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We present a new architecture for signed multiplication
which maintains the pure form of an array multiplier, ex-
hibiting a much lower overhead than the Booth architecture.
This architecture is extended for radix-2"* encoding, which
leads to a reduction of the number of partial lines, enabling
a significant improvement in performance and power con-
sumption. The flexibility of our architecture allows for the
easy construction of multipliers for different values of m,
as opposed to the Booth architecture for which implemen-
tations for m > 2 are complex. The results we present show
that the proposed architecture with radix-4 compares favor-
ably in performance and power with the Modified Booth
multiplier. We have experimented our architecture with dif-
ferent values of m and concluded that m = 4 minimizes
both delay and power.

Keywords: array multipliers, radix-2" encoding, signed
multiplication.

1 Introduction

Multiplier modules are common to many DSP applica-
tions. The fastest types of multipliers are parallel multipli-
ers. Among these, the Wallace multiplier [1] are among the
fastest. However, they suffer from a bad regularity. Hence,
when regularity, high-performance and low power are pri-
mary concerns, Booth multipliers tend to be the primary
choice [2, 3, 4, 5, 6]. Booth multipliers allow the opera-
tion on signed operands in 2’s-complement. They derive
from array multipliers where, for each bit in a partial prod-
uct line, an encoding scheme is used to determine if this bit
is positive, negative or zero. The Modified Booth algorithm
achieves a major performance improvement through radix-4
encoding.

In this paper, we propose a new approach to handle
operands in 2’s-complement. We use exactly the same
structure as an array multiplier, with the same unsigned bit
products for all the bits except those that involve a sign bit.
The proposed architecture is more efficient than the origi-
nal Booth architecture because only one bit is examined for
each bit product and no encoding is necessary. The regu-
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larity of the proposed architecture makes it naturally appli-
cable for generic radix-2™ operations. We simply replace
each bit product by m-bit modules that compute the partial
products between m bits.

We present results that show that the delay and power
decrease for m = 2and m = 4. Fromm = 1tom = 2
we obtain a 18% performance improvement and 57% power
savings, with an area penalty of less than 10%. On the other
hand, from m = 1 to m = 4 we obtain a 28% performance
improvement and 72% power savings at cost of an expres-
sive area penalty.

We compare the Modified Booth architecture, which
uses radix-4, to our architecture with m = 2. The results
show that the proposed architecture is significantly more
efficient, with no delay penalties and 54% less power con-
sumption. This power reduction is mainly due to the lower
logic depth which as a big impact in the amount of glitching
in the circuit.

This paper is organized as follows. The next section
makes an overview of relevant work related to our own. In
Section 3 we present the proposed architecture to handle
signed operands. Section 4 describes how this architecture
can be directly extended for radix-2"" operation. Perfor-
mance comparisons between different multiplier architec-
tures, namely different values of m and the Modified Booth,
are presented in Section 5. Finally, in Section 6 we con-
clude this paper, discussing the main contributions and fu-
ture work.

2 Redated Work

A substantial amount of research work has been put
into developing efficient architectures for multipliers given
their widespread use and complexity. Schemes such as bi-
section, Baugh-Wooley and Hwang [7] propose the imple-
mentation of a 2’s complement architecture, using repetitive
modules with uniform interconnection patterns. However,
it is not permitted an efficient VVLSI realization due to the
irregular tree-array form used. The same non-regularity as-
pect is observed in [8], where a scheme of a multiplexer-
based multiplier is presented. In [6] an improvement of



this technique is observed where the architecture has a more
rectangular layout than [8].

The techniques described above have been applied to
conventional array multipliers whose operation is per-
formed bit by bit and sometimes the regularity of the multi-
pliers is not preserved. More regular and suitable multiplier
designs based on the Booth recoding technique have been
proposed [2, 3, 5]. The main purpose of these designs is to
increase the performance of the circuit by the reduction of
the number of partial products. In the Modified Booth algo-
rithm approximately half of the partial products that need to
be added is used.

Although the Booth algorithm provides simplicity, it is
sometimes difficult to design for higher radices due to the
complexity to pre-compute an increasing number of multi-
ples of the multiplicand within the multiplier unit. In [2, 5]
high performance multipliers based on higher radices are
proposed. However, these circuits have little regularity and
no power savings are reported. Research work that di-
rectly targets power reduction by using higher radices for
the Booth algorithm is presented in [3, 4]. Area, delay
and power improvements are reported with a highly opti-
mized encoding scheme at the circuit level. At this level of
abstraction some other works have applied complementary
pass-transistor logic in their design in order to improve the
Booth encoder and full adder circuits [9, 10, 11].

In our work, the improvement in delay and power has
the same principal source as for the Booth architecture, the
reduction of the partial product terms, while keeping the
regularity of an array multiplier. We show that our archi-
tecture can be more naturally extended for higher radices,
using less logic levels and hence presenting much less spuri-
ous transitions. We have not applied yet any transistor-level
techniques which can further improve the efficiency of the
architecture.

3 Parallel 2’s Complement Architecture

In this section we describe how we derive the proposed
architecture for a signed array multiplier.

3.1 2’s Complement Binary Multiplication

Consider two operands W -bits wide, A = Zivigl ;2"
and B = Y/" " b;27. We have that

wW—-1

AxB=Y A-bY (1)
j=0
where in turn,
WwW-1 )
A'bj: ij-aﬂ’ (2)

=0

A conventional array multiplier [7] translates this expres-
sion directly to hardware, where we have the W partial
product rows from Equation 1, each made of W bit level
products as in Equation 2, which can be arranged in a sim-
ple, very regular, array structure. Each bit product is simply
an AND gate.

The conventional array architecture is only applicable to
unsigned operands. We are able to show that exactly the
same architecture can be used on signed operands in 2’s
complement with very little changes.

2’s complement is the most used encoding for signed
operands. The most significant bit, ay,_1, is the sign bit.
If the number A is positive, its representation is the same as
for an unsigned number, simply A. If the number is nega-
tive, it is represented as 2"V — A.

Conversely, the value of the operand can be computed as
follows:

o A 5 (J,W,1:0
A{A—QW 5 CLW_1:1 (3)

We make the following observation that enables us to
simplify our architecture. Let us define A’ = 1" -7 a2,
an unsigned value. For positive numbers, ay 1 = 0, hence
the value represented by A is A’. For negative numbers,
aw—_1 = 1, hence this value is A — 2W = 2W-1 1 4/ _
2W = A’ — 2W =1, Then Equation 3 becomes:

!
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orsimply A = A" —ayy 2" ~1,

What Equation 4 tells us is that the multiplication of two
operands in 2’s complement can be performed as an un-
signed multiplication for (W — 1)2 of the bit products. Let
us consider the 4 possible scenarios for A x B:

A>0,B>0: A' x B

A>0,B<0: A xB —A2W-1

A<0,B>0: A x B =YV th2W it
A<0,B<0: A x B —A2W-1 - W oW1t

5)
which can be reduced to
W-—-1 ‘
AxB=A'xB —by 1 A2V —ay 1 > b2
j=0
(6)

The form of Equation 6 highlights:

o from the first term, that the W — 1 least significant bits
of A and B can be treated exactly as an unsigned array
multiplier;

o from the second term, that the last row of the multiplier
is either non-existent (B > 0) or a subtracter of A’
shifted by W — 1 bits (B < 0);



o from the third term, that, at each partial product line,
the most significant bit is either 0 (A4 > 0) or -1 (A <
0).

We illustrate the operation of an array multiplication of 4-
bits wide operands in 2’s complement in Figure 1.
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Figure 1. Example of a W = 4 bit wide signed
multiplication.

Therefore, we can construct an array multiplier that han-
dles signed operands simply by using slightly different el-
ements at the left and bottom of the array. We present this
architecture in Figure 2 for 4-bit operands. Note that to keep
the figure simple we are using W = 4 and for such simple
cases the signed elements make for a significant fraction of
the array. This is because for W = 4 we have a total of 16
bit products of which 9 are unsigned and 7 signed. How-
ever, this ratio, (W — 1)? vs. 2W — 1, increases with .
In the case of a 16-bit multiplier, we have 225 unsigned bit
products and 31 signed.

4 Higher Radices Architectures

Besides the high level of regularity presented by the ar-
chitecture developed in the previous section, its flexibility
allows us to easily extend it to operands using any radix we
choose.

4.1 Unsigned Radix-2™ Multiplication

For the operation of a radix-2™ multiplication, the
operands are split into groups of m bits. Each of these
groups can be seen as representing a digit in a radix-
2™, Hence, the radix-2™ multiplier architecture follows
the basic multiplication operation of numbers represented
in radix-2™,

Consider two operands W-bits wide, A =
%glaizi-m and B = Z%glbﬂj‘m, where each

i= =

a;, b; are m-bit digits in radix-2™ representation. We have
that

w w
w_q w_q

AxB= 3" A2, Aby= Y bi-a;2"™ (7)
j=0 i=0

We illustrate this operation for operators with W = 8
bits using radix-16 (m = 4) in Figure 3. For the example
shown, the partial product terms are obtained by multiply-
ing each m-bit groups of the multiplier and multiplicand
terms. Thus, each partial product line is computed by a
m x W multiplication, as depicted in Figure 3(b).

The final product for the radix-2™ multiplication is ob-
tained by adding each m-bit groups of the partial product
terms, as shown in Figure 3(a). Also exemplified in Figure 3
is the conversion of radix-16 numbers to decimal values.

4.2 Unsigned Radix-2™ Multiplier Architecture

The structure of the radix-2" multiplier architecture is
the same as the plain array multiplier. However, each par-
tial product line operates on groups of m bits instead of a
single bit. This reduces the number of product lines to %
Although the operation of each line is more complex, there
is some room for the optimization of the partial product gen-
eration modules which enables the performance and power
improvement shown in this paper.

Returning to our example, we present in Figure 4 the
radix-16 (m=4) array multiplier architecture for W = 8
bits wide operators.

As can be observed in Figure 4, for a W-bit multiplier
we require % lines each with % basic modules of m by
m multipliers and the same number of m by m adders. An
additional one line composed of m + 1 of these basic adders
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Figure 2. Example of a W = 4 bit wide signed
array multiplier.
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Figure 3. Example of a 8-bit wide radix-16 mul-
tiplication.
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Figure 4. 8-bit wide radix-16 multiplier archi-
tecture.

is responsible for summing the partial product terms. This
structure can accommodate any combination of values for
W and m. The regularity of this structure has allowed us
to implement a simple program that takes these two param-
eters and generates the corresponding radix-2™ array mul-
tiplier. To this end, highly optimized basic adder and mul-
tiplier modules have been designed for m = 2 and 4. In
our architecture, the larger the value of m, the less the num-
ber of partial product lines, however the more complex the
basic adder and multiplier modules will be.

4.3 2’s Complement Radix-2" Multiplier Archi-
tecture

We demonstrate that all the observations made in Sec-
tion 3.1 apply to any radix we choose. Consider now
Al=3%m % 4; 20, where a; is a m-bit digit. For positive
numbers, the value represented by A is A’ as before. For
negative numbers, this value is A — 2V = aw _ 2W ™ 4
A =2W = A —aw 2" since aw _ 2V ™ — 2W
is the 2’s complement of aw ;2" ~™. Then we have:

A aw_1=0
A — { ) W 1 (8)

A —aw 2Wm gy =1

m

or simply
A=A —aw_jaw _ 2™ 9)

Using analogous observations as made for the binary
case, from Equation 9 we can write:

AxB = A xB —Aby_1bw_2W™
w_q ’
—aw—-10w _q Z bj2W_m+j (10)
j=0

We illustrate this operation through an example in Figure 5.
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Figure 5. Example of a 2’'s complement 8-bit
wide radix-16 multiplication.

Again, we have that for the W — m least significant bits
of the operands unsigned multiplication can be used. The
partial product modules at the left and bottom of the array
need to be different to handle the sign of the operands.

We have constructed three types of modules. Type
| are the unsigned modules used in the previous section.
Type |1 modules handle the m-bit partial product of an
unsigned value with a 2’s complement value. Finally, Type
I 1l modules that operate on two signed values. Only one
Type |11 module is required for any type of multiplier,
whereas 22X — 2 Type || modules and (XX — 1)% Type
I modules are needed.

| ITIVP TYPE I |

Figure 6. General structure for a 2’s comple-
ment radix-2™ multiplier.

The general architecture for 2’s complement radix-2
multiplier is shown in Figure 6. We present a concrete ex-
ample for W = 8 bit wide operands using radix-16 (m = 4)
in Figure 7.
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Figure 7. Example of a 8-bit wide 2’s comple-
ment radix-16 array multiplier.

5 Performance Comparisons

In this section, we first compare area, delay and power of
W = 16-bit array multipliers for groups of m=1, 2 and 4.
Radix-4 Booth and the proposed architecture using radix-
4 (m=2) are compared next. Area and delay results were
obtained in the SIS environment [12]. Area results are pre-
sented in terms of the number of literals. Delay results were
obtained using the general delay model from the ncnc li-
brary. Power results were obtained with the SLS tool [13], a
switch-level simulator, using the general delay model. For
the power simulation we have applied both a real trace in-
put signal and a random pattern signal, both with 10,000 in-
put vectors. The real trace signal represent two sinusoidal
signals with 90 degree phase difference.

5.1 Signed Array Multipliers Using Different
Radices

Although the higher radices architectures require less ba-
sic multiplier elements than those used by the conventional
array architecture (m=1), each basic multiplier element is
composed of more logic gates. Therefore, the new array
multipliers (m=2 and m=4) present higher area than the
conventional m=1 binary array multipliers as shown in Ta-
ble 1. This table also shows that the complexity of these
basic modules increases very rapidly with m.

Table 1. Area and delay for 16-bit radix-2™ bi-
nary multipliers.

Group of Binary
bits Literals | % | Delay | %
m=1 4266 - 284ns -

m=2 4674 +9.5 231ns | -18.6
m=4 10544 | +147.1 | 202ns | -28.8

Though the radix-2™ array multipliers are larger, these
architectures present less delay values than the m=1 binary
multiplier, as shown in Table 1. As can be seen in Figure 7,

the radix-2" architectures need % lines of adders respon-
sible for adding the partial product terms. The last line adds
or subtracts the product terms depending on the last bit of
the multiplier term. In the m=1 binary architecture is re-
quired a total of W — 1 of these lines. Thus, although the
basic m by m modules are more complex, by a careful de-
sign that minimizes logic depth we were able to reduce the
critical path delay for the cases of m = 2 and 4.

Despite the higher area presented by the radix-2" multi-
pliers for different bit group sizes, these architectures con-
sume significantly less power than the conventional m=1 bi-
nary architecture. Table 2 shows the power results compar-
ison between the conventional binary array multiplier and
the new architectures using a real trace signal and a random
pattern. As can be observed in this table, the m=2 architec-
ture can save almost 60% of power. For the m=4 architec-
ture, power can be reduced above 70%. We can see from
Table 2 that, even for a random pattern at the inputs of the
multipliers, where signal correlation is not present, similar
results are obtained. Power savings above 50% and 60% are
achievable in the m=2 and m=4 multipliers.

Table 2. Power for 16-bit radix-2™ multipliers.

Group of Binary - Power
bits sine [ % random | %
m=1 134.0mWwW - 201.0mw

89.0mw | -55.7
76.4mW | -61.9

m=2 56.5mwW | -57.8
m=4 36.4mW | -72.8

5.2 Comparison with the Booth Multiplier

In the Booth multiplier, 2 bits of multiplication are per-
formed at once and thus the multiplier requires half the
stages. In our proposed multiplier the number of stages can
be reduced for more than half while the regularity can be
kept as in the pure array multiplier circuit. Table 3 presents
area, delay and power results for radix-4 Booth multiplier
and the proposed m=2 binary array multiplier.

Table 3. Comparison of area, delay and power.
\ | Area | % [ Delay [ % [ Power | % |

Array || 4674 - 231ns - 89mw -
Booth || 3912 | -20.2 || 234ns | +1.3 || 137mW | +54.0

As can be observed in Table 3, the m=2 array multiplier
presents larger area. This due to the fact that the partial
product lines operate on group of m = 2 bits and the basic
multiplier elements which composes the modules for the
product terms are slightly more complex. From the same
table, we can also see that the m=2 binary and Booth archi-
tectures present almost the same delay values.

As observed in [14], the major sources of power dissi-



pation in multipliers are spurious transitions and logic races
that flow through the array. Thus, the larger number of in-
terconnections present in the Booth multiplier is responsi-
ble for the generation of a significant amount of glitching
which justifies such a large gain in power for our approach
as observed in Table 3. To confirm this, we have performed
a power estimation of these two architectures using a zero-
delay model and the values obtained were about the same.
Although the radix-4 Booth multiplier presents a quite
rectangular architecture, the regular structure presented by
the m=2 binary array multiplier makes it suitable for power
reduction. Thus, the regularity characteristic presented by
the m=2 binary array multiplier makes this architecture
consume significantly less power than Booth multiplier for
random pattern signals as can be observed in Table 3.

6 Conclusions

We have presented an array architecture multiplier that
operates on 2’s complement numbers using radix-2™ en-
coding. We have presented results that show significant im-
provement in delay and power. The radix-2™ array multi-
plier has been used before in a similar manner in the well-
known Booth architecture. However, the Booth multiplier
implies some overhead in terms of coding to handle the sign
bit. The results demonstrate that because of our simpler ar-
chitecture, 2’s complement multiplication can be performed
with just two thirds the power of a radix-4 Booth multiplier.

According to our results, increasing the radix can im-
prove the efficiency up to a certain point. Although the good
results we have found were for m = 2 compared to Mod-
ified Booth, we could show that the modules for m = 4
present better results with delay and power reduction im-
provements. Such higher order radices are more difficult to
implement with the Booth architecture.

The regularity of our architectures make them suitable
for applying other reducing power techniques. As future
work we hope test the use of pipelining and more efficient
full adders in our architectures, in order to reduce useless
signal transitions that are propagated into the array and the
critical path. We also hope to investigate the use of our
approach in a serial implementation in order to verify the
trade-off between higher performance and power reduction.
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