
Circuits Syst Signal Process (2014) 33:1689–1719
DOI 10.1007/s00034-013-9727-8

A Tutorial on Multiplierless Design of FIR Filters:
Algorithms and Architectures

Levent Aksoy · Paulo Flores · José Monteiro

Received: 10 April 2013 / Revised: 12 December 2013 / Published online: 23 January 2014
© Springer Science+Business Media New York 2014

Abstract Finite impulse response (FIR) filtering is a ubiquitous operation in digital
signal processing systems and is generally implemented in full custom circuits due
to high-speed and low-power design requirements. The complexity of an FIR filter is
dominated by the multiplication of a large number of filter coefficients by the filter
input or its time-shifted versions. Over the years, many high-level synthesis algorithms
and filter architectures have been introduced in order to design FIR filters efficiently.
This article reviews how constant multiplications can be designed using shifts and
adders/subtractors that are maximally shared through a high-level synthesis algorithm
based on some optimization criteria. It also presents different forms of FIR filters,
namely, direct, transposed, and hybrid and shows how constant multiplications in each
filter form can be realized under a shift-adds architecture. More importantly, it explores
the impact of the multiplierless realization of each filter form on area, delay, and power
dissipation of both custom (ASIC) and reconfigurable (FPGA) circuits by carrying out
experiments with different bitwidths of filter input, design libraries, reconfigurable
target devices, and optimization criteria in high-level synthesis algorithms.

Keywords FIR filter · Direct, transposed, and hybrid forms · Multiplierless design ·
High-level synthesis · Area and delay optimization · Custom and reconfigurable
circuits

L. Aksoy (B)
INESC-ID, Lisbon, Portugal
e-mail: levent@algos.inesc-id.pt

P. Flores · J. Monteiro
INESC-ID/Tecnico ULisboa, Lisbon, Portugal
e-mail: pff@inesc-id.pt

J. Monteiro
e-mail: jcm@inesc-id.pt

1690 Circuits Syst Signal Process (2014) 33:1689–1719

1 Introduction

FIR filters are widely used in digital signal processing (DSP) applications due to their
stability and linear-phase properties. The output of an N -tap FIR filter is computed as

y(n) =
N−1∑

i=0

hi · x(n − i) (1)

where N is the filter length, hi is the i th filter coefficient, and x(n−i) is the i th previous
filter input with 0 ≤ i ≤ N −1. The straightforward implementation of Eq. 1 when N
is equal to 6 is illustrated in Fig. 1a, which is known as the direct form. Alternatively,
it can be realized in the transposed form, as shown in Fig. 1b. Observe from Fig. 1a–b
that the direct and transposed forms require exactly N multipliers and N−1 adders
and registers. However, a careful observation reveals three main differences: (i) while
the size of registers in the direct form is fixed and equal to the bitwidth of the filter

(a)

(b)

(c)

Fig. 1 Different realizations of a 6-tap FIR filter: a direct form; b transposed form; c one type of the hybrid
form among many others

Circuits Syst Signal Process (2014) 33:1689–1719 1691

input bwi , in the transposed form, their size depends on N , bwi , and the bitwidth
of coefficients, increasing up to bwi + �log2

∑N−1
i=1 |hi |�; (ii) the critical path of the

transposed form (a multiplier and an adder) is shorter than that of the direct form (a
multiplier and �log2 N� adders, assuming that the adders are organized in a binary
tree); (iii) the transposed form has a larger input capacitance than the direct form due
to the higher fan-out of the filter input. The expression of Eq. 1 can also be realized in
a hybrid form as shown in Fig. 1c, enabling the exploration of these tradeoffs between
the direct and transposed forms [28,40].

Although area, delay, and power efficient multiplier architectures, such as Wal-
lace [55] and modified Booth [24] multipliers, have been proposed, the full-flexibility
of a multiplier is not necessary in the filter design, since filter coefficients are fixed
and determined beforehand [45]. Hence, the multiplication of filter coefficients by
the filter input or its time-shifted versions is generally implemented under the shift-
adds architecture, where constant multiplications are realized using shifts and addi-
tion/subtraction operations [48].

In the last two decades, many efficient high-level synthesis algorithms have
been introduced for the multiplierless design of constant multiplications using
the fewest number of addition/subtraction operations [1,6,7,9,10,15,17,23,26,29–
32,34,35,42,43,47,49,50,53,54,57,59]. These algorithms target different types of
constant multiplications and aim to optimize the number of operations by maximizing
the partial product sharing among the constant multiplications. Also, the algorithms
of [3–6,10,11,38] take into account the implementation cost of each adder/subtractor
realizing a constant multiplication in a custom or a reconfigurable circuit and can opti-
mize the area of a shift-adds design. Moreover, the algorithms of [1,3,5,34,36,39] can
find a shift-adds design of constant multiplications under a delay constraint, that is
defined in terms of the maximum number of operations in series, and can optimize the
number of operations or gate-level area. Thus, they can explore the tradeoff between
area and delay in shift-adds designs.

In this article, we review prominent algorithms designed for the multiplierless real-
ization of different types of constant multiplications, targeting the optimization of the
number of operations, and the area and delay of the design. We also present different
FIR filter forms, namely, direct, transposed, and hybrid, and describe how constant
multiplications in these filter forms can be efficiently realized under a shift-adds archi-
tecture so that the sharing of partial products is maximized using a high-level synthesis
algorithm. The most important contribution of this article is the introduction of low-
level results of direct, transposed, and hybrid filter forms. In this work, symmetric
and asymmetric FIR filters were synthesized for both application-specific integrated
circuits (ASIC) and field programmable gate arrays (FPGA), and experiments were
carried out to explore the effect of key parameters in the algorithms and filter archi-
tectures on the complexity of FIR filters.

Among many others, three important results drawn from experiments can be stated
as follows: (i) it is well known that the shift-adds designs of filters with the use of
high-level synthesis algorithms yield significant savings in area with respect to filters
using generic multipliers in custom circuits. Our experimental results showed that this
is also true for FPGAs when an FIR filter has a number of coefficients larger than
the number of DSP48 slices in the target device, which support many independent

1692 Circuits Syst Signal Process (2014) 33:1689–1719

functions including a multiplier; (ii) for the multiplierless design of filters in custom
circuits, the transposed form filters occupy more area and consume more power than
the direct form filters, but still having less delay. Also, the hybrid form, which is best
suitable for asymmetric filters, offers intermediate designs occupying less area than the
transposed form and having less delay than the direct form; (iii) for the multiplierless
design of filters on FPGAs, the transposed form is the best architecture in terms of delay
and is generally better than the direct and hybrid forms in terms of power dissipation.
However, the target FPGA device with its available resources and the bitwidth of the
filter input play key roles on the area of the filter design.

The rest of this article proceeds as follows. Section 2 gives the main concepts
related to the multiplierless constant multiplications and presents prominent high-level
synthesis algorithms. Section 3 introduces different forms of FIR filters and describes
how constant multiplications in each form can be implemented under a shift-adds
architecture. Experimental results on different forms of FIR filters synthesized in
custom and reconfigurable circuits are presented in Sect. 4, and finally, this article is
concluded in Sect. 5.

2 Multiplierless Constant Multiplications

This section introduces different types of constant multiplications that appear in direct,
transposed, and hybrid form FIR filters as well as in many DSP systems and presents
algorithms designed for their shift-adds realizations.

2.1 Types of Constant Multiplications

The multiplication of data samples by constant coefficients in DSP systems can be
categorized in four main classes as illustrated in Fig. 2:

1. The single constant multiplication (SCM) operation realizes the multiplication of
a single coefficient c by a single variable x , i.e., y = cx . It is frequently used in the

(a)

(b)

(c)

(d)

Fig. 2 Four types of constant multiplications: a SCM; b MCM; c CAVM; d CMVM

Circuits Syst Signal Process (2014) 33:1689–1719 1693

design of fast Fourier transforms (FFTs) [51] and fast discrete cosine transforms
(DCTs) [53].

2. The multiple constant multiplications (MCM) operation computes the multiplica-
tion of a set of m constants C by a single variable x , i.e., y j = c j x with 1 ≤ j ≤ m.
It occurs in the transposed form FIR filters [39].

3. The constant array-vector multiplication (CAVM) operation implements the mul-
tiplication of a 1×n constant array C by an n ×1 input vector X , i.e., y = ∑

k ck xk

with 1 ≤ k ≤ n. It appears in infinite impulse response (IIR) and direct form FIR
filters [32].

4. The constant matrix-vector multiplication (CMVM) operation realizes the multipli-
cation of an m×n constant matrix C by an n×1 input vector X , i.e., y j = ∑

k c jk xk

with 1 ≤ j ≤ m and 1 ≤ k ≤ n. It is used in the design of linear DSP transforms
[10] and hybrid form FIR filters [28].

Observe that the CMVM operation is the most general case of constant multipli-
cations and corresponds to an SCM operation when both m and n are 1, to an MCM
operation when m > 1 and n is 1, and to a CAVM operation when m is 1 and n > 1.

2.2 High-Level Synthesis Algorithms

A straightforward way of realizing constant multiplications under a shift-adds archi-
tecture, called the digit-based recoding (DBR) technique [19], is first to define the con-
stants under a particular number representation, namely, binary or canonical signed
digit (CSD)1 [32], and second, for the nonzero digits in the representation of constants,
is to shift the input variables according to digit positions and add/subtract the shifted
variables with respect to digit values.

As a simple MCM example, consider the constant multiplications 51x and 77x .
The decompositions of constants under CSD are given as follows:

51x = (1010101)C SD x = x � 6 − x � 4 + x � 2 − x

77x = (1010101)C SD x = x � 6 + x � 4 − x � 2 + x

which lead to a design with 6 operations, as shown in Fig. 3a.
As a CMVM example, consider the linear transforms, y1 = 11x1 + 17x2 and

y2 = 19x1 + 33x2. The constants in the linear transforms are defined under CSD as
follows:

y1 = 11x1 + 17x2 = (10101)C SDx1 + (10001)C SD x2

= x1 � 4 − x1 � 2 − x1 + x2 � 4 + x2

y2 = 19x1 + 33x2 = (10101)C SDx1 + (100001)C SD x2

= x1 � 4 + x1 � 2 − x1 + x2 � 5 + x2

1 An integer can be written in CSD using n digits as
∑n−1

i=0 di 2i , where di ∈ {1, 0, 1} and 1 denotes −1.
The nonzero digits are not adjacent, and a constant is represented with minimum number of nonzero digits
under CSD.

1694 Circuits Syst Signal Process (2014) 33:1689–1719

(a) (b)

Fig. 3 Shift-adds implementations of constant multiplications using the DBR technique [19]: a an MCM
operation realizing 51x and 77x ; b a CMVM operation realizing y1 = 11x1 + 17x2 and y2 = 19x1 + 33x2

which require 8 operations, as depicted in Fig. 3b.
In the shift-adds design of constant multiplications, the fundamental optimization

problem is to find the minimum number of adders/subtractors that realize the constant
multiplications, since shifts can be realized using only wires which represent no hard-
ware cost. Note that this is an NP-complete problem even in the case of SCM [12]. The
proposed algorithms aim to maximize the sharing of partial products and are generally
grouped in two categories based on the search space where they look for a solution.

1. The common subexpression elimination (CSE) methods [1,6,10,32,34,35,42,43,
49,50,57,59] define the constants under a number representation, such as, binary,
CSD, or minimal signed digit (MSD)2 [49]. Then, considering possible subexpres-
sions that can be extracted from the nonzero digits in representations of constants,
the “best” subexpression, generally, the most common, is chosen to be shared
among the constant multiplications. Their main drawback is their dependency on
a number representation.

2. The graph-based (GB) techniques [7,15,17,26,29,30,47,53,54] are not restricted
to any particular number representation and aim to find intermediate subexpres-
sions that enable to realize the constant multiplications with minimum number of
operations. They consider a larger number of realizations of a constant and obtain
better solutions than the CSE methods, but requiring more computational resources,
due to the larger search space.

Additionally, hybrid techniques combine methods from both CSE and GB algo-
rithms [5] and increase the number of possible implementations of a constant obtained
by a CSE method considering alternative realizations [18,34].

2 MSD differs from CSD in one property which allows the nonzero digits to be adjacent. Thus, a constant
may have alternative representations in MSD, all including minimum number of nonzero digits.

Circuits Syst Signal Process (2014) 33:1689–1719 1695

Observe from Fig. 2 that although any algorithm designed for a CMVM instance
can be applied to an SCM, MCM, or CAVM instance, there is no exact algorithm
that finds the global minimum solution in terms of the number of operations for a
CMVM instance, while the exact algorithms of [53] and [7] can be applied to real
size SCM and MCM instances, respectively. This is because the complexity of the
problem increases from SCM to CMVM as the number of input and output variables
increases. Hence, in the next two subsections, we first describe prominent algorithms
designed for the SCM and MCM operations and then, those designed for the CAVM
and CMVM instances.

2.2.1 Methods for the Multiplierless Design of SCM and MCM Operations

For the shift-adds design of SCM operations, the CSE heuristic of [42] initially defines
the constant under CSD and then, in each iteration, it finds the “best” subpattern with
the maximal number of terms having at least 2 occurrences and replaces its occurrences
in the representation of the constant. Due to its polynomial time complexity, it can
be applied to constants with thousands of bits. The minimum number of operations
required for all constants up to 12 bits was found by the exhaustive search algorithm of
[17], and this approach was extended to constants up to 19 bits in [29]. The exhaustive
search technique of [53] equipped with efficient search pruning techniques can easily
find the minimum solution of 32-bit constants.

For our example in Fig. 3a, 51x requires minimum 2 operations, such as,
3x = x � 1 + x and 51x = 3x � 3 + 3x , and 77x needs minimum 3 opera-
tions, such as, 31x = x � 5 − x , 93x = 31x � 2 − 31x , and 77x = 93x − x � 4,
which lead to a total of 5 operations for both constant multiplications.

For the shift-adds design of MCM operations, the exact CSE algorithms of [23,31]
define the constants under a number representation, obtain all possible implementa-
tions of constant multiplications that are extracted from the representations of con-
stants, and formalize the problem of finding the minimum number of operations as
a 0-1 integer linear programming (ILP) problem. The problem reduction and model
simplification techniques for the exact CSE algorithms were presented in [1,34]. On
the other hand, the prominent CSE heuristics of [32,49,50,57] iteratively find the most
common subexpressions and replace them in constant multiplications.

Returning to our example in Fig. 3a, the exact CSE algorithm [1] obtains a solution
with 4 operations when constants are defined under CSD by finding the most common
subexpression 17x = (10001)CSDx , as shown in Fig. 4a.

The exact GB algorithms of [7] search a minimum solution in breadth-first and
depth-first manners. The prominent approximate GB algorithms of [15,54] include
two parts, optimal and heuristic. In their optimal parts, each constant, which can be
implemented with a single operation, is synthesized. If there exist unimplemented
constants left, then they switch to their heuristic parts where the required interme-
diate constants are found iteratively. The algorithm of [15] initially chooses a single
unimplemented constant with the smallest single coefficient cost [17] and then syn-
thesizes it with a single operation including one(two) intermediate constant(s) that
has(have) the smallest value. The algorithm of [54] selects a single intermediate con-

1696 Circuits Syst Signal Process (2014) 33:1689–1719

(a) (b) (c)

Fig. 4 Shift-adds design of 51x and 77x : a the exact CSE method [1]; b the exact GB method [7]; c the
algorithm [3] under a delay constraint

stant that yields the best cumulative benefit over all unimplemented constants for their
implementations.

For our example in Fig. 3a, the exact GB algorithm [7] finds a solution with 3
operations, exploiting the intermediate constant 3 (Fig. 4b).

However, the algorithms designed for the minimization of the number of opera-
tions cannot guarantee that their solutions always lead to a design with optimal area
at gate-level, since they do not take into account the implementation cost of each
adder/subtractor. Hence, in [3,38], the complexity of each adder and subtractor in
MCM was formulated in terms of basic logic blocks and the algorithms, which find a
set of operations realizing the constant multiplications and leading to an MCM design
with the smallest gate-level area, were introduced. A similar approach [4,11] was
applied to the multiplierless design of constant multiplications on FPGAs, where the
proposed methods find a set of operations that require minimum number of 4-input
look-up tables (LUTs).

Although the delay of a shift-adds design is dependent on several issues, such as
circuit technology, placement, and routing, at this stage, it is considered as the number
of adder-steps, i.e., the maximal number of adders/subtractors in series that produce
any constant multiplication. The minimum adder-steps of an SCM, cx, is computed
as MASSCM = �log2S(c)�, where S(c) denotes the number of nonzero digits in the
CSD representation of c. Thus, given an MCM operation consisting of a set of m
constants, its minimum adder-steps is determined as MASMCM = max j {�log2S(c j)�}
with 1 ≤ j ≤ m [27,39]. Hence, given a delay constraint dc, greater than or equal
to MASMCM , the algorithms of [1,3,34,39] can minimize the number of operations or
gate-level area realizing the constant multiplications without violating dc.

For our example in Fig. 3a, the minimum adder-steps of both 51x and 77x are 2.
When dc is set to 2, the GB algorithm [3] finds a solution with 4 operations, as shown

Circuits Syst Signal Process (2014) 33:1689–1719 1697

in Fig. 4c. Thus, a solution with one more operation than the minimum (Fig. 4b) is
obtained, but with one less adder-step.

Moreover, as shown in power dissipation estimation models [13,14] and in algo-
rithms [2,16], the area and depth of each operation in an MCM design have a signifi-
cant impact on its power consumption. This is because a larger number of logic gates
produce more transitions, and the transitions generated at the output of an operation
produce more transitions on the next level operations, generating and propagating
more glitching along the reconvergent paths. Thus, the algorithms of [2,21,37] aim
to find a realization of an MCM operation, where each constant is implemented at its
minimum depth, minimizing the number of operations or gate-level area.

2.2.2 Methods for the Multiplierless Design of CAVM and CMVM Operations

To the best of our knowledge, there is no algorithm that directly targets the optimization
of the multiplierless design of a CAVM operation. In practice, a CMVM algorithm
described in this section is used for its shift-adds design.

For the shift-adds design of CMVM operations, given a set of linear
transforms, the CSE algorithm of [59] finds all possible implementations of linear
transforms by extracting only the 2-term subexpressions and formalizes the problem
of maximizing the sharing of subexpressions as a 0-1 ILP problem. The exact CSE
algorithm of [6] follows a similar approach but considers all possible realizations of
linear transforms. However, these CSE algorithms can only be applied to CMVM
instances with small size of constant matrices due to the exponential growth in the
size of 0-1 ILP problems. The CSE heuristics of [35,43] iteratively find the most
common 2-term subexpression and replace it within the linear transforms. They differ
in the selection of subexpressions that have the same number of occurrences. The
CSE algorithm [10] relies on an efficient CSE algorithm [42] that iteratively searches
a subexpression with the maximal number of terms and with at least 2 occurrences.
The CSE heuristic of [9] chooses its subexpressions based on a cost value which is
computed as the product of the number of terms in the subexpression and the number
of its occurrences in the linear transforms. In turn, the GB algorithm of [30] initially
computes the differences between each two linear transforms and determines their
implementation cost values. Then, it uses a minimum spanning tree algorithm to find
the realizations of linear transforms with differences, that have the minimum cost, and
replaces the linear transforms with the required differences. Furthermore, the hybrid
algorithm of [5] iteratively finds the most promising differences of linear transforms
and applies an improved CSE heuristic to further reduce the complexity of the CMVM
operation.

For our example in Fig. 3b, the algorithm of [5] obtains a solution with 5 operations
by exploiting x1 + 2x2, as shown in Fig. 5a.

Although there exists no algorithm that can find a set of adders/subtractors realiz-
ing a CMVM operation using optimal gate-level area, the algorithms of [5,10] include
hardware optimization techniques which take into account the gate-level implemen-
tation costs of adders/subtractors.

The minimum adder-steps of a CAVM operation, i.e., a linear transform
y = c1x1 + c2x2 + . . . + cn xn , is computed as MASCAVM = �log2(

∑
k S(ck))� with

1698 Circuits Syst Signal Process (2014) 33:1689–1719

(a) (b)

Fig. 5 Shift-adds design of y1 = 11x1 + 17x2 and y2 = 19x1 + 33x2 using the algorithm [5]: a without
a delay constraint; b with a delay constraint

1 ≤ k ≤ n. The minimum adder-steps of a CMVM operation, i.e., a set of linear trans-
forms, is computed as MASCMVM = max j {�log2(

∑
k S(c jk))�} with 1 ≤ j ≤ m and

1 ≤ k ≤ n [27]. Thus, given a delay constraint dc, greater than or equal to MASCMVM ,
the algorithms [5,36] can find the fewest number of operations that realize the CMVM
operation without exceeding dc.

For our example in Fig. 3b, the minimum adder-steps of y1 and y2 is computed as
3. Given the delay constraint equal to 3, the algorithm of [5] obtains a solution with
7 operations, as depicted in Fig. 5b. Thus, a solution with 2 more operations, but one
less adder-step than that of Fig. 5a is obtained.

Observe from Figs. 4 and 5 that since the reduction of the number of adder-steps
generally increases the number of operations [39], the algorithms, which can handle
a delay constraint, can explore the tradeoff between area and delay of a shift-adds
design by changing the delay constraint.

3 FIR Filter Architectures

3.1 Multiplierless Design of Direct Form FIR Filters

The shift-adds design of a direct form FIR filter can be realized not only by sharing
the common subexpressions among the constant multiplications but also by sharing of
previous values of the filter input [10,32,58]. However, although the number of oper-
ations can be reduced slightly, the number of registers may be increased significantly

Circuits Syst Signal Process (2014) 33:1689–1719 1699

Fig. 6 Design of a 6-tap direct form FIR filter

(a) (b)

Fig. 7 Design of direct form FIR filters with symmetric coefficients: a with 5 coefficients; b with 6
coefficients

in this case [10]. Hence, in this work, the multiplications of filter coefficients by the
latest N filter input values and their summations are regarded as a CAVM operation,
where these latest N filter input values are considered as input variables of the CAVM
operation, and the output of the CAVM operation is the filter output, as shown in
Fig. 6

Some a-prior hardware modifications can be considered for symmetric filters,
although the high-level synthesis algorithms can bring out the same realizations. Since
the same constants are multiplied by different input variables, they can be added first,
and then, the outputs of these adders can be assigned to the inputs of the CAVM oper-
ation, as shown in Fig. 7. In this case, the number of inputs of the CAVM operation
is equal to �N/2�, and the number of adders outside the CAVM operation is equal to
�N/2�, which is due to the even or odd number of filter coefficients. These adders
always generate an output with a bitwidth equal to the bitwidth of the filter input
plus 1.

In its hardware description under a shift-adds architecture, first, one of CMVM
methods given in Sect. 2.2.2 is applied to the CAVM operation including the filter coef-
ficients, and the CAVM operation is described based on the found adders/subtractors.
Then, the filter is described including the CAVM operation as well as the necessary
circuit consisting of the registers, and also, the adders outside the CAVM operation,
if the filter is symmetric.

1700 Circuits Syst Signal Process (2014) 33:1689–1719

Fig. 8 Design of a 6-tap transposed form FIR filter

3.2 Multiplierless Design of Transposed Form FIR Filters

In the transposed form FIR filter, the multiplication of coefficients by the filter input is
regarded as an MCM operation, as shown in Fig. 8. In its hardware description under
a shift-adds architecture, initially, one of MCM algorithms introduced in Sect. 2.2.1
is applied to the filter coefficients, and a solution is found. Then, the MCM operation
is described based on the found adders/subtractors. Finally, the filter is described
including the MCM operation, and the registers and adders in the register-add block
of the filter. Note that the MCM methods convert the target constants to positive and
odd numbers, eliminate the repeated target constants in their preprocessing phase, and
generate a solution based on this reduced set of constants. Thus, whenever an even
or a negative version of an output of the MCM operation is required at the input of
an adder in the register-add block, the associated output is simply shifted or negated,
respectively. Observe that the symmetric coefficients are handled naturally by the
MCM algorithm, requiring no dedicated hardware.

Further reduction of hardware in the register-add block can be obtained using the
technique of [20]. In this approach, whenever a large partial number at the output of
an register is added to a set of small outputs of the MCM operation, the large partial
number is divided into two parts. Its most significant part is passed through registers,
requiring additional registers, and its least significant part is added to these small out-
puts of the MCM operation, requiring smaller size adders. Finally, its most significant
part is added to this sum. In this case, the hardware for addition operations can be
reduced so significantly that the increase in the area of registers can be compensated.

3.3 Multiplierless Design of Hybrid Form FIR Filters

A straightforward way of generating a hybrid form FIR filter is to keep/put some reg-
isters in the direct form on the input-line3/output-line4 [40]. Thus, there exist 2N−1−2
different hybrid forms of an FIR filter. In this work, we present three types of the
hybrid form in order to explore the tradeoffs between the direct and transposed forms.

3 The top signal path carrying the delayed filter input in Fig. 1a.
4 The bottom signal path including the adders that compute the filter output in Fig. 1a.

Circuits Syst Signal Process (2014) 33:1689–1719 1701

Fig. 9 Design of a 6-tap Hybrid-I-3 FIR filter

Note that by changing the value of their parameters, many alternative hybrid form FIR
filters can be generated.

3.3.1 Hybrid Form I

The hybrid form FIR filter can be seen as a series of cascading subsections, where
each subsection has one and only one register on the output-line5, as shown in Fig.
9. The algorithm of [40] determines the subsections of the hybrid form such that the
given cycle-time constraint is not violated. However, the multiplierless realization of
constant multiplications is not considered in [40].

The first type of the hybrid form filter, called Hybrid-I-s, is obtained by dividing the
filter into s subsections, where each subsection includes at least 2 filter coefficients,
which is to increase the sharing of partial products among the constant multiplications.
In general, s is a user-defined parameter to be in between 2 and �N/2�. If N is a multiple
of s, each subsection includes the same number of coefficients, i.e., N/s. Otherwise,
the number of filter coefficients in the subsections, except the one computing the
filter output, is determined as �N/s�. Thus, the one that computes the filter output
has N − �N/s�(s − 1) filter coefficients. Hence, when s is increased, the number of
filter coefficients in each subsection is decreased, reducing the partial product sharing
among the constant multiplications, thus yielding a filter design that includes a larger
number of operations and a greater number of registers on the output-line. However,
the critical path is decreased in this case.

In the hardware description of this hybrid form FIR filter, given the number of
subsections s, initially the filter coefficients in each subsection are determined, and
the summations of coefficient multiplications are regarded as CAVM operations. Then,
one of CMVM algorithms given in Sect. 2.2.2 is applied to each CAVM operation, a
solution is found, and each subsection is described including the adders/subtractors
found for the CAVM operation, and the registers on the input-line and output-line as
well. Finally, the filter is described by connecting these subsections.

5 The adder that computes the filter output is always assumed to be connected to a register even this register
is not synthesized in hardware.

1702 Circuits Syst Signal Process (2014) 33:1689–1719

Fig. 10 Design of a 6-tap Hybrid-II-2 FIR filter

3.3.2 Hybrid Form II

The second type of the hybrid form FIR filter, called Hybrid-II-k, is obtained by
dividing its transfer function in the z-domain into subsections of k consecutive taps
[28]. As a simple example, consider a 6-tap FIR filter and suppose that k is 2. The
transfer function can be arranged as

H(z) = h0 + h1z−1 + h2z−2 + h3z−3 + h4z−4 + h5z−5

= h0 + h1z−1 + (h2 + h3z−1)z−2 + (h4 + h5z−1)z−4

so that the filter output can be written as

Y (z) = [1 z−2 z−4] · T ·
[

1
z−1

]
· X (z), T =

⎡

⎣
h0 h1
h2 h3
h4 h5

⎤

⎦

This implementation is illustrated in Fig. 10, where the CMVM operation realizes
the multiplication of the constant matrix T by the latest 2 filter inputs. If N is not a
multiple of k, additional mk − N coefficients, whose values are equal to 0, must be
generated, where m is �N/k�. Thus, the constant matrix T is formed as follows:

Tm×k =

⎡

⎢⎢⎢⎣

h0 h1 . . . hk−1
hk hk+1 . . . h2k−1
...

...
...

h(m−1)k h(m−1)k+1 . . . hmk−1

⎤

⎥⎥⎥⎦

Hence, the number of adders on the output-line is m − 1, the number of registers
on the input-line and output-line is k − 1 and (m − 1)k, respectively, a total of mk − 1
registers.

Since the complexity of a CMVM operation depends on its constants and the high-
level synthesis algorithm, it is hard to predict its complexity from the size of the
constant matrix. However, we observed that the constant matrices with a large number
of rows and a small number of columns lead to less number of operations than those
which have a small number of rows and a large number of columns. This is simply

Circuits Syst Signal Process (2014) 33:1689–1719 1703

because the sharing of partial products increases as the number of input variables
(corresponds to the number of columns) decreases and the number of linear transforms
(corresponds to the number of rows) increases. Hence, as k is increased (decreasing the
value of m), the complexity of the CMVM operation increases, although the number
of adders on the output-line is decreased. In this case, the number of registers on the
input-line is also increased (decreasing the number of registers on the output-line),
which decreases the complexity of the whole filter, since the size of input-line registers
is generally less than those on the output-line.

In the hardware description of this hybrid form filter, initially, the constant matrix
T is generated, the multiplierless design of the CMVM operation is found using
one of CMVM algorithms introduced in Sect. 2.2.2, and the CMVM operation is
described based on the found adders/subtractors. Then, the filter is described including
the CMVM operation and the necessary registers and adders.

3.3.3 Hybrid Form III

The third type of the hybrid form FIR filter, called Hybrid-III-r, can be obtained by
dividing its transfer function in the z-domain into subsections of r successive taps
[28]. As a simple example, again consider a 6-tap FIR filter and suppose that r is 2.
The transfer function can be arranged as

H(z) = h0 + h1z−1 + h2z−2 + h3z−3 + h4z−4 + h5z−5

= h0 + h2z−2 + h4z−4 + (h1 + h3z−2 + h5z−4)z−1

so that the filter output can be written as

Y (z) = [1 z−1] · S ·
⎡

⎣
1
z−2

z−4

⎤

⎦ · X (z), S =
[

h0 h2 h4
h1 h3 h5

]

whose implementation is illustrated in Fig. 11. If N is not a multiple of r , additional
r p − N filter coefficients, whose values are equal to 0, must be generated, where p is
�N/r�. Thus, the constant matrix S is formed as follows:

Sr×p =

⎡

⎢⎢⎢⎣

h0 hr . . . hr(p−1)

h1 hr+1 . . . hr(p−1)+1
...

...
...

hr−1 h2r−1 . . . hr p−1

⎤

⎥⎥⎥⎦

In this hybrid form, the number of adders on the output-line is r −1, and the number
of registers on the input-line and output-line is (p −1)r and r −1, respectively, a total
of pr −1 registers. Note that when r is increased (decreasing p), the number of adders
on the output-line increases, but the complexity of the CMVM operation decreases.
In this case, the number of registers on the output-line increases, and the number of
registers on the input-line decreases.

1704 Circuits Syst Signal Process (2014) 33:1689–1719

Fig. 11 Design of a 6-tap Hybrid-III-2 FIR filter

In the hardware description of this hybrid form filter, initially, one of CMVM
algorithms introduced in Sect. 2.2.2 is applied to the constant matrix S, and a
solution is obtained. Then, the CMVM operation is described based on the found
adders/subtractors. Finally, the filter is described including the CMVM operation and
the necessary registers and adders.

Note that the number of registers in Hybrid-III-r (Hybrid-II-k) is larger than those
of direct, transposed, and Hybrid-I-s filters when N is not a multiple of r (k).

4 Experimental Results

This section is divided into two subsections. In the first, symmetric FIR filters are used,
and the results of direct and transposed forms are introduced. The results of hybrid
form filters are not presented in this subsection, since the symmetric coefficients are
not utilized appropriately in the given types of the hybrid form in the same natural way
as in the direct and transposed forms. In the second, asymmetric filters are used, and the
results of direct, transposed, and hybrid form filters are given. The results of different
filter forms were obtained using different bitwidths of the filter input, design libraries,
target FPGA devices, and optimization criteria in a high-level synthesis algorithm.

For the multiplierless design of MCM, CAVM, and CMVM operations in FIR
filters, the state-of-art algorithms of [3,5] were used. Since these algorithms are already
compared with other prominent algorithms in [3,5], and in order not to divert the reader
from the main topic of this article (to investigate the impact of key parameters of
filter architectures on the complexity of FIR filters), no comparison between different
algorithms is presented here. The reader is referred to the papers [1–3,5–7,10,34,
39,54] for the comparisons of state-of-art MCM and CMVM algorithms in terms
of the number of operations and adder-steps, and gate-level area, delay, and power
dissipation.

Also, in order to make a fair comparison between different FIR filter forms, the
truncation method [22,25,56], which is generally used to reduce the complexity of
the filter design sacrificing the accuracy of the result, was not allowed, neither on the
filter output nor on a register/adder in the filter design.

Circuits Syst Signal Process (2014) 33:1689–1719 1705

Table 1 Specifications of filters
with symmetric coefficients

Filter N Pass Stop Q

1 40 0.15 0.25 16

2 60 0.15 0.20 16

3 80 0.12 0.15 16

4 100 0.18 0.20 16

5 120 0.20 0.22 16

FIR filters were described in VHDL, and the Synopsys Design Compiler and the
Xilinx ISE Design Suite 13.1 were used as synthesis tools for the custom and recon-
figurable designs, respectively. In the synthesis script, relaxed timing constraints were
used in order to provide more freedom to the tools to optimize area. The functionality
of filters was verified on 10,000 randomly generated input signals in simulation, from
which the switching activity information, which was used by the tools to compute the
power dissipation, was also obtained.

4.1 Results of Symmetric Filter Designs

Table 1 presents five low-pass filters with symmetric coefficients computed by the firgr
function of matlab, where N is the filter length, pass and stop are the normalized
passband and stopband frequencies, respectively, and Q is the quantization value used
to convert the floating-point coefficients to integers.

4.1.1 Experiments with Different Optimization Criteria and Filter Architectures

The experimental settings were defined as

1. The bitwidth of the filter input (bwi) is 16. Thus, the bitwidth of the filter output6

(bwo) of Filter 1 is 34, and the others have an output with 35 bits.
2. For custom designs, the UMCLogic 180 nm Generic II library is used.
3. For the reconfigurable designs, the Virtex 4 FPGA xc4vfx12-12sf363 is used. A

Virtex 4 slice consists of two LUTs and two flip-flops, and this target device includes
32 DSP48 slices, each having an 18-bit by 18-bit two’s-complement multiplier.

In this experiment, the FIR filters given in Table 1 were designed using generic
multipliers (GM), where the multiplication of coefficients by the filter input or its
time-shifted versions was described as constant multiplications in VHDL, which was
implemented by the synthesis tools. In their direct forms, the additions of filter coeffi-
cient multiplications (Eq. 1) were organized in a binary tree to reduce the delay of the
filter design. These filters were also designed under a shift-adds architecture, where
the solutions of algorithms [5] and [3] were respectively used to realize the CAVM
and MCM operations in the direct and transposed forms. These algorithms were run

6 The bitwidth of the filter output is computed as bwi +�log2
∑N−1

i=0 |hi |�, where hi is the i th fixed-point
filter coefficient with 0 ≤ i ≤ N − 1.

1706 Circuits Syst Signal Process (2014) 33:1689–1719

without a delay constraint (SA-A) and with a delay constraint (SA-D), which was set
to the minimum adder-steps of the operation as described in Sect. 2.2.

Table 2 presents the high-level and low-level results of the direct and transposed
forms of FIR filters. For the high-level results, we present the number of operations
in the multiplier block (MBO) and the number of adder-steps (AS) in the multiplier
block. In the direct (transposed) form, they denote the number of adders/subtractors
in the CAVM (MCM) block and its number of adder-steps, respectively. For all filter
designs, TO denotes the total number of adders/subtractors. This value includes the
N − 1 adders in both filter forms using generic multipliers, the �N/2� adders used for
the symmetric coefficients in the multiplierless design of the direct form and the N −1
adders in the register-add block of the multiplierless design of the transposed form. For
the custom designs, we present the combinational area (CA), non-combinational area
(NCA), and the total area (TA), all in mm2. The delay (D) in the critical path in ns and
the total dynamic power dissipation (P) in mW are also given. For the reconfigurable
designs, the number of LUTs (LUTs), the number of flip-flops (FFs), the number of
slices (Sls), and the number of DSP48 slices (DSP48s) are shown. Again, D denotes
the delay in ns and P stands for the total power dissipation in mW . The best values of
TA, Sls, D, and P in each filter form are given in bold.

For the custom designs, the multiplierless design of both direct and transposed
form FIR filters leads to significant savings in area with respect to filters using generic
multipliers, where the maximum gain is 41 %, achieved on the direct form of Filter
4. However, there exist filter designs using generic multipliers that have the smallest
delay. This is due to a large number of operations in series in the shift-adds designs.
Also, the direct form leads to less complex FIR filters when compared to the transposed
form, which is due to two main reasons: (i) although the number of registers (N − 1)
is the same in both forms, in the direct form, the size of all registers is equal to bwi,
i.e., 16 in this experiment. In the transposed form, it is increasing and reaching to bwo.
This fact can be observed on the NCA values of the filter designs, where the NCA value
of the transposed form is always larger than two times of the NCA value of the direct
form; (ii) although the TO value in the direct form is larger than that of the transposed
form, the outputs of �N/2� adders of the direct form, which is at most 30 % of its TO
value for the shift-adds designs, are bwi + 1 bits wide, i.e., 17 in this experiment. In
turn, the N − 1 adders of the transposed form, which is at most 67 % of its TO value
for the shift-adds designs, are in the register-add block, and their sizes are increasing
up to bwo. This fact can be observed from the CA results, where the direct form has
always less value than the transposed form. Although the delay of a multiplierless FIR
filter also depends on the adder architecture used by the synthesis tool, the reduction
of the number of adder-steps in the MCM operation of the transposed form decreases
its delay significantly, where the maximum gain is 35 %, achieved on Filter 3, taking
into account a slight increase in gate-level area. This is also valid for the direct form
filters, except Filters 3 and 4. Note that there is always a transposed form filter that
has less delay than its relevant direct form. Furthermore, the direct form FIR filters
consume less power than the transposed form, which is mainly due to less area.

For the reconfigurable designs, both filter forms using generic multipliers require
less number of slices when the number of coefficients is less than 80 with respect to
the multiplierless filters. Recall that these are symmetric filters, and the total number

Circuits Syst Signal Process (2014) 33:1689–1719 1707

Ta
bl

e
2

Su
m

m
ar

y
of

re
su

lts
of

FI
R

fil
te

rs
w

ith
sy

m
m

et
ri

c
co

ef
fic

ie
nt

s
us

in
g

a
16

-b
it

fil
te

r
in

pu
t

Fi
lte

r
Fo

rm
A

rc
h/

A
lg

o
H

ig
h-

le
ve

lr
es

ul
ts

L
ow

-l
ev

el
re

su
lts

on
cu

st
om

de
si

gn
s

L
ow

-l
ev

el
re

su
lts

on
re

co
nfi

gu
ra

bl
e

de
si

gn
s

M
B

O
A

S
T

O
C

A
N

C
A

TA
D

P
L

U
T

s
FF

s
Sl

s
(D

SP
48

s)
D

P

1
D

ir
ec

t
G

M
39

65
.2

10
.6

75
.8

9.
6

1.
7

81
0

62
4

78
8

(1
9)

28
.1

37
7

SA
-A

[5
]

54
18

74
37

.7
10

.6
48

.3
10

.1
1.

8
14

76
62

4
10

96
35

.1
44

9

SA
-D

[5
]

54
7

74
38

.9
10

.6
49

.5
9.

8
1.

7
15

17
62

4
11

04
23

.8
39

2

T
ra

ns
.

G
M

39
71

.5
21

.1
92

.6
8.

1
9.

5
11

85
12

40
65

5
(1

9)
10

.9
34

9

SA
-A

[3
]

26
6

65
45

.4
21

.1
66

.5
10

.2
6.

6
18

18
12

40
97

3
12

.9
38

4

SA
-D

[3
]

31
3

70
46

.5
21

.1
67

.6
8.

5
7.

2
18

57
12

40
99

7
11

.0
35

6

2
D

ir
ec

t
G

M
59

10
3.

5
16

.0
11

9.
5

10
.4

2.
4

14
56

94
4

12
84

(2
6)

28
.2

40
3

SA
-A

[5
]

79
20

10
9

55
.7

16
.0

71
.7

11
.5

2.
4

21
94

94
4

16
29

36
.8

44
7

SA
-D

[5
]

79
7

10
9

58
.3

16
.0

74
.3

10
.1

2.
5

22
75

94
4

16
43

25
.2

40
2

T
ra

ns
.

G
M

59
11

3.
4

32
.9

14
6.

3
8.

5
15

.0
18

88
19

20
10

12
(2

9)
12

.0
37

9

SA
-A

[3
]

33
8

92
67

.2
32

.9
10

0.
1

12
.4

10
.3

26
66

19
20

14
13

14
.9

38
8

SA
-D

[3
]

38
3

97
68

.2
32

.9
10

1.
1

9.
1

10
.2

26
99

19
20

14
31

11
.0

36
9

3
D

ir
ec

t
G

M
79

14
3.

2
21

.5
16

4.
7

10
.4

3.
3

28
09

12
64

21
99

(2
5)

31
.4

43
1

SA
-A

[5
]

10
5

22
14

5
76

.2
21

.5
97

.7
10

.6
3.

3
29

17
12

64
21

79
38

.5
51

9

SA
-D

[5
]

11
0

8
15

0
78

.6
21

.5
10

0.
1

10
.6

3.
3

30
59

12
64

22
05

27
.2

45
9

T
ra

ns
.

G
M

79
15

6.
4

44
.6

20
1.

0
8.

6
20

.7
31

30
26

25
17

02
(3

2)
11

.3
42

1

SA
-A

[3
]

42
10

12
1

90
.9

44
.6

13
5.

5
13

.3
13

.9
36

93
26

25
19

52
16

.3
48

2

SA
-D

[3
]

51
3

13
0

92
.5

44
.6

13
7.

1
8.

6
14

.7
36

59
26

25
19

41
10

.9
43

4

1708 Circuits Syst Signal Process (2014) 33:1689–1719

Ta
bl

e
2

co
nt

in
ue

d

Fi
lte

r
Fo

rm
A

rc
h/

A
lg

o
H

ig
h-

le
ve

lr
es

ul
ts

L
ow

-l
ev

el
re

su
lts

on
cu

st
om

de
si

gn
s

L
ow

-l
ev

el
re

su
lts

on
re

co
nfi

gu
ra

bl
e

de
si

gn
s

M
B

O
A

S
T

O
C

A
N

C
A

TA
D

P
L

U
T

s
FF

s
Sl

s
(D

SP
48

s)
D

P

4
D

ir
ec

t
G

M
99

17
1.

9
26

.9
19

8.
8

11
.0

4.
0

38
68

15
84

29
45

(2
9)

30
.4

47
1

SA
-A

[5
]

12
3

20
17

3
89

.6
26

.9
11

6.
5

10
.5

4.
1

34
75

15
84

26
11

37
.9

54
8

SA
-D

[5
]

12
7

8
17

7
91

.8
26

.9
11

8.
7

10
.8

4.
0

35
94

15
84

26
91

29
.4

48
5

T
ra

ns
.

G
M

99
18

7.
8

55
.6

24
3.

4
8.

6
24

.9
44

25
32

70
24

22
(3

2)
11

.4
44

1

SA
-A

[3
]

48
9

14
7

11
1.

7
55

.6
16

7.
3

13
.0

18
.2

43
99

32
70

23
16

16
.8

50
9

SA
-D

[3
]

59
3

15
8

11
4.

5
55

.6
17

0.
1

10
.0

18
.6

44
81

32
70

23
67

11
.1

44
8

5
D

ir
ec

t
G

M
11

9
18

5.
9

32
.4

21
8.

3
10

.4
4.

8
51

21
19

04
38

27
(2

8)
31

.2
47

8

SA
-A

[5
]

13
5

22
19

5
10

0.
6

32
.4

13
3.

0
11

.0
4.

9
38

61
19

04
29

64
37

.7
56

5

SA
-D

[5
]

14
2

8
20

2
10

3.
7

32
.4

13
6.

1
10

.5
4.

8
40

23
19

04
30

61
26

.3
48

7

T
ra

ns
.

G
M

11
9

20
5.

9
66

.4
27

2.
3

8.
7

27
.8

55
00

39
00

30
63

(3
2)

11
.0

46
8

SA
-A

[3
]

57
7

17
6

13
0.

3
66

.4
19

6.
7

11
.4

21
.6

50
81

39
00

26
93

15
.6

53
2

SA
-D

[3
]

61
3

18
0

13
0.

7
66

.4
19

7.
1

9.
6

21
.5

50
60

39
00

26
91

11
.1

47
9

Circuits Syst Signal Process (2014) 33:1689–1719 1709

of DSP48 slices in the target device is 32. Thus, in Filters 4 and 5, all the constant
multiplications cannot be realized in 32 DSP48 slices, requiring additional LUTs which
increase the number of slices. Also, in general, the filters using generic multipliers
consume less power with respect to the multiplierless filters, which is due to the use of a
DSP48 slice as a generic multiplier and a large number of adder-steps in the shift-adds
architectures. Note that no DSP48 slices were used in the multiplierless filter designs,
leaving these resources available for any other multiplication operations required in
the application. For the filters designed under the shift-adds architecture, although the
number of flip-flops and the number of LUTs in the transposed form are greater than
those in the direct form, the transposed form filters require significantly fewer slices
than the direct form. This is because the configurable logic blocks (CLBs) in the slices
of the Virtex 4 FPGA include LUTs and flip-flops. Hence, the registers in the register-
add block of the transposed form share the same CLBs of the adders, decreasing the
total number of slices significantly. The transposed form also leads to FIR filters with
less delay and power dissipation than the direct form. Furthermore, the use of CAVM
and MCM operations with the minimum number of adder-steps decreases the delay
significantly, which directly reduces the power dissipation in both filter forms. While
the maximum gain on delay is obtained as 33 % in the transposed form of Filter 3, the
maximum gain on power dissipation is computed as 13 % in the direct form of Filter
5, when the results of SA-A and SA-D are compared. However, the reduction of the
number of adder-steps increases the number of slices, since the number of operations
is increased, except those of the transposed forms of Filters 3 and 5. This may occur
since the algorithms of [3] do not target the FPGA design platform.

4.1.2 An Experiment with Different Bitwidths of Filter Input

Tables 3 and 4 present the results of the direct and transposed forms of Filter 5 when
bwi is 8 and 24 on custom and reconfigurable designs, respectively. In this experiment,
the other settings given in Sect. 4.1.1 were kept the same.

With respect to the results given in Table 2, as bwi is decreased (increased) from
16 to 8 (24), the bwo value of the filter is also decreased (increased) from 35 to 27
(43), respectively. Consequently, the complexity of the filter design in terms of area,
delay, and power dissipation is decreased (increased) on both custom and reconfig-
urable circuits. This is due to the fact that bwi directly affects the sizes of registers,
adders/subtractors, and multipliers in the design.

For the custom designs of Filter 5 under a shift-adds architecture given in Table
3, it is obvious that all the observations made in Sect. 4.1.1 are still valid when bwi
is decreased or increased. However, for the reconfigurable designs when bwi is 8,
contrary to the results obtained when bwi is 16 and 24, the multiplierless design of
the direct form filter requires less number of slices than the multiplierless design of
the transposed form, as shown in Table 4. This is because the direct form requires
significantly less number of flip-flops than the transposed form. Note that the flip-
flops of the direct form need slices to be realized as opposed to those in the transposed
form, which are implemented in the same CLBs with adders. When bwi is 8, the direct
form also consumes less power than the transposed form if the constant multiplications
are realized using minimum number of adder-steps. In turn, when bwi is 24, all the

1710 Circuits Syst Signal Process (2014) 33:1689–1719

Table 3 Summary of results of custom designs with different bitwidths of the filter input

Filter Form Arch/Algo 8-bit filter input 24-bit filter input

CA NCA TA D P CA NCA TA D P

5 Direct GM 108.8 16.2 125.0 8.6 2.5 257.7 48.6 306.3 12.5 7.1

SA-A [5] 60.1 16.2 76.3 9.4 2.6 141.0 48.6 189.6 12.6 7.2

SA-D [5] 61.4 16.2 77.6 9.0 2.5 146.1 48.6 194.7 12.1 7.1

Transposed GM 128.7 50.2 178.9 6.9 18.2 280.1 82.6 362.7 10.3 39.8

SA-A [3] 92.6 50.2 142.8 9.1 15.4 167.3 82.6 249.9 13.4 27.6

SA-D [3] 92.2 50.2 142.4 7.6 15.4 168.7 82.6 251.3 11.0 27.9

Table 4 Summary of results of reconfigurable designs with different bitwidths of the filter input

Filter Form Arch/Algo 8-bit filter input 24-bit filter input

LUTs FFs Sls
(DSP48s)

D P LUTs FFs Sls
(DSP48s)

D P

5 Direct GM 3522 952 2383 (20) 30.3 391 could not be implemented

SA-A [5] 2299 952 1693 36.4 446 5423 2856 4237 39.5 651

SA-D [5] 2405 952 1758 24.6 371 5641 2856 4364 27.9 577

Transposed GM 4662 2948 2661 (9) 11.4 373 could not be implemented

SA-A [3] 3627 2948 1959 11.3 416 6535 4838 3417 16.0 635

SA-D [3] 3617 2948 1969 12.3 383 6522 4838 3419 11.0 569

observations made in Sect. 4.1.1 for the multiplierless designs are still valid. We note
that the implementation of both filter forms using generic multipliers was not possible
due to the limited resources of the target FPGA device.

4.1.3 An Experiment with Different FPGA Devices

Table 5 presents the results of the direct and transposed forms of Filter 5, when the
Virtex 5 FPGA xc5vlx50-2ff324 and the Virtex 6 FPGA xc6vlx75T-2ff484 are used
as target devices, and bwi is set to 16 as done in Sect. 4.1.1. Note that a Virtex 5 slice
consists of four LUTs and four flip-flops, which are two times of those in a Virtex 4
slice, and this Virtex 5 device has 48 DSP48E slices. A Virtex 6 slice contains four
LUTs and eight flip-flops, 4 more than that of a Virtex 5 slice, and this Virtex 6 device
has 288 DSP48E1 slices.

For the filter designs using generic multipliers, considering also the results given in
Table 2, which were obtained using a Virtex 4 FPGA, the complexity of both filter forms
depends on the number of DSP48 slices used to realize the constant multiplications.
For example, while the transposed form leads to a design using less number of slices
in Virtex 4 and 5 FPGAs than the direct form, the direct form filter occupies the least

Circuits Syst Signal Process (2014) 33:1689–1719 1711

Table 5 Summary of results of reconfigurable designs with different FPGA devices

Filter Form Arch/Algo Virtex 5 FPGA Virtex 6 FPGA

LUTs FFs Sls
(DSP48Es)

D P LUTs FFs Sls
(DSP48E1s)

D P

5 Direct GM 4357 1904 1542 (35) 29.7 797 2826 1904 938 (59) 29.9 1477

SA-A [5] 3838 1904 1274 37.6 870 3785 1904 1085 31.2 1559

SA-D [5] 4013 1904 1377 27.7 812 4021 1904 1146 23.7 1498

Transposed GM 4236 3886 1169 (48) 11.5 785 3777 3886 1018 (57) 8.8 1516

SA-A [3] 5094 3886 1402 15.8 848 5020 3886 1332 11.7 1537

SA-D [3] 5070 3886 1390 10.9 804 5054 3886 1354 8.4 1503

number of slices in a Virtex 6 FPGA, where all the constant multiplications are realized
in DSP48E1 slices.

For the multiplierless filter designs, although the number of LUTs and FFs in Virtex
4, 5, and 6 FPGAs are very close to each other in both direct and transposed forms, the
difference in the number of slices used in these FPGAs is related to how many LUTs
and FFs a slice of a Virtex FPGA includes. Thus, an interesting result observed in this
experiment is that the direct form of Filter 5 requires fewer slices than its transposed
form in Virtex 5 and 6 FPGAs, as opposed to the results obtained in a Virtex 4 FPGA.
However, the transposed form has always the best delay when compared to those of
the direct form in these different target FPGA devices. Furthermore, the reduction of
the number of adder-steps in the shift-adds design of constant multiplications leads to
filters that have less delay and consume less power even different target FPGA devices
are used. Finally, the filters synthesized in the Virtex 6 FPGA generally have less delay
and consume more power than those implemented in the Virtex 4 and 5 FPGAs.

4.1.4 An Experiment with a Different Design Library

Table 6 presents the low-level results of the custom designs of direct and transposed
forms of Filter 5 when the NanGate 45 nm Open Cell library7 is used. In this experi-
ment, bwi is set to 16 as done in Sect. 4.1.1.

As the design library is changed from 180 nm (Table 2) to 45 nm technology, the
area, delay, and power dissipation values of the filter design are decreased, but all the
observations made in Sect. 4.1.1 are still valid.

4.2 Results of Asymmetric Filter Designs

Table 7 presents two low-pass FIR filters with asymmetric coefficients computed
by the firgr function of matlab with the minphase option. Table 8 presents the high-
level and low-level results of FIR filters, where the algorithms of [3,5] were applied

7 The design library is available at www.nangate.com.

www.nangate.com

1712 Circuits Syst Signal Process (2014) 33:1689–1719

Table 6 Summary of results of
custom designs with a different
design library

Filter Form Arch/Algo CA NCA TA D P

5 Direct GM 33.2 10.1 43.4 5.0 0.7

SA-A [5] 17.2 10.1 27.3 5.2 0.7

SA-D [5] 17.7 10.1 27.9 5.0 0.7

Transposed GM 36.1 20.8 56.9 3.9 3.1

SA-A [3] 22.3 20.8 43.1 4.6 2.4

SA-D [3] 22.4 20.8 43.2 4.2 2.3

Table 7 Specifications of filters
with asymmetric coefficients

Filter N Pass Stop Q

6 45 0.15 0.20 16

7 75 0.20 0.25 16

to obtain the shift-adds design of constant multiplications when the delay constraint
was set to the minimum number of adder-steps in CAVM/MCM/CMVM operations
as described in Sect. 2.2. The experimental settings given in Sect. 4.1.1 were used, and
the bwo values of Filter 6 and 7 were computed as 33 and 34, respectively, when bwi
is 16. For each type of a hybrid form filter, Hybrid-I-s, Hybrid-II-k, and Hybrid-III-r,
different s, k, and r values, which are divisors of N , were used to explore their impact
on the filter complexity. In Table 8, OLO is the number of adders on the output-line,
and MBO is the number of operations in the CAVM, MCM, and CMVM blocks in
the direct, transposed, and hybrid forms, respectively. Also, ILR and OLR are the
number of registers on the input-line and output-line, respectively. All the forms of
Filters 6 and 7 include the same total number of registers, i.e., 44 and 74, respectively.
Other parameters have the same meaning as explained for Table 2 in the previous
subsection. In this table, the best and worst values of TA, Sls, D, and P are given in
bold and bold–italic, respectively.

Observe that the transposed form includes the minimum total number of operations
(TO). This value increases for the Hybrid-I-s form, as the number of subsections (s)
increases. This is simply because, as s is increased, the number of filter coefficients
in each subsection is decreased, which consequently decreases the partial product
sharing. For the second and third types of the hybrid form, as the number of rows
(columns) of the constant matrix is increased (decreased), the number of operations in
the CMVM operation is decreased. For Filter 6, the TO values of these hybrid forms
are in between those of the transposed and direct forms, close to the TO value of the
direct form. For Filter 7, it is generally larger than the TO value of the direct form.

For the custom designs, the third type of the hybrid form leads to filter designs
with the least complexity among the hybrid forms, and for Filter 6 with the r value
3, it yields a design with minimum total area among all the forms. This is due to the
smaller combinational area, which is the consequence of having a TO value less than
that of the direct form. Also, the combinational area of the transposed form Filter 6
is less than that of the direct form, which was never observed on symmetric filters
given in Table 2. Although this fact heavily depends on the filter coefficients, it has

Circuits Syst Signal Process (2014) 33:1689–1719 1713

Ta
bl

e
8

Su
m

m
ar

y
of

re
su

lts
of

FI
R

fil
te

rs
w

ith
as

ym
m

et
ri

c
co

ef
fic

ie
nt

s
us

in
g

a
16

-b
it

fil
te

r
in

pu
t

Fi
lte

r
Fo

rm
H

ig
h-

le
ve

lr
es

ul
ts

L
ow

-l
ev

el
cu

st
om

de
si

gn
re

su
lts

L
ow

-l
ev

el
re

co
nfi

gu
ra

bl
e

de
si

gn
re

su
lts

O
L

O
M

B
O

T
O

IL
R

O
L

R
C

A
N

C
A

TA
D

P
L

U
T

s
FF

s
Sl

s
D

P

6
D

ir
ec

t
0

12
0

12
0

44
0

63
.8

12
.0

75
.8

9.
7

2.
3

24
51

70
4

16
59

23
.8

44
1

H
yb

ri
d-

I-
3

13
0

42
2

68
.1

12
.5

80
.6

9.
4

2.
2

26
54

73
3

17
24

22
.6

45
0

H
yb

ri
d-

I-
5

13
6

40
4

74
.3

13
.0

87
.3

8.
9

2.
3

29
06

76
2

18
36

22
.4

45
3

H
yb

ri
d-

I-
9

14
4

36
8

79
.6

14
.0

93
.5

8.
9

2.
4

32
28

82
3

19
66

18
.7

43
6

H
yb

ri
d-

I-
15

15
2

30
14

84
.3

15
.5

99
.8

8.
8

2.
6

35
35

91
1

20
77

17
.0

40
6

H
yb

ri
d-

II
-3

14
92

10
6

2
42

64
.9

22
.5

87
.4

9.
3

6.
3

27
01

13
34

18
46

18
.9

44
1

H
yb

ri
d-

II
-5

8
10

8
11

6
4

40
67

.1
21

.9
89

.0
9.

4
5.

3
31

73
72

2
17

06
20

.2
44

7

H
yb

ri
d-

II
-9

4
10

8
11

2
8

36
60

.1
20

.8
80

.9
9.

8
4.

3
26

65
47

4
14

69
22

.0
46

7

H
yb

ri
d-

II
-1

5
2

11
4

11
6

14
30

64
.1

19
.4

83
.5

9.
5

3.
4

26
00

41
2

14
83

25
.1

48
0

H
yb

ri
d-

II
I-

3
2

10
8

11
0

42
2

62
.0

12
.5

74
.5

9.
4

2.
9

24
04

73
7

15
80

23
.2

44
4

H
yb

ri
d-

II
I-

5
4

11
4

11
8

40
4

67
.5

13
.1

80
.6

9.
4

3.
6

30
10

40
1

15
97

21
.8

42
5

H
yb

ri
d-

II
I-

9
8

10
6

11
4

36
8

66
.6

14
.2

80
.8

9.
7

4.
4

28
25

40
3

14
79

19
.4

41
5

H
yb

ri
d-

II
I-

15
14

95
10

9
30

14
68

.0
15

.7
83

.7
9.

4
5.

8
29

27
54

6
15

35
20

.8
44

0

T
ra

ns
po

se
d

44
51

95
0

44
62

.6
23

.0
85

.6
8.

1
9.

3
25

57
13

51
13

32
10

.5
37

1

1714 Circuits Syst Signal Process (2014) 33:1689–1719

Ta
bl

e
8

co
nt

in
ue

d

Fi
lte

r
Fo

rm
H

ig
h-

le
ve

lr
es

ul
ts

L
ow

-l
ev

el
cu

st
om

de
si

gn
re

su
lts

L
ow

-l
ev

el
re

co
nfi

gu
ra

bl
e

de
si

gn
re

su
lts

O
L

O
M

B
O

T
O

IL
R

O
L

R
C

A
N

C
A

TA
D

P
L

U
T

s
FF

s
Sl

s
D

P

7
D

ir
ec

t
0

16
4

16
4

74
0

89
.3

20
.1

10
9.

4
10

.3
3.

1
34

17
11

84
23

81
25

.8
48

8

H
yb

ri
d-

I-
3

18
5

72
2

98
.3

20
.6

11
8.

9
9.

9
3.

3
39

00
12

12
26

14
23

.7
44

0

H
yb

ri
d-

I-
5

19
7

70
4

10
6.

1
21

.1
12

7.
2

9.
3

3.
2

41
48

12
40

27
51

24
.1

47
4

H
yb

ri
d-

I-
15

22
0

60
14

12
2.

4
23

.4
14

5.
8

8.
4

3.
6

49
42

13
82

30
55

20
.0

46
2

H
yb

ri
d-

I-
25

22
9

50
24

12
6.

8
25

.8
15

2.
6

8.
2

3.
8

51
87

15
22

30
82

17
.3

43
7

H
yb

ri
d-

II
-3

24
13

2
15

6
2

72
94

.8
37

.3
13

2.
1

9.
8

12
.6

38
95

22
05

27
79

19
.2

50
8

H
yb

ri
d-

II
-5

14
15

1
16

5
4

70
94

.5
36

.7
13

1.
2

10
.2

8.
2

47
36

12
17

25
14

20
.7

48
3

H
yb

ri
d-

II
-1

5
4

16
7

17
1

14
60

94
.3

34
.4

12
8.

7
9.

9
6.

5
39

84
55

8
21

93
23

.9
52

1

H
yb

ri
d-

II
-2

5
2

17
3

17
5

24
50

94
.5

32
.0

12
6.

5
9.

9
5.

1
40

29
57

8
23

28
24

.0
49

6

H
yb

ri
d-

II
I-

3
2

16
8

17
0

72
2

94
.8

20
.7

11
5.

5
9.

7
3.

9
38

31
12

21
26

07
26

.0
52

6

H
yb

ri
d-

II
I-

5
4

16
4

16
8

70
4

96
.0

21
.2

11
7.

2
9.

9
5.

0
42

84
58

9
22

43
24

.1
48

0

H
yb

ri
d-

II
I-

15
14

15
5

16
9

60
14

98
.5

23
.8

12
2.

3
9.

6
7.

5
41

97
58

8
21

97
23

.0
46

7

H
yb

ri
d-

II
I-

25
24

15
1

17
5

50
24

10
5.

4
26

.4
13

1.
8

9.
8

8.
6

44
06

91
6

23
62

20
.2

45
5

T
ra

ns
po

se
d

74
69

14
3

0
74

91
.4

37
.6

12
9.

0
9.

2
13

.7
36

07
22

14
19

01
10

.5
43

5

Circuits Syst Signal Process (2014) 33:1689–1719 1715

Table 9 Summary of results of reconfigurable designs with different bitwidths of the filter input

Filter Form 8-bit filter input 24-bit filter input

LUTs FFs Sls D P LUTs FFs Sls D P

7 Direct 2103 592 1413 25.5 382 4732 1776 3354 27.3 569

Hybrid-I-3 2395 620 1564 22.8 355 5423 1804 3670 26.4 472

Hybrid-II-15 2525 360 1398 22.8 404 5452 755 2998 25.2 590

Hybrid-III-15 2707 443 1449 22.2 378 5703 764 2974 23.3 488

Transposed 2468 1622 1334 11.4 342 4778 2796 2483 12.1 517

two main reasons: (i) the total number of operations in the transposed form is less than
that of the direct form; (ii) �N/2� adders with a size of bwi +1 used for the symmetric
coefficients outside the CAVM operation (Fig. 7) are not used in asymmetric filters.
However, the direct form filters occupy less total area than the transposed form filters,
since they require less number of flip-flops. Moreover, the Hybrid-I-s form leads to
a design of Filter 7 with the smallest delay, where the maximum gain is 20.3 % with
respect to the direct form, but incurring in a significant increase in area. The hybrid
form filters consume power in between those of the direct and transposed forms.

For the reconfigurable designs, the transposed form is the best way of synthesizing
filters on the Virtex 4 FPGA target device, and the hybrid forms lead to designs having
the values of occupied slices, delay, and power dissipation in between those of the
transposed and direct form filters. In the second and third types of the hybrid form (Figs.
10-11), some cascaded registers were designed using shift-registers by the synthesis
tool, whose cost values were counted under the number of LUTs.

Since experiments on different bitwidths of the filter input and design libraries on
the custom designs revealed similar conclusions to those obtained for symmetric filters
in previous subsection, the impact of the bitwidth of the filter input and target FPGA
device on the reconfigurable designs is investigated. To do so, five implementations
of Filter 7 were chosen from Table 8, i.e., direct, Hybrid-I-3, Hybrid-II-15, Hybrid-
III-15, and transposed forms. Among the hybrid forms, the ones, which yield the least
number of slices in the Virtex 4 FPGA, were selected.

Table 9 presents the low-level results of Filter 7 when bwi is 8 and 24. In this
experiment, the Virtex 4 FPGA target device is used as done in obtaining the results
of Table 8. Considering the results in Table 8, as bwi is decreased (increased), the
complexity of the filter designs is decreased (increased) directly. Among these different
forms of Filter 7, its transposed form occupies the least number of slices and has the
smallest delay when bwi is 8 and 24, as also observed when bwi is 16.

Table 10 presents the low-level results of Filter 7 when the previously mentioned
Virtex 5 and 6 FPGAs are used as a target device. In this experiment, bwi is set to 16 as
done in obtaining the results of Table 8. Observe from Table 10 that while Filter 7 can
be realized most efficiently in its transposed form on Virtex 5 FPGA, its direct form
requires less number of slices than its transposed form on Virtex 6 FPGA. However,
the transposed form filter design has the least delay and power dissipation on both
FPGAs.

1716 Circuits Syst Signal Process (2014) 33:1689–1719

Table 10 Summary of results of reconfigurable designs with different FPGA devices

Filter Form Virtex 5 FPGA Virtex 6 FPGA

LUTs FFs Sls D P LUTs FFs Sls D P

7 Direct 3398 1184 1148 25.7 820 3166 1185 891 21.8 1523

Hybrid-I-3 3821 1212 1179 21.7 762 3542 1212 985 19.8 1493

Hybrid-II-15 3941 546 1105 24.8 834 3751 538 1020 18.9 1551

Hybrid-III-15 4121 598 1120 23.1 787 3672 606 988 16.4 1507

Transposed 3617 2204 980 10.3 760 3585 2204 955 8.8 1487

5 Concluding Remarks

This article reviewed prominent algorithms designed for the multiplierless realiza-
tion of constant multiplications and described how the direct, transposed, and hybrid
forms of an FIR filter can be synthesized under a shift-adds architecture efficiently. It
introduced the results of a set of experiments that focused on the exploration of key
factors in the filter design which have a direct impact on area, delay, and power dis-
sipation of the design. It provided insights into the multiplierless design of filters and
discussed the advantages and disadvantages of this technique with respect to designs
using generic multipliers.

It is shown that the complexity of a multiplierless FIR filter design depends on the
filter form (direct, transposed, and hybrid), high-level synthesis algorithms (targeting
the optimization of area and delay), design platform (ASIC and FPGA), and design
parameters (bitwidth of the filter input, design library, and target FPGA device). For
applications demanding less area, the direct form is the best architecture to design
symmetric FIR filters in custom circuits. In case of asymmetric filters, the hybrid
form is an another option to be considered, paying attention to its different types and
parameters. For reconfigurable designs, the choice of the filter form depends on the
target FPGA device and bitwidth of the filter input. For high-speed applications, the
transposed form is the best architecture for both design platforms. It is also important
to use algorithms that target the reduction of the number of adder-steps. For low-power
applications, it is better to implement the filter in the direct form if the design platform
is ASIC, which is due to less combinational area and less number of registers. If the
design platform is FPGAs, the transposed form should be preferred, considering the
target device.

Although the choice of the filter form depends on so many parameters for a designer,
this article showed that there also exist the direct and hybrid forms that may introduce
more promising filter designs than the commonly used transposed form. Hence, the
optimization algorithms, which only focus on the transposed form in certain prob-
lems, should consider the realization of direct and hybrid forms. For example, (i) the
problem of realizing constant multiplications with minimum number of carry-save
adders [33], which are preferred to ripple carry adders in high-speed applications tak-
ing into account the increase in area; (ii) the problem of maximizing the throughput
of the filter design [41,44,46], which is an important design parameter in many DSP

Circuits Syst Signal Process (2014) 33:1689–1719 1717

applications; (iii) the filter design optimization problem [8,52], which is to find a set
of filter coefficients which yields a filter design using minimum number of operations,
satisfying the filter constraints.

The experimental results also indicated that the high-level synthesis algorithms have
a significant impact on the multiplierless design of FIR filters in terms of complexity,
performance, and power dissipation. Thus, developing more efficient algorithms and
improving the solution quality of algorithms, especially those targeting the CAVM
and CMVM operations, will naturally yield FIR filter designs with less complexity
and higher performance.

Acknowledgments This work was supported by the national funds through FCT, Fundação para a Ciência
e a Tecnologia, under Project PEst-OE/EEI/LA0021/2013.

References

1. L. Aksoy, E. Costa, P. Flores, J. Monteiro, Exact and approximate algorithms for the optimization of
area and delay in multiple constant multiplications. IEEE Trans. Comput.-Aided Des. Integr. Circuits
27(6), 1013–1026 (2008)

2. L. Aksoy, E. Costa, P. Flores, J. Monteiro, Design of low-power multiple constant multiplications
using low-complexity minimum depth operations. in Proceedings of Great Lakes Symposium on VLSI
(2011), pp. 79–84

3. L. Aksoy, E. Costa, P. Flores, J. Monteiro, Finding the optimal tradeoff between area and delay in
multiple constant multiplications. Elsevier J. Microprocess. Microsyst. 35(8), 729–741 (2011)

4. L. Aksoy, E. Costa, P. Flores, J. Monteiro, Design of low-complexity digital finite impulse response
filters on FPGAs. in Proceedings of Design, Automation and Test in Europe Conference (2012),
pp. 1197–1202

5. L. Aksoy, E. Costa, P. Flores, J. Monteiro, Multiplierless design of linear DSP transforms. in VLSI-SoC:
Advanced Research for Systems on Chip, Chap. 5 (Springer, 2012), pp. 73–93

6. L. Aksoy, E. Costa, P. Flores, J. Monteiro, Optimization algorithms for the multiplierless realization
of linear transforms. ACM Trans. Des. Autom. Electron. Syst. 17(1), Art. No. 3 (2012). doi:10.1145/
2071356.2071359

7. L. Aksoy, E. Gunes, P. Flores, Search algorithms for the multiple constant multiplications problem:
exact and approximate. Elsevier J. Microproces. Microsyst. 34(5), 151–162 (2010)

8. M. Aktan, A. Yurdakul, G. Dnndar, An algorithm for the design of low-power hardware-efficient FIR
filters. IEEE Trans. Circuits Syst. 55(6), 1536–1545 (2008)

9. A. Arfaee, A. Irturk, N. Laptev, F. Fallah, R. Kastner, Xquasher: a tool for efficient computation of
multiple linear expressions. in Proceedings of Design Automation Conference (2009), pp. 254–257

10. N. Boullis, A. Tisserand, Some optimizations of hardware multiplication by constant matrices. IEEE
Trans. Comput. 54(10), 1271–1282 (2005)

11. N. Brisebarre, F. de Dinechin, J.M. Muller, Integer and floating-point constant multipliers for FPGAs.
in Proceedings of the International Conference on Application-Specific Systems, Architectures and
Processors (2008), pp. 239–244

12. P. Cappello, K. Steiglitz, Some complexity Issues in digital signal processing. IEEE Trans. Acoust.
Speech Signal Process. 32(5), 1037–1041 (1984)

13. J. Chen, C.H. Chang, H. Qian, New power index model for switching power analysis from adder
graph of FIR filter. in Proceedings of IEEE International Symposium on Circuits and Systems (2009),
pp. 2197–2200

14. S. Demirsoy, A. Dempster, I. Kale, Power analysis of multiplier blocks. in Proceedings of IEEE
International Symposium on Circuits and Systems (2002), pp. 297–300

15. A. Dempster, Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Trans. Circuits Syst.
II 42(9), 569–577 (1995)

16. A. Dempster, S. Demirsoy, I. Kale, Designing multiplier blocks with low logic depth. in Proceedings
of IEEE International Symposium on Circuits and Systems (2002), pp. 773–776

http://dx.doi.org/10.1145/2071356.2071359
http://dx.doi.org/10.1145/2071356.2071359

1718 Circuits Syst Signal Process (2014) 33:1689–1719

17. A. Dempster, M. Macleod, Constant integer multiplication using minimum adders. IEE Proc. Circuits
Devices Syst. 141(5), 407–413 (1994)

18. A. Dempster, M. Macleod, Digital filter design using subexpression elimination and all signed-digit
representations. in Proceedings of IEEE International Symposium on Circuits and Systems (2004),
pp. 169–172

19. M. Ercegovac, T. Lang, Digital Arithmetic. (Morgan Kaufmann, 2003)
20. M. Faust, C.H. Chang, Optimization of structural adders in fixed coefficient transposed direct form

FIR filters. in Proceedings of IEEE International Symposium on Circuits and Systems (2009),
pp. 2185–2188

21. M. Faust, C.H. Chang, Minimal logic depth adder tree optimization for multiple constant multiplication.
in Proceedings of IEEE International Symposium on Circuits and Systems (2010), pp. 457–460

22. M. Faust, C.H. Chang, Low error bit width reduction for structural adders of FIR filters. in Proceedings
of IEEE European Conference on Circuit Theory and Design (2011), pp. 713–716

23. P. Flores, J. Monteiro, E. Costa, An exact algorithm for the maximal sharing of partial terms in
multiple constant multiplications. in Proceedings of International Conference on Computer-Aided
Design (2005), pp. 13–16

24. W. Gallagher, E. Swartzlander, High radix booth multipliers using reduced area adder trees. in Pro-
ceedings of Asilomar Conference on Signals, Systems and Computers (1994), pp. 545–549

25. R. Guo, L. Wang, L. DeBrunner, A novel FIR filter implementation using truncated MCM technique.
in Proceedings of Asilomar Conference on Signals, Systems and Computers (2009), pp. 718–722

26. O. Gustafsson, A difference based adder graph heuristic for multiple constant multiplication problems.
in Proceedings of IEEE International Symposium on Circuits and Systems (2007) pp. 1097–1100

27. O. Gustafsson, Lower bounds for constant multiplication problems. IEEE Trans. Circuits Syst. II
54(11), 974–978 (2007)

28. O. Gustafsson, J. Coleman, A. Dempster, M. Macleod, Low-complexity hybrid form FIR filters using
matrix multiple constant multiplication. in Proceedings of Asilomar Conference on Signals, Systems
and Computers (2004), pp. 77–80

29. O. Gustafsson, A. Dempster, L. Wanhammar, Extended results for minimum-adder constant inte-
ger multipliers. in Proceedings of IEEE International Symposium on Circuits and Systems (2002),
pp. 73–76

30. O. Gustafsson, H. Ohlsson, L. Wanhammar, Low-complexity constant coefficient matrix multiplication
using a minimum spanning tree. in Proceedings of Nordic Signal Processing Symposium (2004),
pp. 141–144

31. O. Gustafsson, L. Wanhammar, ILP modelling of the common subexpression sharing problem. in
Proceedings of International Conference on Electronics, Circuits and Systems (2002), pp. 1171–1174

32. R. Hartley, Subexpression sharing in filters using canonic signed digit multipliers. IEEE Trans. Circuits
Syst. II 43(10), 677–688 (1996)

33. R. Hawley, B. Wong, T.J. Lin, J. Laskowski, H. Samueli, Design techniques for silicon compiler
implementations of high-speed FIR digital filters. IEEE J. Solid-State Circuits 31(5), 656–667 (1996)

34. Y.H. Ho, C.U. Lei, H.K. Kwan, N. Wong, Global optimization of common subexpressions for multipli-
erless synthesis of multiple constant multiplications. in Proceedings of Asia and South Pacific Design
Automation Conference (2008), pp. 119–124

35. A. Hosangadi, F. Fallah, R. Kastner, Reducing hardware complexity of linear DSP systems by itera-
tively eliminating two-term common subexpressions. in Proceedings of Asia and South Pacific Design
Automation Conference (2005), pp. 523–528

36. A. Hosangadi, F. Fallah, R. Kastner, Simultaneous optimization of delay and number of operations in
multiplierless implementation of linear systems. in Proceedings of International Workshop on Logic
Synthesis (2005)

37. K. Johansson, O. Gustafsson, L. DeBrunner, L. Wanhammar, Minimum adder depth multiple constant
multiplication algorithm for low power FIR filters. in Proceedings of IEEE International Symposium
on Circuits and Systems (2011), pp. 1439–1442.

38. K. Johansson, O. Gustafsson, L. Wanhammar, A detailed complexity model for multiple constant mul-
tiplication and an algorithm to minimize the complexity. in Proceedings of IEEE European Conference
on Circuit Theory and Design (2005), pp. 465–468

39. H.J. Kang, I.C. Park, FIR filter synthesis algorithms for minimizing the delay and the number of adders.
IEEE Trans. Circuits Syst. II 48(8), 770–777 (2001)

Circuits Syst Signal Process (2014) 33:1689–1719 1719

40. K.Y. Khoo, Z. Yu, A. Willson, Design of optimal hybrid form FIR filter. in Proceedings of IEEE
International Symposium on Circuits and Systems (2001), pp. 621–624

41. M. Kumm, P. Zipf, M. Faust, C.H. Chang, Pipelined adder graph optimization for high speed multiple
constant multiplication. in Proceedings of IEEE International Symposium on Circuits and Systems
(2012), pp. 49–52

42. V. Lefevre, Multiplication by an Integer Constant. Tech. rep., Institut National de Recherche en Infor-
matique et en Automatique (2001)

43. M. Macleod, A. Dempster, A common subexpression elimination algorithm for low-cost multiplierless
implementation of matrix multipliers. Electron. Lett. 40(11), 651–652 (2004)

44. K. Macpherson, R. Stewart, Rapid prototyping—area efficient FIR filters for high speed FPGA imple-
mentation. IEE Proc. Vision Image Signal Process. 153(6), 711–720 (2006)

45. J. McClellan, T. Parks, L. Rabiner, A computer program for designing optimal FIR linear phase digital
filters. IEEE Trans. Audio Electroacoustics 21(6), 506–526 (1973)

46. U. Meyer-Baese, J. Chen, C.H. Chang, A. Dempster, A comparison of pipelined RAG-n and DA
FPGA-based multiplierless filters. in Proceedings of IEEE Asian-Pacific Conference on Circuits and
Systems (2006), pp. 1555–1558

47. K. Muhammad, K. Roy, A graph theoretic approach for synthesizing very low-complexity high-speed
digital filters. IEEE Trans. Comput.-Aided Des. Integr. Circuits 21(2), 204–216 (2002)

48. H. Nguyen, A. Chatterjee, Number-splitting with shift-and-add decomposition for power and hardware
optimization in linear DSP synthesis. IEEE Trans. VLSI 8(4), 419–424 (2000)

49. I.C. Park, H.J. Kang, Digital filter synthesis based on minimal signed digit representation. in Proceed-
ings of Design Automation Conference (2001), pp. 468–473

50. M. Potkonjak, M. Srivastava, A. Chandrakasan, Multiple constant multiplications: efficient and versa-
tile framework and algorithms for exploring common subexpression elimination. IEEE Trans. Comput.-
Aided Des. Integr. Circuits 15(2), 151–165 (1996)

51. F. Qureshi, O. Gustafsson, Low-complexity reconfigurable complex constant multiplication for FFTs.
in Proceedings of IEEE International Symposium on Circuits and Systems (2009), pp. 24–27

52. D. Shi, Y.J. Yu, Design of linear phase FIR filters with high probability of achieving minimum number
of adders. IEEE Trans. Circuits Syst. 58(1), 126–136 (2011)

53. J. Thong, N. Nicolici, A novel optimal single constant multiplication algorithm. in Proceedings of
Design Automation Conference (2010), pp. 613–616

54. Y. Voronenko, M. Püschel, Multiplierless multiple constant multiplication. ACM Trans. Algorithms
3(2), Art. No. 11 (2007). doi:10.1145/1240233.1240234

55. C. Wallace, A suggestion for a fast multiplier. IEEE Trans. Electron. Comput. 13(1), 14–17 (1964)
56. E. Walters III, Design Tradeoffs Using Truncated Multipliers in FIR Filter Implementations. Master’s

thesis, Lehigh University (2002)
57. F. Xu, C.H. Chang, C.C. Jong, Contention resolution algorithm for common subexpression elimination

in digital filter design. IEEE Trans. Circuits Syst. II: Express Briefs 52(10), 695–700 (2005)
58. S.H. Yoon, J.W. Chong, C.H. Lin, An area optimization method for digital filter design. ETRI J. 26(6),

545–554 (2004)
59. A. Yurdakul, G. Dündar, Multiplierless realization of linear DSP transforms by using common two-term

expressions. J. VLSI Signal Process. 22(3), 163–172 (1999)

http://dx.doi.org/10.1145/1240233.1240234

	A Tutorial on Multiplierless Design of FIR Filters: Algorithms and Architectures
	Abstract
	1 Introduction
	2 Multiplierless Constant Multiplications
	2.1 Types of Constant Multiplications
	2.2 High-Level Synthesis Algorithms
	2.2.1 Methods for the Multiplierless Design of SCM and MCM Operations
	2.2.2 Methods for the Multiplierless Design of CAVM and CMVM Operations

	3 FIR Filter Architectures
	3.1 Multiplierless Design of Direct Form FIR Filters
	3.2 Multiplierless Design of Transposed Form FIR Filters
	3.3 Multiplierless Design of Hybrid Form FIR Filters
	3.3.1 Hybrid Form I
	3.3.2 Hybrid Form II
	3.3.3 Hybrid Form III

	4 Experimental Results
	4.1 Results of Symmetric Filter Designs
	4.1.1 Experiments with Different Optimization Criteria and Filter Architectures
	4.1.2 An Experiment with Different Bitwidths of Filter Input
	4.1.3 An Experiment with Different FPGA Devices
	4.1.4 An Experiment with a Different Design Library

	4.2 Results of Asymmetric Filter Designs

	5 Concluding Remarks
	Acknowledgments
	References

