

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Journal of VLSI Signal Processing 15, 177–200 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Approximate Signal Processing

S. HAMID NAWAB
ECE Department, Boston University, 44 Cummington St., Boston, MA 02215

ALAN V. OPPENHEIM AND ANANTHA P. CHANDRAKASAN
EECS Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139

JOSEPH M. WINOGRAD
ECE Department, Boston University, 44 Cummington St., Boston, MA 02215

JEFFREY T. LUDWIG
EECS Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139

Abstract. It is increasingly important to structure signal processing algorithms and systems to allow for trading
off between the accuracy of results and the utilization of resources in their implementation. In any particular context,
there are typically a variety of heuristic approaches to managing these tradeoffs. One of the objectives of this paper
is to suggest that there is the potential for developing a more formal approach, including utilizing current research in
Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this
end, we first summarize a number of ideas and approaches to approximate processing as currently being formulated
in the computer science community. We then present four examples of signal processing algorithms/systems that
are structured with these goals in mind. These examples may be viewed as partial inroads toward the ultimate
objective of developing, within the context of signal processing design and implementation, a more general and
rigorous framework for utilizing and expanding upon approximate processing concepts and methodologies.

1. Introduction

In many contexts it is desirable that algorithms and sys-
tems be structured so as to allow for the possibility of
trading off between the accuracy or optimality of the
results they produce and their utilization of resources
such as time, power, bandwidth, memory, and system
cost. For example, in communications systems, lossy
source coding which results in approximate rather than
exact signal transmission provides the opportunity to
reduce the required transmission bandwidth. In com-
munication networks with real-time constraints on the
transport of multimedia data such as speech or video,
scalable compression algorithms enable signal quality
to be sacrificed in order to utilize reduced bandwidth or

reduce transmission delay. In computer science, heuris-
tic and approximate search strategies have been de-
veloped for applications where exact and exhaustive
search strategies are intractable. The balance between
accuracy and resource requirements in a system that
performs digital signal processing (DSP) can be influ-
enced by the selection of word lengths, filter order, and
sampling rate.

In these various problem domains, there exist both
formal and informal approaches to managing the trade-
off between accuracy and resources. Over the last
decade there has been a growing interest in the develop-
ment of more formal and structured approaches to ob-
taining a satisfactory balance between these opposing
design factors. This work has been driven primarily

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

178 Nawab et al.

by a desire to realize systems that perform demand-
ing tasks within dynamically evolving environments.
Various authors have used the terms approximate pro-
cessing [1], imprecise computation [2], and flexible
computation [3] to describe this basic approach to sys-
tem design. The introduction of formal approaches to
approximate processing offers the possibility of contin-
uously optimizing system performance within the con-
straints imposed by the currently available resources
and, in this way, achieving graceful degradation of per-
formance in adverse circumstances as an alternative to
system failure.

The establishment of basic design principles is a fun-
damental aspect of developing such formal approaches
and certain concepts have been identified as being gen-
erally useful. In communications, for example, a well–
established approach to time–varying or unpredictable
channel bandwidth is the notion ofembedded coding
[4] whereby the coding strategy involves a hierarchy of
data. Including additional levels of the hierarchy im-
plies incrementally refining the quality of the decoded
signal. A closely related and well established example
is the use ofprogressive transmission[5] for data or
images in which signal transmission is structured so
that successively better approximations to the signal
are obtained as transmission proceeds in time. This is
useful in a variety of situations, such as transmission
over a channel which is only available for a limited and
unpredictable time duration or when it is appropriate
to halt transmission once a sufficiently accurate signal
reconstruction is obtained.

A central concept in the approximate processing lit-
erature is that of computation structures with thein-
cremental refinementproperty. Such structures, which
have also been referred to as successive approxima-
tion, iterative refinement, or anytime [6] algorithms,
are defined to consist of a succession of stages, each
of which improves upon the answer produced by the
previous one. In general, the improvement in each an-
swer is measured with respect to the degree to which
it approximates an ideal answer for the given appli-
cation. A straightforward example of an incremental
refinement algorithm is the long division procedure,
which produces an additional significant digit of the
quotient at each iteration. Another common example
is Newton’s root-finding method, in which the number
of iterations (stages) that are performed is based on
the desired amount of accuracy. In the context of sig-
nal processing, a recent example, to be discussed in
greater detail in Section 3, is an FFT-based maximum-

likelihood (ML) signal detector. Specifically, we show
that by using the ML detection strategy after each stage
of the FFT, a series of suboptimal detectors is obtained
with performance improving incrementally toward that
obtained with the full FFT. More generally, since mul-
tistage and iterative algorithms are common in signal
processing, it is not surprising that DSP offers a fertile
ground for exploring formal usage of approximate pro-
cessing concepts in general and incremental refinement
structures in particular.

Incremental refinement structures for basic cate-
gories of signal processing computations (such as trans-
forms and filters) may be used as building blocks to aid
the design of application-specific systems. Some ap-
plications may simply call for using afixednumber of
stages of a given incremental refinement structure. In
this case, the availability of an incremental refinement
structure offers design-time flexibility for selecting the
most suitable number of stages for the application sys-
tem. In making this selection, the designer would take
into account both resource availability (such as proces-
sor capacity) and the expected effect on overall system
performance. In the context of the model-year concept
for the rapid prototyping of systems [7], this also offers
the advantage that as the underlying hardware techno-
logy improves, one may obtain improved system per-
formance in future design cycles by simply utilizing a
greater number of stages of the same incremental re-
finement structure. With this approach, it would then
not be necessary to modify the original processor ar-
chitecture. The incremental refinement structures dis-
cussed in Sections 3 to 5 are all amenable to this type
of design philosophy.

In other applications, it is desirable for the overall
system to select, during run time, the number of stages
to use from a given incremental refinement structure.
This type of situation would arise if the system is to
operate in a dynamically changing environment (ei-
ther in terms of its input data or in terms of resource
availability). In such cases, it is desirable to design an
adjunct control mechanism for the run-time adaptation
of the number of stages to be used. An example of an
adjunct control mechanism for incremental refinement
structures in the context of a low-power digital filter-
ing application is discussed in Section 6. As illustrated
in that section, it is obviously important to keep the
costs associated with the control mechanism low rel-
ative to the savings achieved by run-time adaptation.
In the context of rapid prototyping, as the underlying
hardware technology improves, improved performance

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 179

may be obtained without requiring basic changes in the
processor architecture.

Over the past several years, we have been exploring
incremental refinement structures for basic categories
of signal processing tasks and examining their implica-
tions for the design of application-specific systems. In
this paper, we describe some of our major results and
place them within the context of various concepts and
formalisms emanating from the Approximate Process-
ing subfield of Computer Science. Specifically, in Sec-
tion 2 we provide a brief overview of that subfield and
the relevance of its concepts to approximate signal pro-
cessing. We then present in Sections 3–6 various case-
studies from our research on incremental refinement
structures for DSP. In Section 3 we illustrate how the
FFT may be used as an incremental refinement struc-
ture for signal detection. In Section 4 we derive new
incremental refinement structures based on the DFT
for real-time spectral analysis. In Section 5, we il-
lustrate how an existing DSP computational structure
for a particular application (DCT-based Image Encod-
ing/Decoding) may be modified to obtain an incremen-
tal refinement structure. Section 6 describes how incre-
mental refinement structures for certain IIR and FIR
digital filters may be used in conjunction with a suit-
able control mechanism to design adaptive resource-
conserving systems for low-power frequency-selective
filtering.

2. Approximate Processing

In several areas of Computer Science there has been
considerable interest in the development of formal
approaches to the design of systems employing ap-
proximate processing techniques. The earliest studies
dealing explicitly with this topic were performed in-
dependently in the areas of Artificial Intelligence and
Real-Time Systems. In his study of automated reason-
ing systems for emergency medical diagnosis, Horvitz
proposed [3] in 1987 the explicit use of resource con-
straints to inform heuristic reasoning strategies within
a decision-theoretic framework. He suggested that rea-
soning strategies employing incremental refinement
capabilities could be used to maximize the utility of a
system’s results by explicitly weighing the risk of act-
ing on an uncertain medical diagnosis against the cost
of performing additional computation. He proposed
that by quantifying the manner in which delayed re-
sults decreased a systems effectiveness and the amount

by which the accuracy of the diagnosis improved with
the amount of time spent in computation, one could
derive the optimal amount of computation to invest in
obtaining a diagnosis. That same year, in a series of
publications, Liu et al. outlined an approach to design-
ing general purpose real-time computer systems that
can skip non-critical portions of scheduled jobs in or-
der to avoid missed deadlines during system overloads
[2, 8, 9]. This work included new results in schedul-
ing as well as a design tool for constructing and test-
ing Approximate Processing systems. It also relied on
the use of algorithms with the incremental refinement
property.

Since those initial studies, a large number of pub-
lications on formal methods for employing approx-
imate processing have appeared in the Computer
Science literature. The ideas presented in the ini-
tial papers have been further developed, alternative
approaches have been proposed, and some important
new results have been obtained. Several of these are
presented in Sections 2.1–2.2. Other significant ap-
proaches are discussed in a recent review paper [10].

Although significant activity on this topic has been
reported in the Computer Science literature, there has
been very little direct migration of these results into
other areas or into specific applications. This may be
due in part to the lack of incremental refinement algo-
rithms for many computational tasks and the lack of
dependable analyses relating resource allocation and
output quality for those that exist. In particular, the
application of approximate processing methodology to
the area of DSP has not been previously considered.
Section 2.3 discusses several domains in which ap-
proximate processing methodologies have been suc-
cessfully applied and addresses issues relevant to their
application in the context of DSP.

2.1. Algorithm Characterization Using
Performance Profiles

An important component of any formal approach to the
design of systems employing approximate processing
is the quantification of the tradeoffs between output
quality and resource usage. Such analyses supply an
abstract means for the representation and comparison
of algorithms and provide a language in which various
design problems can be formulated and solved.

The most comprehensive framework that has been
proposed for characterizing quality/cost tradeoffs is

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

180 Nawab et al.

(a)

(b)

Figure 1. Typical performance profiles for (a) a “standard”
algorithm and (b) an incremental refinement algorithm. (Adapted
from [11]).

based on the use ofperformance profiles[11–13]. Per-
formance profiles are functions that map the possible
resource allocations for an algorithm onto a numerical
measure of output quality. This framework includes
several different performance profile structures with
varying degrees of complexity.

For a given algorithmA the simplest performance
profile is a functionPA : R+ →R that maps a resource
allocation onto a quality measure. The resource alloca-
tion may be any computational resource such as time,
memory, arithmetic operations, power, or number of
processors. Quality is an objective measure of some
property of the algorithm’s output. Figure 1 illustrates
the performance profiles associated with two differ-
ent computational structures. In Fig. 1(a), we see the
profile associated with a “standard” algorithm—one
that requires some fixed amount of resources to com-
pute its results and for which smaller allocations do not

produce any meaningful results. Figure 1(b) illustrates
a performance profile associated with an incremen-
tal refinement algorithm. The output quality obtained
from this algorithm can be seen to increase incremen-
tally as additional resources are provided. It should
be noted thateveryalgorithm that uses resources and
produces output has a performance profile—the con-
cept is not restricted to approximation algorithms. In
some instances, however, determining a meaningful
performance profile for a given algorithm may be
difficult.

There are several important aspects of algorithm per-
formance that this simple performance profile does not
capture. One such aspect is that for some algorithms,
the quality of the output obtained may vary although
its resource usage is fixed. In such instances, aperfor-
mance distribution profile(PDP) can be used. A PDP
for an algorithmA is a functionDA : R+ → Prob{R}
that maps a resource allocation onto a probability dis-
tribution over the quality of the results. One technique
for avoiding the additional complexity of PDPs is by
using anexpected performance profile(EPP). An EPP
is defined as a functionEA : R+ →R mapping a re-
source allocation onto the expected value of the associ-
ated output quality probability distribution. EPPs have
been utilized in several studies [3, 14] of approximate
processing.

For some algorithms, the distribution of output
quality obtained for a given resource allocation may
depend on characteristics of the input data to the
system. In such cases, the distribution of output qual-
ity can be conditioned on the quality of the inputs. This
dependency is represented through the use of acon-
ditional performance profile(CPP). Assuming input
quality to be represented by a one-dimensional mea-
sure, a CPP for an algorithmA is defined as a function
CA : R×R+ → Prob{R} that maps a measure of input
quality and a resource allocation to a probability dis-
tribution over the quality of the results. Each of these
types of performance profiles has been found to be use-
ful in the context of approximate signal processing, as
we illustrate in Sections 3–6.

Within this framework, a variety of useful relations
regarding algorithms have been formulated [13]. These
include formal definitions of the monotonicity of the
quality of output obtained from an algorithm as its in-
put quality or resource allocation is increased and of
the superiority of one algorithm over another (in both
deterministic and stochastic senses).

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 181

2.2. Resource Allocation
for Approximate Processing

A primary benefit of designing systems using incre-
mental refinement algorithms is that as the amount of
time available for computation fluctuates, the system
can easily adjust the amount of computation performed
to ensure timely completion of tasks. Since the earliest
studies on the subject, a central issue in the develop-
ment of formal methods for approximate processing
has been the optimal allocation of resources for sys-
tems comprised of multiple incremental refinement al-
gorithms. Many variations of this problem have been
studied, each with its own set of assumptions and goals.

A number of the problem formulations have been
based on the large body of existing results for prob-
lems in real-time scheduling [15, 16]. In the general
real-time preemptive scheduling problem, a set of tasks
that are independent (or related through precedence
constraints) must be scheduled on one or more pro-
cessors. Each task has an associated time at which it
becomes ready for execution (ready time), a time by
which it must be completed (deadline), a measure of
relative importance (weight), an amount of processor
time that it requires to run to completion (processing
time), and a time at which the scheduling algorithm is
made aware of the existence of the task and its require-
ments (arrival time). Tasks can be either periodic or
aperiodic. When the arrival time is zero for all tasks
in a system, the scheduling problem associated with
that system isoff-line. Systems containing tasks with
positive arrival times requireon-linescheduling.

To develop scheduling algorithms for systems em-
ploying approximate processing, the established model
for real-time scheduling has been extended [17] to al-
low the processing time assigned to a task to vary
between somemandatory timeand its total process-
ing time. Associated with each task is anerror func-
tion that maps the time allocation for the task and the
error associated with the tasks that immediately pre-
cede it to a corresponding measure of the error in its
output1. Tasks are said to beerror independentif there
is no relation between their errors. Thetotal weighted
error in a schedule is defined to be the sum of the errors
of each task multiplied by their respective weights.

When all tasks in a system are off-line, error indepen-
dent, aperiodic, have equal weights, and possess linear
error functions2 , an optimal scheduling algorithm has
been found [18] that minimizes the total weighted error
in the schedule for single processor systems, given that

a feasible schedule3for the set of tasks exists. This algo-
rithm employs anearliest-deadline-firstpolicy [19] and
has time complexityO(n logn), wheren is the number
of tasks being scheduled. An optimal scheduling algo-
rithm has also been found [20] for the on-line counter-
part of this problem, given that the mandatory portion of
each task can be feasibly scheduled at its arrival time.
This has been shown to have complexity of at most
O(n log2 n). When tasks have different weights, there
exists an off-line algorithm [18] that minimizes the to-
tal weighted error using alargest-weight-firstpolicy.
This algorithm has complexityO(n2 logn). Optimal
algorithms for off-line scheduling on multiprocessor
systems have also been developed [21] for the equal
weight and differing weight cases. These algorithms
are of complexityO(n2 log2 n) and O(n2 log3 n) re-
spectively. Optimal scheduling has also been shown
possible for tasks with some nonlinear error functions.
When the error functions are convex, a schedule that
minimizes themaximum normalized errorover all tasks
can be found [22] inO(n2) time. The normalized error
is defined as the difference between the time allocated
to a task and its total processing time divided by its
total processing time.

No optimal scheduling algorithms have been found
using the real-time scheduling framework for systems
with periodic tasks, error–dependent tasks, or tasks
with arbitrary error functions. In fact, the schedul-
ing problem with periodic and error–dependent tasks
has been shown [23] to be NP-hard for even the sim-
plest case, where all tasks have identical periods and
error functions. This has led to the study of subopti-
mal heuristic algorithms for such scheduling problems
[24].

Another framework for the resource allocation prob-
lem has been proposed for systems whose structure
can be expressed in the form of afunctional expression
[11–13]. This term is used in the sense of a pure func-
tional programming language [25], where each func-
tion performs a fixed mapping from an input to an out-
put without memory or side-effects. In this framework,
the behavior of functions under varying resource al-
locations are characterized by CPPs as described in
Section 2.1. An example of a functional expression is
E(x) = F(G(x), H(x)), whereE is a functional ex-
pression composed of the elementary functionsF, G,
andH andx is its input.

A functional expression is also a function and it
too has a performance profile. However, when the
functions that comprise the expression are themselves

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

182 Nawab et al.

incremental refinement algorithms, the performance
profile of the expression as a whole is dependent on
the way in which the total computation time is divided
among its constituent functions. The task of determin-
ing an appropriate division of the total computation
time among the elementary functions has been termed
thecompilationof functional expressions. The problem
of optimal compilation can be formulated as a search
for the allocation of computing time among elemen-
tary functions that results in a CPP for the functional
expression as a whole that has no superiors.

The problem of optimal compilation for functional
expressions has been shown to be NP-complete but
pseudo-polynomial [12]. That is, it is NP-complete
in general but an optimal solution can potentially be
found in polynomial time if a fixed bound is placed on
the number of inputs that any function may have and if
all elementary functions’ CPPs are monotonically in-
creasing over a bounded range of resource allocations.
An algorithm has been found that produces the opti-
mal CPP when the functional expression contains no
repeated subexpressions and the component functions’
performance profiles are piecewise linear [12]. The
complexity of this algorithm is linear in the number of
elementary functions in the functional expression. For
functional expressions with repeated subexpressions,
no algorithm has been found that can perform optimal
compilation in polynomial time. Several polynomial
time heuristic solutions have been proposed [12].

2.3. Applications of Approximate
Processing Methodologies

From the results described in the previous sections it
is clear that progress has been made in the develop-
ment of a formal methodology for approximate pro-
cessing. The methodology remains largely unproven
in practice, however. This can be attributed in part to
the fact that some of the important advances are quite
recent. It is also due to the unique requirements that the
methodology places on its area of application. Never-
theless, several experimental systems employing for-
mal approaches to approximate processing have been
reported and some work has been performed on the
development of new algorithms to meet the needs of
the methodology. A discussion of some of these sys-
tems and algorithms serves as the starting point for
our consideration of applying approximate processing
methodologies to DSP.

The earliest reported experimental system employ-
ing approximate processing methodology was the Pro-
tos system for ideal control of probabilistic inference
under resource constraints [26, 27]. The system used
measures of theexpected value of computationto guide
the allocation of computational resources to incremen-
tal refinement algorithms for inferencing in a Bayesian
probabilistic network [28]. Its advantages over inflexi-
ble reasoning systems in time-critical situations were
demonstrated for three problems in medical diagnosis
[29].

The framework under Protos for determining the
expected value of computation was extended into a
comprehensive philosophy ofmetareasoning[30] (rea-
soning about reasoning computation), which was used
to develop new algorithms [31] for intractable search
problems. By using explicit consideration of the value
of computation, metareasoning-based approaches have
significantly outperformed traditional algorithms for
game playing (othello) and problem-solving (robot
path planning) [31].

The problem of robot path planning has also been
addressed in a system employing compilation of func-
tional expressions as described in the previous section
[32]. This system incorporated a simulated incremen-
tal refinement algorithm for visual sensor interpreta-
tion and an actual incremental refinement algorithm
for path planning in order to obtain the optimal CPP
for the system as a whole. No actual incremental re-
finement algorithm for image interpretation was used
in this work. The simulated incremental refinement al-
gorithm artificially produced a map of the domain in
which the probability of an error at each location was
related to the amount of time allocated to that module
according to a CPP chosen by the system designers.

In other work, a series of studies (e.g., [1, 33, 34])
was conducted on the use of approximate processing in
a remote vehicle monitoring application. Rather than
using incremental refinement structures, these systems
were constructed with multiple methods for performing
each system task, where each method produced a dif-
ferent tradeoff between resource usage and output qual-
ity. A heuristic scheduling algorithm was used to select
from among the various methods at run-time. This ap-
proach, termeddesign-to-timescheduling, offers the
advantage of having no reliance on the availability of
incremental refinement structures for the tasks at hand.
As disadvantages, however, there exist few results on
optimal scheduling policies for design-to-time systems
and the approach requires inherently higher system

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 183

complexity through the use of functional redundancy
(in the form of multiple methods).

Many of the advances in the development of formal
methods for approximate processing have been based
on two basic assumptions: first, that there exist incre-
mental refinement algorithms for the desired system’s
tasks and, second, that the performance of these algo-
rithms is adequately quantifiable. These requirements
are not met by the currently available algorithms in
most application areas and have therefore fostered ef-
forts to develop and analyze incremental refinement
algorithms for a variety of different applications.

A consideration of the field of DSP in this regard
turns up a wide variety of important algorithms which
have a natural incremental refinement structure. For
example, Levinson’s recursion algorithm [35] for linear
prediction, which is widely used in speech processing
and other applications, produces all-pole signal mod-
els in successive iterations with successively increasing
model order. The wavelet signal decomposition [36]
can be implemented using a tree-structured filter bank
in which each branch of the tree produces successively
more detailed analyses of the time-frequency compo-
sition of the signal. Some of the less obvious methods
for obtaining incremental refinement behavior in DSP
applications are explored in Sections 3–6.

There also exists a rich set of tools for evaluating
the performance of approximate DSP algorithms. The
effects of variability in such system parameters as sam-
pling rate, quantization, time and frequency resolution,
filter and model order, and noise corruption have been
studied in depth and are well understood. Resource us-
age requirements such as arithmetic complexity, mem-
ory, and parallelization have also been analyzed in great
detail.

The firm mathematical foundations on which DSP
is built differentiate it significantly from the general
realm of computational problems. As evidenced by
some of our recent research, it is this property that most
clearly suggests the potential for application of formal
approaches to approximate digital signal processing. In
the next four sections we discuss specific examples of
incremental refinement signal processing algorithms.
In each case we indicate how they may be viewed within
the general conceptual framework of Section 2.

3. Signal Detection Using the FFT

Incremental refinement is a context-dependent pro-
perty. That is, the intermediate results obtained from

an algorithm may improve incrementally according
to some measures of quality while not improving in-
crementally according to others. It is the context of
a particular application that determines what the rel-
evant quality metrics are, and consequently whether
an algorithm has the incremental refinement property.
An important task in applying approximate processing
methodologies to DSP is establishing the contexts in
which existing algorithms have incremental refinement
behavior.

In the context of detecting sinusoids in noise, the FFT
possesses the incremental refinement property. By con-
sidering the performance of the maximum-likelihood
detection strategy applied after successive FFT stages,
we have shown [37] that the performance of the result-
ing suboptimal detector improves incrementally, con-
verging ultimately to that of the exact ML detector.
This leads to important consequences such as the fact
that for a wide range of SNR values at the input of the
FFT, high probabilities of detection are obtained with-
out the necessity of going to the last stage of the FFT.
In this section, we review these results.

We begin by describing the traditional FFT-based
approach to ML detection and the analysis of its perfor-
mance. Next, we consider the data obtained at interme-
diate stages of the FFT in the context of ML detection
and point out that at each successive stage of computa-
tion the effective SNR is doubled while the number of
channels which could contain signal energy is halved.
Compact expressions for the probability of detection,
probability of false alarm, and the receiver operating
characteristic (ROC) are presented. We conclude our
consideration of the FFT with a brief discussion of
how these performance results can be applied to obtain
a CPP.

3.1. FFT-Based Maximum-Likelihood Detection

The detection of a complex sinusoid of unknown fre-
quency and phase in additive white Gaussian noise
(WGN) can be formulated as a decisionD between
the two alternative hypotheses:

Hw : x(n) = w(n),

Hs : x(n) = s(n) + w(n), (1)

where x(n) is the received data sequence, observed
for n = 0, 1, . . . , M − 1, w(n) is the noise process,
ands(n) is the sinusoid to be detected. The hypoth-
esis Hw represents the case when only white noise

 P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

184 Nawab et al.

is present, andHs the hypothesis that the signal is
present.

We consider the detection of complex sinusoids of
the form

s(n) =
√

Eej 2π
M ln + j φ, n = 0, 1, . . . , M − 1, (2)

whereE is the signal power (which is known),l is an
unknown integer frequency index in the range 0≤ l ≤
M−1, andφ is the unknown phase with possible values
0 ≤ φ < 2π . The complex-valued noise processw(n)

with power spectral densityN0/2 can be defined as

w(n) = q(n) + jr (n), n = 0, 1, . . . , M − 1, (3)

whereq(n) andr (n) are both real-valued WGN pro-
cesses with varianceN0/4.

The maximum-likelihood detector fors(n) consists
of a bank of correlators followed by a comparator of
their outputs and a threshold detector [38]. Each cor-
relator can be thought of as producing at its output
the magnitude-squared of the output obtained at time
n = M −1 from a filter matched to one of the possible
sinusoidal frequencies. Denoting byC(k) the output
from the correlator associated with frequency indexk,
we obtain

C(k) =
∣∣∣∣∣M−1∑

n=0

x(n)e− j 2π
M kn

∣∣∣∣∣
2

, k = 0, 1, . . . , M − 1.

(4)

This output is equivalent to the magnitude-squared of
theM-point DFT ofx(n) and is typically implemented
using the FFT algorithm at a significantly reduced com-
putational cost in comparison with a filter-based imple-
mentation.

The ML detection strategy dictates that the output of
these correlators be compared by selecting the maxi-
mal value over allC(k). If this value is greater than a
thresholdη, then the sinusoid is declared to be present
(i.e., D = Hs), otherwise it is declared absent (and
D = Hw). Using the Neyman-Pearson detection crite-
rion [38], the threshold value is selected so that a fixed
false alarm probability (PFA = Prob{D = Hs | Hw}) is
obtained.

The probability of detection and ROC for this de-
tector are determined by forming the distribution of
the maximum energy value found across all elements
of C(k) under each input hypothesis [39]. Under hy-
pothesisHw, the FFT output consists ofM complex-

valued random variables each with real and imaginary
parts that are independent and Gaussian-distributed
with zero mean and varianceM · N0/4. This results in
values ofC(k) that are independent andχ2-distributed
with two degrees of freedom. Under hypothesisHs, the
FFT output fork = l is equal toM

√
Eej φ perturbed by

a complex-valued noise component with independent
Gaussian-distributed real and imaginary parts of zero
mean and varianceM ·N0/4. Hence,C(l) is noncentral
χ2-distributed with two degrees of freedom and non-
centrality parameterM2E. The values ofC(k) for k 6=
l have the same distribution as for the noise-only case.

3.2. Signal Detection from FFT Stages

For applications in which reduction in computation is
desired, one may consider the result of terminating the
FFT algorithm (radix-2 DIT or DIF) after an interme-
diate stage of computation and using its incomplete
results as the basis for detection. The structure of a de-
tector employing this approach is illustrated in Fig. 2,
where we denote byXi (k) the output of thei th FFT
stage andCi (k) is the magnitude-squared ofXi (k).

By forming the distribution of the maximum energy
value found across all elements ofCi (k) under each
input hypothesis [39], we can determine the threshold
values required to obtain a given probability of false
alarm, the resulting probability of detection, and the
receiver operating characteristic achieved by applying
the ML detection strategy after any FFT stage.

Application of the ML detector according to the
Neyman-Pearson criterion requires that we obtain the
threshold value which gives the desired probability of
false alarm (PFA). Since the noise distribution depends
on i , so must the threshold, which we denote byηi .

Figure 2. Incremental refinement detector of sinusoids in noise.

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 185

The probability of producing a false alarm, given that
a threshold ofηi is applied, is [37]

PFA = 1 −
(

1 − exp

(
− ηi

2i −1N0

))M

. (5)

It follows that a given value ofPFA is obtained when

ηi = −2i −1N0 ln
[
1 − (1 − PFA)1/M

]
. (6)

The probability of detectionPD(i) obtained when FFT
processing is terminated afteri stages can be derived
from the distribution ofCi (k)under hypothesisHs [37]:

PD(i) = 1 −
(

1 − exp

(
− ηi

2i −1N0

))M−(M/2i)

×
(

1 − Q

(√
2i +1SNRin,

√
ηi

2i −2N0

))M/2i

.

(7)

where SNRin = 2E/N0 and Q(·, ·) is Marcum’sQ-
function [38]. The receiver operating characteristic is
found by substituting Eq. (6) into Eq. (7):

PD(i)

= 1 − (1 − PFA)1−2−i

×
(
1− Q

(√
2i +1SNRin,

√
−2 ln[1− (1 − PFA)1/M]

))M/2i

.

(8)

This performance analysis enables us to verify that the
detector performance improves monotonically across
stages. By considering the first derivative of the ROC,
taken with respect toi , and making term-wise compari-
sons on the infinite series expansion of Marcum’sQ
function, we obtain the result that for any input SNR
and false alarm probability, the probability of detection
increases monotonically withi . By the last stage, the
performance obviously converges to that of the exact
ML detector.

For any fixed input SNR andPFA, the improvement
in PD(i)between successive FFT stages is non-uniform
across any given FFT algorithm. This is exemplified
by Fig. 3 which shows a typical characteristic forPD(i)
whenPFA≪1. In general, the change inPD(i) between
successive stages depends upon two counteracting ef-
fects: the doubling of SNR at the output of the FFT,
which increases the probability of detection, and the

Figure 3. Detection probabilities at successive FFT stages when
SNRin = −6 dB, PFA = 10−4, andM = 256.

halving of the number of channels containing signal en-
ergy, which decreases it. SincePD(i) increases mono-
tonically, it follows that the shape of theQ–function,
which increases monotonically with its first parame-
ter, is the primary influence on the change in detection
probability at each stage. In comparison, the reduction
in the number of channels containing signal energy is
of secondary importance.

Using the performance analysis discussed above, we
can determine the number of FFT stages that must be
completed in order to obtain a desired detection perfor-
mance. Such information provides a sound basis for
establishing a CPP for the FFT applied to the problem
of detection, with input SNR as the conditioning input
quality, the number of stages (or an equivalent mea-
sure of time or arithmetic complexity) as the resource
measure, and the probability of detection as the output
quality metric. Figure 3 then corresponds to a “slice”
of the CPP conditioned on an input SNR of−6 dB.

4. Spectral Analysis Using the DFT

Spectral analysis is an important component of many
DSP systems and the most widely-used technique for
its implementation is the DFT. The development of
incremental refinement approaches to spectral analy-
sis using the DFT can therefore be expected to have a
significant impact on the applicability of approximate
processing techniques for those systems.

Many different approximate DFT algorithms
have been proposed. The most well-known are

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

186 Nawab et al.

the “pruning”-type algorithms which obtain compu-
tational efficiency by excluding some subset of input
and/or output points. Algorithms of this type include
the FFT pruning algorithms [40–42], Goertzel’s algo-
rithm [43], and others [44, 45]. Advantages of pruning
algorithms include the possibility of using the efficient
FFT structure and the ease with which the error intro-
duced through the approximation may be quantified. In
contrast to pruning approaches, one may consider sac-
rificing the precision with which the DFT is com-
puted. For example, such DFT approximations have
been obtained using the summation by parts approach
[46], the Poorman’s approach [47], and the quantiza-
tion and backward differencing (QBD) approach [48].
Of these various approximate DFT algorithms, only
the QBD approach has been found to offer incremental
refinement behavior for spectral analysis.

We have developed a new class of approximate DFT
algorithms [49] which use both QBD approximation
and pruning and have the incremental refinement pro-
perty. We refer to these algorithms as DFT incremental
refinement (DFT-IR) algorithms. Each of these algo-
rithms consists of multiple stages, where each stage
improves upon the DFT approximation produced by
the previous stage. The quality of the DFT approxi-
mation after each stage can be characterized in terms
of commonly used input-independent metrics for spec-
tral quality: SNR, frequency resolution, and frequency
coverage. The arithmetic complexity of each stage,
however, depends upon the nature of the input signal.
Thus, the characterization of the performance of these
algorithms using a performance profile, as described
in Section 2.1, requires that we establish the prob-
ability with which a given level of output quality is
obtained, given the characteristics of the input signal.
Our approach to this task is to assume that the input
signals in the application may be characterized by a
Gaussian-distributed stationary process with a known
autocorrelation. From this, we have derived the prob-
ability of completing any particular algorithm stage,
and thus producing a corresponding level of spectral
degradation.

4.1. DFT-IR Algorithms

Every DFT-IR algorithm can be viewed as a cascade
of stages, each of which takes a DFT approxima-
tion X̂i −1(k) and produces an improved approxima-
tion X̂i (k). Examples of this structure are illustrated
using a block-diagram format in Figs. 4(a)–(c). The

Figure 4. Block diagram depiction of three different DFT-IR al-
gorithms. Each algorithm stage computes either the initial approx-
imation (J), a SNR update (S), a frequency resolution update (R),
or a frequency coverage update (C). The approximationX̂i (k) is
the output of thei th stage of computation. The operations that are
performed in each block depend upon both the sequence of blocks
that precede it as well as the values of the input data.

refinement process is “jump-started” with the compu-
tation of an initial approximation̂X0(k), defined later
in this section, whose computation is carried out using
the block of typeJ in Fig. 4. Each subsequent stage
performs one of three different updates, and each of
these updates improves the previous approximation in
a different way. The blocks of typeS in Fig. 4 per-
form SNR updates. That is, each improves the SNR of
the previous approximation by performing additional
computation. Similarly, the blocks of typesR andC
representresolution updatesandcoverage updatesre-
spectively. The specific arithmetic operations that are
performed in any particular update depend upon the
sequence of blocks that precede it. We indicate this de-
pendence in Fig. 4 by denoting successive instances of
a particular update block byS′, S′′, etc. The operations
performed in each update, however, are independent of
the order of the preceding blocks—they depend only
on the number of each type of block that precede that
update.

Every unique sequence of updates corresponds to a
different DFT-IR algorithm. For theM-point transform
of a Q-bit input signal, the total number of different
DFT-IR algorithms, which we denote byNA, can be
shown to be

NA = (Q + (3M/2) − 3)!

(Q − 1)!((M/2) − 1)!(M − 1)!
. (9)

 P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 187

Table 1. Control parameters associated with the
DFT-IR algorithm shown in Fig. 4(a).

Stage(i)
Control
parameter 0 1 2 3 4 5 6 · · ·

si 1 1 1 2 2 2 2 · · ·
ri 1 1 1 1 2 2 3 · · ·
ci 1 2 3 3 3 4 4 · · ·

We represent each of these algorithms using a set of
control parameters,si , ri , andci . Table 1 lists the con-
trol parameters associated with the sequence of stages
shown in Fig. 4(a). For eachi , the control parameter
values essentially represent the number of updates of
the corresponding type that are present up to and in-
cluding thei th stage. For example,si − 1 is equal to
the number of SNR updates performed through thei th
stage. The offset by one in each of the control para-
meters accounts for the initial approximation produced
by the “jump-start” stage.

The operation performed by each stage of a DFT-
IR algorithm can be stated in terms of the values of
the input data and the control parameters associated
with that stage. We begin by defining the three updates
mathematically. Their implementation is discussed in
Section 4.2. TheSNR updateimproves an approxima-
tion by the incorporation of an additional bit level of
the input signal. It is defined by

X̂i (k) =


X̂i −1(k) + ∑ri −1

n=0gsi (n)Gsi ,n(k),

k = 1, 2, . . . , ci ,

X̂i −1(k), otherwise,

(10)

whereGq,n(k) is defined as

Gq,n(k) =


−e− j 2π

M kn/(1 − e− j 2π
M k),

q = 1

21−qe− j 2π
M kn/(1 − e− j 2π

M k),

q = 2, 3, . . . , Q,

(11)

andgq(n) is the first circular backward difference of
the bit vectorxq(n), or

gq(n) =
{
xq(0) − xq(M − 1), n = 0

xq(n) − xq(n − 1), n = 1, 2, . . . , M − 1,

(12)

wherexq(n) denotes theqth bit of the two’s comple-
ment binary fraction representation ofx(n). In this
signal representation, the value of each element of the
Q-bit signalx(n) is related to the corresponding values
of its component bit vectors by:

x(n) = −x1(n) +
Q∑

q=2

21−qxq(n). (13)

The resolution updateimproves the frequency resolu-
tion of the approximation by including an additional
time sample of the input signal. It is defined as

X̂i (k) =


X̂i −1(k) + ∑si

q=1gq(ri − 1)Gq,ri −1(k)

k = 1, 2, . . . , ci ,

X̂i −1(k), otherwise.
(14)

The coverage updateimproves the approximation by
adding to it an additional frequency sample. It is de-
fined as

X̂i (k) =


X̂i −1(ci) + ∑si

q=1

∑ri −1
n=0 gq(n)Gq,n(ci),

k = ci ,

X̂i −1(k), otherwise.

(15)

The “jump-start” stage computes an initial approxima-
tion, X̂0(k). It is defined as

X̂0(k) =
{

g1(0)G1,0(1), k = 1,

0, otherwise.
(16)

The amount of spectral degradation present in thei th
successive DFT approximation can be characterized in
terms of the values of the control parameters. As an
alternative to the recursive update form,X̂i (k) can be
expressed as

X̂i (k) =
si∑

q=1

ri −1∑
n=0

gq(n)Gq,n(k), k = 1, 2, . . . , ci .

(17)

From this equation, it can be seen thatci dictates
the spectral bandwidth, 2πci /M radians, over which
X̂i (k) is evaluated. The approximate transformation
truncatesgq(n) to a length ofri samples, effectively
reducing the frequency resolution of the transforma-
tion so that not more thanri distinct frequencies can
be resolved. The SNR of the approximate transform

 P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

188 Nawab et al.

X̂i (k) is reduced by signal quantization to approxi-
mately 6si dB.

4.2. Arithmetic Complexity

The DFT-IR algorithms implement the update
Eqs. (11), (15), and (16) without multiplications using
a technique based on the summation of pre-computed
vectors [50]. The use of pre-computed partial results
to perform linear combinations is generally referred to
asdistributed arithmetic[51, 52]. The application of
various distributed arithmetic techniques to DFT pro-
cessing has been considered by others [53, 54], though
not in the context of approximate DFT algorithms.

In the vector summation approach [50] used by the
DFT-IR algorithms, the complex values ofGq,n(k) are
stored in memory and are added or subtracted from
X̂i −1(k) according to the value ofgq(n) as dictated by
the update equations. All summations corresponding
to gq(n) = 0 are skipped, resulting in a significant
reduction in computation. The total number of real
additions,κi , required for evaluating all the stages up
to and including thei th stage is

κi = si ri + 2γ (si , ri)ci , (18)

where

γ (si , ri) =
si∑

q=1

ri −1∑
n=0

|gq(n)|. (19)

Thesi ri term in Eq. (18) accounts for the backward dif-
ferencing operations required to producegq(n) from
xq(n) over the region included through thei th stage
of processing (recall thatgq(n) is the backward differ-
enced vector defined in Eq. (12)). The second term in
Eq. (18) reflects the number of additions required to
evaluate only those terms of the update equations for
which gq(n) 6= 0.

The quantityγ (si , ri), defined in Eq. (19), is the total
number of non-zero elements in the portion of the back-
ward differenced signal vectorsgq(n) included through
the i th stage. We consequently refer to it as thenon-
zero countfor stagei . For notational convenience,
we abbreviate the quantityγ (si , ri) by γi , though it
should be understood that there is a dependence on
the control parameters associated with thei th stage.
The non-zero count is related to the input signalx(n)

through Eqs. (12), (13), and (19). It represents the total
signal-dependent contribution to the arithmetic cost of

completing thei th stage of processing. For any two
input signals the non-zero count may take on different
values, resulting in a different arithmetic cost for per-
forming the same sequence of stages on those signals.

A complete characterization of the arithmetic com-
plexity of the DFT-IR algorithms requires that the
signal-dependence of the non-zero count be determined
more precisely. Our approach to this problem is based
on a probabilistic analysis. When the input signalx(n)

is modeled as a stochastic process, the non-zero count,
γi , is a random variable. The total arithmetic cost of
completing all the stages up to and including thei th
stage,κi , is related toγi through Eq. (18). Thus, if we
wish to determine the probability distribution of the
arithmetic cost for a class of signals, we must first ob-
tain the p robability distribution of the non-zero count.
Such an analysis is reported in [55].

4.3. Spectral Degradation and Arithmetic Bounds

In the context of the formal approach to algorithm char-
acterization described in Section 2.1, we are especially
interested in determining the effect of terminating any
particular DFT-IR algorithm when its arithmetic cost
reaches a specified boundB. As discussed in the in-
troduction, we characterize this effect in terms of the
probabilities of completion associated with each of the
individual algorithm stages.

We define theprobability of completion, Pi , of a
DFT-IR algorithm to be the probability with which all
stages up to and including stagei of that algorithm are
completed using not more thanB arithmetic operations.
That probability can be expressed as

Pi = Prob{κi ≤ B} , (20)

whereκi is the arithmetic complexity measure given in
Eq. (18). In turn, this leads to the conclusion:

Pi = Prob

{
γi ≤ B − si ri

2ci

}
. (21)

In order to determine the probabilityPi , we once again
need to determine the probability distribution of the
non-zero countγi . That is, we need to characterize the
same random variable which arose in the context of
the arithmetic complexity measureκi .

The associated analysis is reported in [55], where
distributions forγi are derived based on stationary
Gaussian signal models. The results of that analysis

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 189

Table 2. Description and analysis of four stages taken from each of two different 256-point DFT-IR algorithms.
SNR is given in dB, frequency resolution is the maximum number of resolvable frequency components, and
frequency coverage is in radians. Probabilities resulting from the theoretical analysis and Monte Carlo analysis
are given for the completion of each stage within 1000 arithmetic operations. The input signal is presumed to
have the long-term average spectrum of male speech sampled at 32 kHz.

Control Probability of Probability of
Stage parameters Output quality completion completion

Algorithm i si r i ci SNR Resolution Coverage (theoretical) (measured)

1 70 1 8 64 6 8 π/2 0.999 0.999

78 1 16 64 6 16 π/2 0.967 0.956

94 1 32 64 6 32 π/2 0.635 0.628

126 1 64 64 6 64 π/2 0.154 0.137

2 70 1 8 64 6 8 π/2 0.999 0.999

71 2 8 64 12 8 π/2 0.894 0.841

72 3 8 64 18 8 π/2 0.353 0.421

73 4 8 64 24 8 π/2 0.042 0.095

are illustrated in Table 2, which indicate that reason-
ablea priori estimates of the probability of completion
are obtained. The first eight columns of the table list
the control parameters and associated output quality
for selected stages from two different 256-point DFT-
IR algorithms. The ninth column gives the predicted
probability with which each of the stages will com-
plete within a bound of 1000 arithmetic operations,
based on the assumption of a power spectrum equal to
the long term average spectrum of male speech. The
tenth column gives the relative frequency with which
each of the stages was observed to complete in 50,000
Monte Carlo trials, when applied to a signal having the
assumed statistics.

4.4. Discussion

We have presented the DFT-IR class of approximate
DFT algorithms and a probabilistic analysis of their
arithmetic complexity. Through judicious use of suit-
able assumptions we have derived expressions for ob-
taining the probabilities of completion for the stages
of any DFT-IR algorithm in the presence of a fixed
upper bound on arithmetic complexity. These results
may be used for establishing a PDP for any DFT-IR
algorithm. Our results also lead to further interesting
questions regarding algorithm selection from among
the many algorithms in the DFT-IR class. For example,
one may consider the development of procedures for
efficiently obtaining the DFT-IR algorithm whose stage
sequence may be considered as optimal with respect to

application specific requirements on the evolution of
output quality according to the three quality dimen-
sions over time. Some preliminary investigations of
such procedures [56] have shown this to be a promis-
ing avenue of exploration.

5. Image Decoding Using the 2D-IDCT

An important context in which approximate process-
ing and incremental refinement are relevant is when an
image or video sequence is broadcast across a variable
bandwidth network or to receivers whose characteris-
tics are not known to the sender and which possess a
wide range of capabilities. Reduction of quality may
be required at the receivers due to local performance
limitations or in order to adjust to variable data rates. In
either of these cases, the use of an incremental refine-
ment structure for the decoder implementation enables
performance to be easily adapted.

In the context of such applications, the two-
dimensional inverse discrete cosine transform (2D-
IDCT) represents another candidate for the use of an
incremental refinement structure. The energy com-
paction properties of the DCT make it a popular tool
for image and video coding. Accordingly, IDCT com-
putations comprise a significant proportion of the com-
putational effort required in the decompression of the
most widely used image and video coding standards.

Our incremental refinement structure for the 2D-
IDCT has the distributed arithmetic (DA) architecture
shown schematically in Fig. 5. Other structures for

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

190 Nawab et al.

Figure 5. Schematic diagram of the proposed architecture for in-
cremental refinement of 2D-IDCT approximations.

computing the 2D-IDCT have previously been deve-
loped [57–59] using DA but they do not have the in-
cremental refinement property.

A primary difference between our incremental re-
finement structure for the 2D-DCT and these other
structures lies in the bit-serial ordering in which the
distributed arithmetic operation is performed. Our ar-
chitecture begins processing at the most significant bit

Figure 6. (a) The successive results obtained using a standard distributed arithmetic approach to performing the 2D-IDCT on 8× 8 pixel blocks
of a 384× 192 pixel 8-bit image. (b) The results obtained during 8 successive stages of 2D-IDCT refinement using the successive refinement
architecture described in the text.

of the input words, advancing progressively towards the
least significant. With this approach, the intermediate
results obtained at the output of the DA sub-system
represent an approximation of the exact result based
on the quantization of the input data to a fewer number
of representation levels.

Another important innovation in our work lies in
the basic manner in which distributed arithmetic has
been applied to the 2D-IDCT. Previously reported im-
plementations [57–59] are based upon the decompo-
sition of the 2D-IDCT into the 1D-IDCT of the rows
of the input data followed by the 1D-IDCT of each of
the columns. Obtaining satisfactory incremental refine-
ment behavior from this architecture is hindered by the
fact that even when MSB-to-LSB bit ordering is used,
the intermediate results produced by the first stage of
row 1D-IDCT processing do not represent approxima-
tions to the desired output. This observation is illus-
trated in Fig. 6(a), which shows the successive results of

 P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 191

the intermediate calculations for a standard distributed
arithmetic approach to performing the 2D-IDCT on an
image [57]. In Fig. 6(b) we show the results of the in-
termediate calculation using the distributed arithmetic
architecture described in this section.

As in all applications of distributed arithmetic, the
selection of an appropriate DA structure is strongly in-
fluenced by tradeoffs between performance and mem-
ory usage. For instance, a direct DA implementation
of the 8× 8 2D-IDCT would require 264 words of
ROM. In contrast, the architecture described here, with
no memory saving optimizations applied, requires 217

words of ROM. Due to the periodic structure of the
IDCT basis functions, there exists considerable po-
tential for reducing this memory requirement further.
Such techniques have been successfully applied in the
separable 2D-IDCT implementation [57], for which the
memory requirements for the 16× 16 transform were
reduced from 221 words to 210 words.

To examine our 2D-IDCT incremental refinement
structure, consider theN × N 2D-IDCT of X(u, v):

x(i, j) = 2

N

N−1∑
u=0

N−1∑
v=0

C(u)C(v)X(u, v)

× cos

[
(2i + 1)uπ

2N

]
cos

[
(2 j + 1)vπ

2N

]
,

(22)

whereC(0) = 1/
√

2 andC(u) = C(v) = 1 foru, v 6= 0.
Throughout our derivation,u, v, i, j ∈ {0..N − 1}.
WhenX(u, v) is encoded in two’s complement binary
the 2D-IDCT can be written as:

x(i, j) = 2

N

N−1∑
u=0

N−1∑
v=0

C(u)C(v)

Q∑
q=1

Xq(u, v)βq

× cos

[
(2i + 1)uπ

2N

]
cos

[
(2 j + 1)vπ

2N

]
, (23)

with Xq(u, v) denoting theqth bit of the binary repre-
sentation ofX(u, v) and

βq =
{−1, q = 1,

21−q, q = 2, 3, . . . , Q.
(24)

To express the 2D-IDCT in a form suitable for applying
distributed arithmetic, we rewrite Eq. (23) as

x(i, j) =
Q∑

q=1

N−1∑
u=0

Fu(Xq(u, v), i, j)βq, (25)

with

Fu(Xq(u, v), i, j)

= C(u)
2

N

N−1∑
v=0

C(v)Xq(u, v)

× cos

[
(2i + 1)uπ

2N

]
cos

[
(2 j + 1)vπ

2N

]
. (26)

The arguments to each functionFu are a row vector of
N bits (indexed byv) taken from theqth position of
the uth row of Xq(u, v), and a coordinate ofx(i, j).
It’s output is the 2D-IDCT of the given row vector of
bits evaluated at position(i, j). By pre-computing and
storing in memory the values ofFu, and implementing
separately theFu functions as indicated in Fig. 5, the
entire summation overu in Eq. (25) can be evaluated in
parallel for a single value ofq. Thus, at each stage of
computation (i.e., for each value ofq) the structure up-
dates its previous result with the 2D-IDCT correspond-
ing to an entire additional bit plane of the input coeffi-
cients. The scaling associated withβq in Eq. (25) is im-
plemented via bit shifting in the output accumulators.

The incremental refinement structure outlined above
for the 2D-IDCT may be used in a practical DCT-
based image encoding/decoding system. The inclusion
of each additional bit plane of the coefficients in the
output of the 2D-IDCT corresponds to an increase in
the SNR of the output by approximately 6 dB, mak-
ing the derivation of a CPP for this incremental re-
finement structure a straightforward process. Conse-
quently, an appropriate control strategy can be used by
each receiver for terminating the decoding process at
any intermediate stage in accordance with the avail-
ability of system resources and/or the desired quality
of the decoded image.

6. Low-Power Frequency-Selective Filtering

Another area of interest in approximate signal process-
ing is the formulation of efficient control mechanisms
for the run-time adaptation of the number of stages to
use in a given incremental refinement structure. The
goal of such adaptation could, for example, be to con-
serve a limited resource (such as battery power) or to
respond to dynamic changes in resource availability
(such as processor cycles in a shared environment). In
this section we discuss an example from our recent re-
sults on low-power frequency-selective digital filtering
[60–63] as an illustration of run-time adaptation for
resource conservation.

 P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

192 Nawab et al.

The increasing demand for battery operated portable
electronic devices has elevated power dissipation to be
a critical design parameter. Since digital signal pro-
cessing is pervasive in such applications, it is useful
to consider how algorithmic approaches may be ex-
ploited in constructing low-power solutions. The aver-
age power consumption,P, of a digital system may be
approximately represented through the expression:

P =
∑

i

Ni Ci V
2
dd fs, (27)

whereCi is the average capacitance switched per oper-
ation of typei (corresponding to addition, multipli-
cation, storage, or bus accesses),Ni is the number
of operations of typei performed per sample,Vdd is
the operating supply voltage, andfs is the sample fre-
quency. There are many applications in signal process-
ing such as real-time digital filtering where there is no
advantage in exceeding a bounded computation rate
(i.e., the sample rate is fixed). This attribute can then
be exploited to reduce power dissipation.

Power reduction in signal processing systems in
general involves optimization at all levels of the design
abstraction including consideration of process techno-
logy, logic and circuit design, architecture design, and
algorithm selection [64]. Typically, optimization to
lower the power dissipation is done statically at design
time. For example, parallel and pipelined architectures
can be used to aggressively scale power supply volt-
ages without loss in functional throughput. An order
of magnitude power reduction is possible over conven-
tional approaches using this technique. Another trade-
off involves choosing sign-magnitude representation to
lower transition activity relative to two’s complement
representation.

Significant power gains can be achieved if opti-
mization is done dynamically at run time, by con-
sidering and adapting to time varying signal statis-
tics. Low-level data–dependent clock gating is one
example of dynamic optimization currently in use by

Figure 7. Incremental refinement structure for an IIR digital filter.

many low-power microprocessors. Another example
involves the use of an adaptive power supply voltage
system which exploits dynamically varying process-
ing requirements [65]. The basic idea involves using
a lower power supply voltage when the computational
workload reduces rather than working at a fixed voltage
and idling. The technique we discuss below enables the
dynamic adjustment of the computational workload of
frequency-selective digital filters.

Our approach involves exploiting signal statistics to
reduce the effective capacitance switched in digital fil-
ters. Rather than using a fixed filter order (as is the
case in conventional filter design), the filter order is
allowed to vary with the aim of keeping it as small
as possible while ensuring that the ratio of the pass-
band power to the stopband power for the filter output,
is kept above a specified threshold. Power consump-
tion is reduced since the number of operations (Ni of
Eq. (27)) is dynamically minimized rather than work-
ing at a fixed filter order optimized for the worst case
signal statistics. To illustrate the ideas involved, we
first introduce an incremental refinement structure for
an IIR Butterworth filter. We then outline an adapta-
tion framework for dynamically varying the number of
stages used in such incremental refinement structures.
It should be noted that our overall approach is not re-
stricted to Butterworth or even IIR filters. For example,
an incremental refinement structure for FIR filtering is
described in [61].

6.1. Butterworth Incremental Refinement Structure

As an example of an incremental refinement structure
for a lowpass IIR filter, let us consider the case of a
Butterworth filter of order 2M0. A cascade structure for
this filter consists of a serial connection ofM0 second-
order Direct-Form II sections, as shown in Fig. 7.
Each section corresponds to a pair of conjugate poles
of the Butterworth filter and two zeros (both located
at z = −1). Denoting the frequency response of the

 P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 193

order-2M0 Butterworth filter byHM0(ω), we may write

HM0(ω) = G1(ω)G2(ω)G3(ω) · · · GM0(ω) (28)

whereGi (ω) denotes the frequency response of thei th
second order section in the cascade structure of Fig. 7.
It can be furthermore assured thatGi (0) = 1. If only
the firstN sections (N ≤ M0) of the cascade structure
in Fig. 7 are utilized, the resulting order-2N truncated
Butterworth filter has the frequency responseHN(ω),
given by:

HN(ω) =
N∏

k=1

Gk(ω) (29)

The Butterworth pole pairs are assigned to each of the
second-order sections so that as the number of second-
order sections is increased, the average attenuation in
the stopband of the filter also increases, while keep-
ing the passband gain close to unity. An empirical
strategy for making such a pole-pair assignment is as
follows: the pole pair for theM0th section is selected
first as the one which results in|HM0−1(ω)| having the
smallest maximum deviation (from unity) in the pass-
band. From the remaining pole pairs, the pair for the
(M0 − 1)st section is selected as the one which results
in |HM0−2(ω)| having the smallest maximum deviation
(from unity) in the passband. The process is continued
backwards in an analogous manner until each section
has been assigned its corresponding pole pair. To illus-
trate, consider the application of this strategy to a 20th
order Butterworth filter with half-power frequency of
π/2. The functions|HN(ω)|2 obtained in this case
are shown in Fig. 8. It should be observed that as the
number of sections (N) is increased, the attenuation

Figure 8. Magnitude-squared frequency responses for truncations
of a 20th-order Butterworth filter with 3, 5, 7, 9, and 10 second-order
sections.

in most of the stopband also increases. On the other
hand, the filter gain remains close to unity in most of
the passband.

6.2. Adaptation Objective

Suppose that a stationary inputx[n] with power spec-
trum Sx(ω) is filtered using theN-section truncated
Butterworth filter, where 1≤ N ≤ M0, to obtain an
outputy[n]. We define the signal-to-noise ratio, SNR,
as the ratio of the power in the passband to the power
in the stopband. Specifically, the input SNR may be
defined as

ISNR
1= PPB

x

PSB
x

, (30)

where

PPB
x = 1

2π

∫
PB

Sx(ω) dω (31)

and

PSB
x = 1

2π

∫
SB

Sx(ω) dω. (32)

Correspondingly, the output SNR is defined as

OSNR[N]
1= PPB

y [N]

PSB
y [N]

, (33)

where

PPB
y [N] = 1

2π

∫
PB

Sx(ω)|HN(ω)|2 dω (34)

and

PSB
y [N] = 1

2π

∫
SB

Sx(ω)|HN(ω)|2 dω. (35)

Ideally, one would like to selectN to be the smallest
value for which

OSNR[N] ≥ OSNRtol, (36)

where OSNRtol is the minimum tolerable output SNR
for the application. Furthermore, if the input is non-
stationary, OSNR[N] will be time varying and conse-
quently the filter order would have to adapt over time to
reduce power consumption. Of course, this requires an
adaptation framework whose overhead is low relative
to the expected savings in power consumption.

6.3. Adaptation Framework

One of the low-cost adaptation strategies that we have
developed [62] is illustrated in Fig. 9. The number

 P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

194 Nawab et al.

Figure 9. Adaptation strategy for updating the filter order after each
new set ofL output samples is computed.

of sections utilized in the filter’s incremental refine-
ment structure is updated for every new set ofL output
samples. The low-cost update procedure involves the
calculation of input and output signal-power estimates
followed by the application of the decision moduleD
shown in Fig. 9. This module uses the signal-power
estimates to form an estimate of the temporally local
ISNR. This ISNR estimate is then used as the basis for
selecting the filter order to be applied in computing the
next set ofL output samples. The precise formulation
of the decision rule is based upon the following set of
assumptions:

• Sx(ω) in the passband isarbitrary.
• Sx(ω) in the stopband is white but with unknown

power.
• Sx(ω) in the transition band is negligible.
• |HN(ω)|2 = 1 in the passband,|HN(ω)|2 ¿ 1 in the

stopband.

Let us consider a situation where anN0-section
(N0 ≤ M0) truncated Butterworth filter is applied to
a stationary inputx[n] to obtain the outputy[n]. It can
be shown [62] that under the stated assumptions,

OSNR[N0] = Py[N0] − (Px − Py[N0])Ph[N0]

(Px − Py[N0])Ph[N0]
.

(37)
where

Px = 1

2π

∫ π

−π

Sx(ω) dω, (38)

Py[N0] = 1

2π

∫ π

−π

Sx(ω)|HN0(ω)|2 dω, (39)

and

Ph[N0] =
(

1

2π

∫
SB

[
1 − |HN0(ω)|2] dω

)−1

×
(

1

2π

∫
SB

|HN0(ω)|2 dω

)
. (40)

Furthermore,

ISNR = Py[N0] − (Px − Py[N0])Ph[N0]

(Px − Py[N0])
. (41)

If now a filter of orderN (N ≤ M0) were to be used
instead of orderN0 to process the same signalx[n], we
would obtain

OSNR[N] = ISNR

Ph[N]
. (42)

To minimize power consumption, we would want to
choose the smallest permissible v alue forN such that

ISNR

(
1

Ph[N]

)
≥ OSNRtol. (43)

or, equivalently,

Py[N0] − (Px − Py[N0])Ph[N0]

≥ OSNRtol(Ph[N])(Px − Py[N0]) (44)

To obtain a practical (low cost) decision rule on the
basis of the above theory, suppose that we have applied
a filter of orderN0 to obtain the output signal prior to
and including timen. We may then obtain the following
estimates:

P̂x = 1

L

L−1∑
k=0

x2[n − k] (45)

P̂y[N0] = 1

L

L−1∑
k=0

y2[n − k]. (46)

Using these estimates in the inequality Eq. (44) and
recognizing that the values of the product OS-
NRtol (Ph[N]) can be prestored, the decision rule may
be designed to search for the smallest value ofN sat-
isfying the inequality. This search requiresO(M0)

operations—at mostM0 table look-up operations, two
subtractions, at mostM0 +1 multiplications and at
most M0 comparisons—whereM0 is the number of
sections in the original Butterworth filter. The selected
value ofN becomes the number of sections used in the
incremental refinement structure to produce the nextL
output samples. The process continues in this way, up-
dating the filter order everyL samples.4 Thus, for every
new set ofL output samples, the adaptation overhead

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 195

involvesO(M0) operations for the decision module D,
and on the order of 2L multiplications and 2L additions

for calculating the estimateŝPx andP̂y. Assuming that
L is much greater thanM0, it is clear that the overhead
is approximately two multiplications and two additions
per output sample. For comparison, it should be noted
that each second–order section of the filter requires
five multiplications and four additions per output sam-
ple. Thus, even if the adaptive technique reduces the
number of sections by only 1 over a particular interval,
there is a net reduction in power consumption over that
interval.

6.4. Performance Examples

From Eq. (42) we see that the quantity 1/Ph[N] re-
presents the factor by which the first set ofN sec-
tions of the Butterworth incremental refinement struc-
ture improves upon the input SNR. We can thus provide
a performance profile for this structure. Specifically,
Fig. 10 shows 1/Ph[N] as a function ofN for the case
of truncations of an original 10-section Butterworth fil-
ter with half-power frequency ofπ/2. The stopband
in this case was defined to be between 5π/8 andπ .
Clearly, the higher the filter order, the greater is the re-
sulting improvement in output SNR. This incremental

Figure 10. Performance profile for truncations of a 20th-order Butterworth filter with half-power frequencyπ/2.

refinement structure along with the adaptation strategy
described in the previous section (withL = 100 and
OSNRtol = 1000) was applied to two speech signals
which had been frequency-division multiplexed. One
signal was in the passband region of the lowpass filter
and the other was in the stopband region. The sam-
pling rate for the FDM speech signal was 16000 Hz.
Figure 11 shows the speech signal in the passband, the
speech signal in the stopband, and the evolution of the
number of filter sections used by the adaptive filter-
ing technique. Examination of the figure shows that as
would be expected, the number of filter sections (N)
used is large when the input SNR is small and is small
when the input SNR is high.

7. Summary and Conclusions

As sophisticated signal processing systems proliferate
in consumer electronics, distributed and networked en-
vironments, unattended sensors, etc., there is increas-
ing emphasis on efficient use of associated resources.
For these and other reasons, the concepts of approxi-
mate processing and incremental refinement will un-
doubtedly play an increasingly important role in signal
processing systems. In practice it has always been the
case that many signal processing systems have utilized

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

196 Nawab et al.

Figure 11. Demultiplexing of FDM speech using low-power fre-
quency selective filtering. (a) Passband speech, (b) stopband speech,
and (c) number of filter sections as a function of sample number.

approximations to exact algorithms based on empiri-
cal or heuristic strategies. Also, many exact algorithms
have been formulated mathematically in an iterative or
recursive form which in many cases naturally result in
an implementation with incremental refinement. How-
ever, many iterative algorithms are structured in this
form for efficient realization of the exact algorithm
rather than with the goal of utilizing them in the context
of approximate processing. Thus in many cases, the it-
erative or recursive structure does not produce useful
intermediate or approximate results until convergence
is almost reached.

One of our objectives in this paper has been to sug-
gest that there is the potential for developing a more
formal approach to approximate processing and incre-
mental refinement in the context of signal processing
algorithms. Toward this end, we believe that there is
significant potential in the formalism of approximate
processing currently being developed in the computer
science community. At present that formalism has only
been applied in a few instances. However, among other
things, it suggests an approach and an interest in de-
veloping structured ways of thinking about, evaluating,
and generating algorithms of this type.

In the first part of this paper we have summarized
some of the ideas and approaches toward approximate
processing as currently being formulated in the com-
puter science literature. We then presented four ex-
amples of signal processing algorithms that are struc-
tured with these goals in mind. As is evidented in
the discussion, in a general sense these four examples
fit within the broad conceptual framework of approx-
imate processing as discussed in Section 2. However,
there remains a large gap between the formal struc-
ture and its application in detail to these four examples
and more broadly to the field of signal processing in
general. Closing this gap and expanding the formal-
ism is one of the exciting challenges of this emerging
topic.

The four examples that were presented in Sections 3–
6 were chosen as case studies to illustrate some spe-
cific points. The algorithm in Section 3 was chosen
to illustrate how an existing recursive structure can be
adapted as an incremental refinement structure. The
particular example exploits the recursive structure of
the FFT algorithm to obtain an algorithm for signal de-
tection with incremental refinement. Section 4 presents
an example of the development of a new incremental
refinement structure for an existing signal processing
transform (the DFT) in the context of a particular class
of applications, specifically real-time spectral analysis.
In Section 5, through the example of DCT-based im-
age encoding/decoding, we illustrate how an existing
computational structure, which does not have the char-
acteristic of incremental refinement, can be modified
so that it does. In Section 6, through the discussion
of low-power algorithms for approximate processing
in the context of digital filters, we illustrate the de-
velopment of approximate processing algorithms for
conservation of resources.

Acknowledgments

This paper was prepared in part through collabora-
tive participation in the Advanced Sensors Consortium
sponsored by the U.S. Army Research Laboratory un-
der Cooperative Agreement DAAL01-96-2-0001. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
presenting the official policies either expressed or im-
plied, of the Army Research Laboratory or the US
Government. This work was sponsored in part by the
Department of the Navy, Office of the Chief of Naval
Research, contract number N00014-93-1-0686 as part

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 197

of the Advanced Research Projects Agency’s RASSP
program.

Notes

1. In comparison with the framework for performance character-
ization described in Section 2.1, this model incorporates the
conditioning of output quality on that of the inputs but fails
to incorporate the variability in output quality that may occur
across various instances of inputs of the same quality. Error
is complementary to quality and can be considered to be the
difference between a given quality and the quality of an optimal
result.

2. This is equivalent to the error associated with each task being
proportional to the difference between the total processing time
and the amount of time allocated to the task.

3. A schedule is feasible if all tasks are scheduled to a processor for
at least their mandatory processing time during the time interval
between their ready time and their deadline time.

4. Other variations on this update procedure have also been formu-
lated [60, 61] but they are not considered here.

References

1. V.R. Lesser, J. Pavlin, and E. Durfee, “Approximate processing
in real-time problem solving,”AI Magazine, pp. 49–61, Spring
1988.

2. K.J. Lin, S. Natarajan, and J.W.S. Liu, “Imprecise results: Uti-
lizing partial computations in real-time systems,” inProc. Eighth
Real-Time Sys. Symp., San Jose, CA, Dec. 1987, pp. 210–217.

3. E.J. Horvitz, “Reasoning about beliefs and actions under compu-
tational resource constraints,” inThird Workhsop on Uncertainty
in Artificial Intelligence, Seattle, WA, July 1987, pp. 429–439.

4. N.S. Jayant and P. Noll,Digital Coding of Waveforms: Princi-
ples and Applications to Speech and Video, Englewood Cliffs,
NJ, Prentice Hall, 1984.

5. K. Knowlton, “Progressive transmission of grey-scale and binary
pictures by simple, efficient, and lossless encoding schemes,”
Proc. IEEE, Vol. 68, pp. 885–896, July 1980.

6. T. Dean and M. Boddy, “An analysis of time-dependent plan-
ning,” in Proc. Seventh Nat’l. Conf. on Artificial Intelligence, St.
Paul, MN, Aug. 1988, pp. 49–54.

7. J. Pridmore, G. Buchanan, G. Caracciolo, and J. Wedgwood,
“Model-year architectures for rapid prototyping,”J. VLSI Sig.
Proc., Vol. 15, pp. 83–96.

8. J.W.S. Liu, S. Natarajan, and K.J. Lin, “Scheduling real-time
periodic jobs using imprecise results,” inProc. Eighth Real-Time
Sys. Symp., San Jose, CA, Dec. 1987, pp. 252–260.

9. K.J. Lin, S. Natarajan, and J.W.S. Liu, “Concord: A system
of imprecise computations,” inProc. 1987 IEEE Compsac, San
Jose, CA, Dec. 1987, pp. 75–81.

10. A. Garvey and V. Lesser, “A survey of research in delibera-
tive real-time artificial intelligence,”Real-Time Systems, Vol. 6,
pp. 317–347, May 1994.

11. S.J. Russell and S. Zilberstein, “Composing real-time systems,”
in Proc. 12th Int. Joint Conf. Artif. Intel., Sydney, Australia,
1992, pp. 212–217.

12. S. Zilberstein and S. Russell, “Optimal composition of real-time
systems,”Artificial Intelligence, Dec. 1995.

13. S. Zilberstein, Operational Rationality through Compilation of
Anytime Algorithms, Ph.D. Thesis, U.C. Berkeley, 1993.

14. M. Boddy and T.L. Dean, “Solving time-dependent planning
problems,” inProc. Eleventh Int’l. Joint Conf. on Artificial In-
telligence, Detroit, MI, 1989, pp. 979–984.

15. J.A. Stankovic and K. Ramamritham,Hard Real-Time Systems,
IEEE Computer Society Press, Washington, DC, 1988.

16. J.A. Stankovic and K. Ramamritham,Advances in Real-Time
Systems, IEEE Computer Society Press, Washington, DC, 1993.

17. J.W.S. Liu, W.K. Shih, K.J. Lin, R. Bettati, and J.Y. Chung,
“Imprecise computations,”Proc. IEEE, Vol. 82, pp. 83–93, Jan.
1994.

18. J.W.S. Liu, K.J. Lin, W.K. Shih, A.C. Yu, and J.Y. Chung, “Al-
gorithms for scheduling imprecise computations,”Computer,
Vol. 24, pp. 58–68, May 1991.

19. E.L. Lawler and J.M. Moore, “A functional equation and its ap-
plication to resource allocation and scheduling problems,”Man-
agement Science, Vol. 16, pp. 77–84, 1969.

20. W.K. Shih and J.W.S. Liu, “On-line scheduling of imprecise
computations to minimize total error,” inProc. 13th Real-Time
Sys. Symp., Pheonix, AZ, Dec. 1992, pp. 280–289.

21. J.Y. Chung, W.K. Shih, J.W.S. Liu, and D.W. Gillies, “Schedul-
ing imprecise computations to minimize total error,”Micropro-
cessing and Microprogramming, Vol. 27, pp. 767–774, 1989.

22. K.I.J. Ho, J.Y.T. Leung, and W.D. Wei, “Minimizing maximum
weighted error of imprecise computation tasks,” Technical Re-
port, Dept. of Computer Science and Engineering, University of
Nebraska, 1992.

23. J.Y. Chung and J.W.S. Liu, “Scheduling periodic jobs that allow
imprecise results,”IEEE Trans. Computers, Vol. 39, pp. 1156–
1173, Sept. 1990.

24. I.K. Cheong, Scheduling Imprecise Hard Real-Time Jobs with
Cumulative Error, Ph.D. Thesis, University of Illinois at Urbana-
Champaign, 1992.

25. P. Henderson,Functional Programming: Application and Im-
plementation, NJ, Prentice Hall, Englewood Cliffs, 1980.

26. E.J. Horvitz, G.F. Cooper, and D.E. Heckerman, “Reflection and
action under scarce resources: Theoretical principles and em-
pirical study,” inProc. 11th Int. Joint Conf. Artif. Intel., Detroit,
MI, 1989, pp. 1121–1127.

27. E.J. Horvitz and G. Rutledge, “Time-dependent utility and action
under uncertainty,” inProc. 7th Conf. on Uncert. in Artif. Intel.,
Los Angeles, CA, July 1991, pp. 151–158.

28. J. Pearl, “Fusion, propagation, and structuring in belief net-
works,” Artificial Intelligence, Vol. 29, pp. 241–288, 1986.

29. E.J. Horvitz, Computation and Action Under Bounded Re-
sources, Ph.D. Thesis, Stanford Univ., 1990.

30. S. Russell and E. Wefald, “Principles of metareasoning,”Artifi-
cial Intelligence, May 1991.

31. S.J. Russell and E. Wefald,Do the Right Thing: Studies in Lim-
ited Rationality, MIT Press, Cambridge, MA, 1991.

32. S. Zilberstein and S.J. Russell, “Anytime sensing, planning and
action: A practical model for robot control,” inProc. 13th Int.
Joint Conf. Artif. Intel., Chambery, France, 1993, pp. 1402–
1407.

33. A.J. Garvey and V.R. Lesser, “Design-to-time real-time schedul-
ing,” IEEE Trans. Sys., Man, and Cybernetics, Vol. 23, pp. 1491–
1502, Nov. 1993.

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

198 Nawab et al.

34. K. Decker, V. Lesser, and R.C. Whitehair, “Extending a black-
board architecture for approximate processing,”J. Real-Time
Systems, Vol. 2, No. 1, pp. 47–79, 1990.

35. N. Levinson, “The Wiener RMS error criterion in filter design
and prediction,”J. Math. Phys., Vol. 25, pp. 261–278, Jan. 1947.

36. M. Vetterli and C. Herley, “Wavelets and filter banks: Theory
and design,”IEEE Trans. Signal Processing, Vol. 40, pp. 2207–
2232, Sept. 1992.

37. J.M. Winograd, S.H. Nawab, and A.V. Oppenheim, “FFT-based
incremental refinement of suboptimal detection,” inProc. IEEE
Int. Conf. Acoust., Speech, and Signal Processing, Atlanta, GA,
May 1996, pp. 2479–2482.

38. H.L. Van Trees, Detection, Estimation, and Modulation
Theory—Part I, John Wiley & Sons, New York, 1968.

39. R.J. Kenefic, “Generalized likelihood ratio detector performance
for a tone with unknown parameters in Gaussian white noise,”
IEEE Trans. Signal Processing, Vol. 39, pp. 978–980, April
1991.

40. J.D. Markel, “FFT pruning,”IEEE Trans. Audio and Electroa-
coustics, Vol. AU-19, pp. 305–310, Dec. 1971.

41. D.P. Skinner, “Pruning the decimation in-time FFT algorithm,”
IEEE Trans. Acoust., Speech, and Signal Processing, pp. 193–
194, April 1976.

42. T.V. Sreenivas and P.V.S. Rao, “FFT algorithm for both input
and output pruning,”IEEE Trans. Acoust., Speech, and Signal
Processing, Vol. ASSP-27, pp. 291–292, June 1979.

43. G. Goertzel, “An algorithm for the evaluation of finite trigono-
metric series,”Amer. Math. Monthly, Vol. 65, pp. 34–35, Jan.
1958.

44. H.V. Sorensen and C.S. Burrus, “Efficient computation of the
DFT with only a subset of input or output points,”IEEE Trans.
Signal Processing, Vol. 41, pp. 1184–1200, March 1993.

45. O.V. Shentov, S.K. Mitra, U. Heute, and A.N. Hossen, “Subband
DFT—Part I: Definition, interpretation, and extensions,”Signal
Processing, Vol. 41, pp. 261–277, Feb. 1995.

46. G.F. Boudreaux-Bartels and T.W. Parks, “Discrete Fourier trans-
form using summation by parts,” inProc. IEEE Int. Conf.
Acoust., Speech, and Signal Processing, Dallas, TX, 1987,
Vol. 3, pp. 1827–1830.

47. M.P. Lamoureux, “The Poorman’s transform: Approximating
the Fourier transform without multiplication,”IEEE Trans. Sig-
nal Processing, Vol. 41, pp. 1413–1415, March 1993.

48. S.H. Nawab and E. Dorken, “Efficient STFT approximation
using a quantization and differencing method,” inProc. IEEE
Int. Conf. Acoust., Speech, and Signal Processing, Minneapolis,
MN, April 1993, pp. 587–590.

49. J.M. Winograd and S.H. Nawab, “Incremental refinement of
DFT and STFT approximations,”IEEE Signal Processing Let-
ters, Vol. 2, pp. 25–28, Feb. 1995.

50. S.H. Nawab and E. Dorken, “A framework for quality versus
efficiency tradeoffs in STFT analysis,”IEEE Trans. Signal Pro-
cessing, Vol. 43, pp. 998–1001, April 1995.

51. A. Peled and B. Liu, “A new hardware realization of digital
filters,” IEEE Trans. Acoust., Speech, and Signal Processing,
Vol. ASSP-22, pp. 456–462, Dec. 1974.

52. S.A. White, “Applications of distributed arithmetic to digital
signal processing: A tutorial review,”IEEE ASSP Magazine,
Vol. 6, pp. 4–19, July 1989.

53. S. Chu and C.S. Burrus, “A prime factor FFT algorithm us-
ing distributed arithmetic,”IEEE Trans. Signal Processing,

Vol. ASSP-30, pp. 217–226, April 1982.
54. F.J. Taylor, “An RNS discrete fourier transform implementa-

tion,” IEEE Trans. Acoust., Speech, and Signal Processing,
Vol. 38, pp. 1386–1394, Aug. 1990.

55. J.M. Winograd and S.H. Nawab, “Probabilistic complexity anal-
ysis for a class of approximate DFT algorithms,”J. VLSI Sig.
Proc., Vol. 14, pp. 193–205, 1996.

56. S.H. Nawab and J.M. Winograd, “Approximate signal pro-
cessing using incremental refinement and deadline-based
algorithms,” inProc. IEEE Int. Conf. Acoust., Speech, and Signal
Processing, Detroit, MI, May 1995, Vol. 5, pp. 2857–2860.

57. M.-T. Sun, T.-C. Chen, and A.M. Gottlieb, “VLSI implementa-
tion of a 16× 16 discrete cosine transform,”IEEE Trans. Circ.
and Sys., Vol. 36, pp. 610–617, April 1989.

58. S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita,
H. Terane, and M. Yoshimoto, “A 100-MHz 2-D discrete cosine
transform core processor,”IEEE J. Solid State Circuits, Vol. 27,
pp. 492–498, April 1992.

59. H. Fujiwara, M.L. Liou, M.-T. Sun, K.-M. Yang, M. Maruyama,
K. Shomura, and K. Ohyama, “An all-ASIC implementation of
a low bit-rate video codec,”IEEE Trans. Circ. and Sys. for Video
Tech., Vol. 2, pp. 123–133, June 1992.

60. J.T. Ludwig, S.H. Nawab, and A. Chandrakasan, “Low power
filtering using approximate processing for DSP applications,” in
Proc. Custom Integrated Circuits Conf., Santa Clara, CA, May
1995, pp. 185–188.

61. J.T. Ludwig, S.H. Nawab, and A. Chandrakasan, “Low-power
digital filtering using approximate processing,”IEEE J. Solid
State Circ., Vol. 31, pp. 395–400, March 1996.

62. J.T. Ludwig, S.H. Nawab, and A. Chandrakasan, “Convergence
results on adaptive approximate filtering,”Advanced Signal Pro-
cessing Algorithms, F.T. Luk (Ed.),Proc. SPIE 2846, Aug. 1996.

63. J.T. Ludwig, S.H. Nawab, and A. Chandrakasan, “Approximate
filtering using incremental refinement structures,” in preparation
for submission toIEEE Trans. Sig. Proc., Summer 1996.

64. A. Chandrakasan and R. Brodersen,Low Power Digital CMOS
Design, Kluwer Academic Publishers, Norwell, MA, 1995.

65. V. Gutnik and A. Chandrakasan, “An efficient controller for vari-
able supply-voltage low power processing,”IEE Symposium on
VLSI Circuits, June 1996.

S. Hamid Nawabreceived the S.B., S.M., and Ph.D. degrees in elec-
trical engineering from the Massachusetts Institute of Technology in
1977, 1979, and 1982, respectively.

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

Approximate Signal Processing 199

He is currently an Associate Professor in the Department of Elec-
trical and Computer Engineering at Boston University. He has held
visiting professorships in electrical engineering at MIT (1994–95)
and in computer science at University of Massachusetts at Amherst
(1988–89). His research primarily involves the exploration of new
algorithms and architectures for digital and knowledge-based signal
processing. He is co-editor of the book,Symbolic and Knowledge-
based Signal Processing(Prentice-Hall, 1992). He also joins A.V.
Oppenheim and A.S. Willsky on the second edition of their text on
Signals and Systems(Prentice-Hall, 1997).

Dr. Nawab is the winner of the 1988 Paper Award from the
IEEE Signal Processing Society for his paper entitled “Direction
Determination of Wideband Signals.” He is also the recipient
of 1993 Metcalf Award for Excellence in Teaching at Boston
University.

Alan V. Oppenheim received the S.B. and S.M. degrees in 1961
and the Sc.D. degree in 1964, all in electrical engineering, from the
Massachusetts Institute of Technology. He was also the recipient of
an honorary doctorate from Tel Aviv University in 1995. In 1964,
Dr. Oppenheim joined the faculty at MIT, where he currently holds
the Distinguished Professor Chair in Electrical Engineering. Since
1967 he has also been affiliated with MIT Lincoln Laboratory and
since 1977 with the Woods Hole Oceanographic Institution. His
research interests are in the general area of signal processing and its
applications. He is coauthor of the widely used textbooksDiscrete-
time Signal ProcessingandSignals and Systems. He is also editor
of several advanced books on signal processing.

Dr. Oppenheim is a member of the National Academy of Engi-
neering, a fellow of the IEEE, a member of Sigma Xi and Eta Kappa
Nu. He has been a Guggenheim Fellow and a Sackler Fellow. He
has also received a number of awards for outstanding research and
teaching including the IEEE Education Medal, the IEEE Centennial
Award, and The Society Award, The Technical Achievement Award,
and The Senior Award of the IEEE Society on Acoustics, Speech
and Signal Processing. He has also received a number of awards at
MIT for excellence in teaching.

Anantha P. Chandrakasanreceived the B.S., M.S. and Ph.D. de-
grees in Electrical Engineering and Computer Sciences from the
University of California, Berkeley, in 1989, 1990, and 1994 respec-
tively. Since September 1994, he has been the Analog Devices career
development assistant professor of Electrical Engineering at the Mas-
sachusetts Institute of Technology, Cambridge. He received the NSF
Career Development award in 1995, the IBM Faculty Development
award in 1995 and the National Semiconductor Faculty Development
award in 1996. He received the IEEE Communications Society 1993
Best Tutorial Paper Award for the IEEE Communications Magazine
paper titled, “A Portable Multimedia Terminal.” His research in-
terests include the ultra low power implementation of custom and
programmable digital signal processors, wireless sensors and multi-
media devices, emerging technologies, and CAD tools for VLSI. He
is a co-author of the book titled “Low Power Digital CMOS Design”
by Kluwer Academic Publishers.

Joseph M. Winogradreceived the B.S. degree in computer science
and the B.E. degree in computer engineering from the Georgia In-
stitute of Technology in 1990 and 1993 respectively, and received
the M.S. degree in electrical engineering from Boston University
in 1994. He is currently in the Ph.D. program at Boston University
conducting research on algorithms and architectures for digital signal
processing. From 1990–1992 he was employed at Ocean Technol-
ogy, Inc., Burbank, CA where he was the principal software engineer
of a multicomputer graphics workstation. He has published origi-
nal research in the areas of digital signal processing, symbolic and
knowledge-based computation, and computer graphics.

P1: RPS/SRK P2: RPS/ASH QC: RPS

Journal of VLSI Signal Processing KL387-Nawab January 16, 1997 16:49

200 Nawab et al.

Jeffrey T. Ludwig received the S.B. degree in aeronautics and as-
tronautics in 1991 and the S.M. degree in electrical engineering in
1993, both from the Massachusetts Institute of Technology.

He is currently a graduate student in the Digital Signal Processing
Group of the Research Laboratory of Electronics at MIT, pursuing a
Ph.D. in electrical engineering and computer science. His research
interests are in low-power digital signal processing and its applica-
tions.

