negligible and, therefore, for N different parameter set-
tings, the speed-up increases by a factor of N. With respect to
the accuracy of the models, Fig. 5 shows the frequency transfer
function computed by all methods, for a given setting of the
parameters. PIMTAP is unable to capture the parameterized
behavior, as the first order approximation is not enough to
produce all the moments the Taylor series system needs for
being accurately modeled. On the other hand, CORE and K-
SPARE, which rely on an approximation of the output, show
good agreement for low frequencies, but with increasing error
as frequency rises (more frequency moments would improve
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TABLE IV

n = 11 005-States EM Example: PMTBR pMOR Features

NNZ (G C) Gen. Effort Speed-Up
and Sparsity (One Eval)

VPMTBR 65 536 75 Spl.(w+λ) ≈55×
size 256 1.00 SVD(n× 256)

O(8.13e8)
VPMTBR 142 129 125 Spl.(w+λ) ≈15×
size 377 1.00 SVD(n× 377)

O(1.71e9)
BT-SPARE(1, 1) 8829 25 Spl.(w) ≈850×
size 120 0.613 SVD(n× 57)
(57, 33, 30) SVD(n× 33)

SVD(n× 30)
O(9.18e7)

BT-SPARE(2, 1) 11 527 25 Spl.(w) ≈640×
size 158 0.461 +SVD(n× 38)
(57, 33, 38, 30) O(1.09e8)
BT-SPARE(3, 1) 14 082 25 Spl.(w) ≈540×
size 193 0.378 +SVD(n× 35)
(57, 33, 38, 35, 30) O(1.24e8)

their accuracy). VPMTBR is not able to maintain the accuracy
for parameter variations whereas BT-SPARE of first order
exhibits the best accuracy for the whole frequency range and
for a fairly large variation on the parameters This behavior
can be seen in Fig. 6, which shows the transfer function
variation with respect to parameters (a) p1 and (b) p2, for
a fixed frequency point. It is clear that the SPARE based
models are able to capture the parameterized behavior for
fairly large variations. CORE exhibits a similar behavior, but
loses accuracy as frequency rises. The accuracy of VPMTBR
varies and deteriorates when the variations increase (for
the same ROM size). p2 has a less relevant effect, and
all the algorithms are able to capture it accurately, although
the SPARE based techniques display a smoother behavior.

E. PMTBR Based Approach: Automatic Order Selection

In this section, we are going to compare the PMTBR
based approaches, i.e., the VPMTBR [20] approach versus
the PMTBR based SPARE (BT-SPARE). In this case, the size
is determined by singular values. This means that we set a
defined tolerance (in this case, a relative tolerance of 5e-5),
and the singular vectors whose associated singular value falls
below such tolerance, are dropped.

For VPMTBR two models are generated. The difference
between them is the number of samples taken for the model
generation. In both cases, a logarithmic sampling of 25
points in the frequency is done (with parameter values set
to nominal). For the first VPMTBR model, around those
nominal frequency points, two random samples are taken in
the parameter space [this gives 25 × (1 + 2) = 75 samples].
After the SVD, a 256-vector basis is obtained. This means a
256 full model. For the second VPMTBR model, around those
nominal frequency points, four random samples are taken in
the parameter space [this gives 25 × (1 + 4) = 125 samples].
After the SVD, a 377 full model is generated.

For BT-SPARE, three models are generated, with different
orders with respect to each parameter. In the three cases we use
the same 25 nominal samples of the VPMTBR scheme. Each
model is obtained by increasing the output order with respect
to one parameter. The first model, denoted as BT-SPARE(1, 1)

Fig. 7. SPIRAL and CMIM EM example. (a) |Z11| for the nominal, the
perturbed TS, and the ROMs, along the frequency for a single parameter set.
(b) Relative error along the frequency of the VPMTBR (256), the VPMTBR
(377) and BT-SPARE(1, 1) ROMs with respect to the original TS, for the
same parameter set. (c) Relative error along the frequency of BT-SPARE
(1, 1), BT-SPARE(2, 1) and BT-SPARE(3, 1) ROMs with respect to the
original TS, for the same parameter set.

is a first order approximation with respect to each parameter.
After the SVD is applied to each set of vectors, the number of
retained vectors are: 57 for the nominal transfer function, 33
for the first order with respect to the first parameter, and 30
for the first order with respect to the second parameter. This
generates BLT G and C matrices of size 120. The second
model, denoted as BT-SPARE(2, 1) is a second order w.r.t to
the first parameter and a first order with respect to the second
parameter approximation. The model is incrementally obtained
from the previous by including the second order with respect to
the first parameter. This adds a 38-order block, and thus, com-
plete BLT G and C matrices of size 158. For the third model,
denoted as BT-SPARE(3, 1), we incrementally add the third
order w.r.t to the first parameter. This adds a 35-order block,
and generates complete BLT G and C matrices of size 193.

Table IV shows the same characteristics of the models
as in the previous examples, for the current study case. In
the column related to generation cost, we have included the
incremental cost for increasing the order, and we have added a
row with the theoretical cost for each of the ROMs, by simply
evaluating (24) and (23). It is clear that the VPMTBR cost is
higher than the SPARE methodology.
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Fig. 8. SPIRAL and CMIM EM example. MC analysis on 110 parameter
settings. On vertical axis are the number of occurrences, whereas on horizontal
axis are the maximum relative error with respect to the original TS for the
complete frequency range. ROMs are, from (a) to (e), VPMTBR (size 256),
VPMTBR (size 377), BT-SPARE(1, 1) (size 120), BT-SPARE(2, 1) (size 158),
and BT-SPARE(3, 1) (size 193).

Fig. 7 shows the frequency response of the ROMs’ trans-
fer functions with respect to the original TS, for a single
parameter set. The smaller (256) VPMTBR model does not
have sufficient accuracy. VPMTBR of size 377 and BT-
SPARE approaches are apparently indistinguishable. However,
increasing the order with respect to the parameter leads to an
accuracy improvement in SPARE based approaches, which are
better than those of the VPMTBR models. Relative errors [(b)
middle and (c) bottom plots of Fig. 7] confirm these results.

The advantage of SPARE in this scenario comes from the
fact that the system output behavior when the parameters are
modified is smooth, and thus, can be well approximated by
a Taylor series representation, for which the nominal and
sensitivities transfer functions are well approximated by low
order models. On the other hand, the VPMTBR model needs
to capture the complete subspace (which is much larger due
to the effect of the parameters).

To see the behavior of such models, a Monte Carlo like
simulation is applied and 110 different parameter settings,
covering the range of interest, are simulated. For each set, the

frequency transfer function is computed for each ROM, and
the maximum relative error with respect to the original Taylor
series is computed. Fig. 8 shows, for each ROM, the number
of parameter settings against the maximum relative error of the
ROMs’ transfer function for the complete frequency range. It
can be seen that for the two VPMTBR models (top two figures
in Fig. 8) the error is high. Increasing the number of samples
leads to accuracy improvement, but the 125 samples are not
sufficient. Increasing the number of samples, or performing an
optimal sample, would lead to better results. Regrettably, there
is no optimal methodology for multidimensional sampling, and
the size of the ROM would still make the model uncompetitive
if compared to SPARE.

The SPARE models have a much better behavior. It can be
seen that the increment of order with respect to the first param-
eter improves the worst case accuracy [for the BT-SPARE(3,
1) model, the worst relative error was approximately 7%].
A noticeable effect of the SPARE approaches is a relatively
large deviation in the error plot. This is because SPARE relies
on capturing the transfer function parameterized behavior by
a Taylor series approximation. Thus, the smaller error will
be the one generated by the nominal, and for any parameter
variation, the error will increase by the difference between
the real output behavior and the approximation. Therefore, the
error for small perturbations will be lower than for large ones,
but still the error will grow gradually with the increment in the
perturbation, as long as the behavior on the output is smooth.

VI. Conclusion

In this paper, a flexible and efficient pMOR algorithm was
presented. The method is based on a reformulation of the
original system as a parallel interconnection of the nominal
transfer function and the nonparameterized transfer function
that describe the effect of the various parameters. This formu-
lation reveals an explicit dependence on the parameters which
is exploited and preserved during reduction. The structure
of the reduced model leads to efficient simulation and re-
evaluation of the parameterized response, with smaller time
and memory resource requirements in simulations stages. The
explicit parameter dependence also allows for better accuracy
control, enabling independent adaptive order determination
with respect to each parameter and adding flexibility in sim-
ulation environments. The new technique can handle fairly
large parameter variations on systems whose outputs exhibit
smooth dependence on the parameters. This can be used
as a fast linear approximation to explore design parameters
in optimization steps using EM models. The procedure has
also been shown to preserve passivity, and examples show
that besides the added flexibility and control, the proposed
algorithm can produce smaller reduced models with potential
accuracy gains in comparison with competing methods.

On the other hand, the technique is less competitive when
dealing with nonsmooth output behavior with respect to the
parameters, due to the Taylor series approximation. Future
work should explore different output representations and tech-
niques for parameter clustering, in order to obtain accurate
parameterized output representation with a minimum number
of parameterized terms.
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