
2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip

A Hybrid Algorithm for the Optimization of Area

and Delay in Linear DSP Transforms

Levent Aksoy
INESC-ID

Lisboa, Portugal

Eduardo Costa
Universidade Catolica de Pelotas

Pelotas-RS, Brazil

Abstract-This paper addresses the problem of multiplierless
realization of linear transforms using the fewest number of
addition and subtraction operations and introduces a hybrid
algorithm that incorporates a graph-based technique, called the
difference method, and a Common SUbexpression Elimination
(CSE) algorithm. In the proposed algorithm, while the difference
method extracts the most promising realizations of linear trans­
forms in each iteration, the CSE algorithm achieves the most
common minimum conflicting sUbexpressions in each solution
of the difference method. This paper also describes how the
hybrid algorithm can be modified in order to find a solution
with the fewest number of operations under a delay constraint.
The experimental results on a comprehensive set of instances
show the efficiency of the hybrid algorithms, at both high-level
and gate-level, in comparison to previously proposed algorithms.

I. INTRODUCTION

The mUltiplication of data samples with constant coefficients
is a ubiquitous operation in Digital Signal Processing (DSP)
systems and can be categorized in four main classes: (a) the
Single Constant Multiplication (SCM), where an integer coef­
ficient C is mUltiplied by a single variable x, i.e., CX. The SCM
operation is frequently used in realizations of Fast Fourier
Transforms (FFTs) [1] and fast Discrete Cosine Transforms
(DCTs) [2]; (b) the Multiple Constant Multiplications (MCM),
that is the multiplication of a set of constants C with a single
variable x, i.e., Yj = Cjx. Among many others, the MCM op­
eration dominates the complexity of Finite Impulse Response
(FIR) filters in transposed form [3]; (c) the multiplication of
multiple constants with the input data x shifted in time, i.e.,

Y = LjCjX(t - j), which actually computes the output of an
FIR filter in direct form [4]; (d) and the Constant Matrix­
Vector Multiplication (CMVM), where a constant matrix C is
multiplied with a vector X including mUltiple variables, i.e.,

Yj = Lk Cj,kXk· The CMVM operation occurs in implementa­
tions of DCTs, Infinite Impulse Response (IIR) filters, filter
banks, and error correcting codes [5]. Observe that the CMVM
operation corresponds to an SCM operation when both j and
k are set to I, to an MCM operation when k is 1, and to an
operation described in (c) when j is l.

Since the realization of a multiplication operation in hard­
ware is expensive in terms of area, delay, and power dissipation
and the constant coefficients are determined beforehand by
the DSP algorithms, the multiplication of constants with data
samples are generally realized using only addition, subtraction,

This work was supported by the Portuguese Foundation for Science and

Technology (FCT) research project Multicon - PTDCIEIA-EIN1035321200S.

978-1-4577-0170-2/l1/$26.00 ©2011 IEEE

Paulo Flores
INESC-IDIIST TU Lisbon

Lisboa, Portugal

x,

Jose Monteiro
INESC-ID/IST TU Lisbon

Lisboa, Portugal

x, x, x, X, X2

(a) (b) (c)

Fig. I. (a) Direct realization of linear transforms YI 3xI + IIx2 and
Y2 = 5xI + l3x2; Shift·adds implementations of the linear transforms:
(b) without partial product sharing; (c) with partial product sharing.

and shift operations [6]. Note also that shifts can be realized
using only wires without representing any area cost. Hence, an
important optimization problem is to realize the constant mul­
tiplications using the fewest number of addition/subtraction
operations, which is an NP-complete problem [7].

A straightforward way for the multiplierless realization of
constant multiplications, generally known as the digit-based
recoding method [8], is to define the constants in binary and
for each I in the binary representation of the constant, is to
shift the variable and add up the shifted variables. As a simple
example, consider the multiplication of a constant matrix by a
variable vector, as illustrated in Figure l(a). The decomposed
forms of linear transforms Yl = 3Xl + 11x2 and Y2 = 5xI + 13x2
are given as follows:

Yl (11)binXI + (1011)binX2 = Xl + 2Xl +X2 + 2X2 + 8X2

Xl +Xl « I +X2 +X2« I +X2« 3

Y2 (lOl)binXI + (1101)binX2 =XI +4xl +X2 +4X2 +8X2

XI +XI «2 +X2 +X2 «2+X2« 3

where the computation of each YI and Y2 requires 4 operations,
a total of 8 operations, as depicted in Figure l(b).

Moreover, the shift-adds design of constant multiplications
enables the sharing of partial products among the constant
multiplications that significantly reduces the required number
of operations and, consequently, the area and power dissipation
of the design. Returning to our example given in Figure lea),
finding the common sUbexpressions XI +X2 and XI +9X2 yields
a solution with 4 operations, as illustrated in Figure l(c).

The last two decades have seen tremendous effort on the
development of high-level algorithms for the multiplierless
realization of constant multiplications. These algorithms can
be categorized in two classes: Common Subexpression Elim-

148

ination (CSE) [4], [5], [9], [10] and graph-based (GB) [11]­
[14] techniques. Although both CSE and GB algorithms aim
to maximize the sharing of partial products, they differ in the
search space that they explore. The CSE algorithms initially
define the constants under a number representation. Then, all
possible subexpressions are extracted from the representations
of the constants and the "best" subexpression, generally, the
most common, is chosen to be shared among the constant
multiplications. The GB algorithms are not limited to any
particular number representation and consider a larger number
of alternative implementations of a constant multiplication,
yielding better solutions than the CSE algorithms [12].

However, little attention has been given to the multiplierless
realization of the CMVM operation compared to the MCM
design. This is mainly because a high-level algorithm designed
for the MCM problem can be used for the implementation
of a CMVM operation or can be modified for the CMVM
problem. In the former, one can apply an MCM algorithm
on the constants of each column of the matrix C initially
and then, utilize the sharing of constants in the rows of the
matrix [9]. In the latter, each constant Cj and the variable x in
MCM can be replaced with a constant vector Cj and a variable
vector X respectively. While the former method yields poor
results when compared to algorithms designed for the CMVM
problem as shown in Section IV, the efficient GB algorithms
modified for the CMVM problem can be only applied to small
size matrices with small constants as noted in [13], [14].

In this paper, we introduce a hybrid algorithm for the design
of CMVM operations that incorporates less-complex and time­
efficient CSE and GB algorithms to take the advantages of both
techniques. The hybrid algorithm iteratively finds alternative
realizations of linear transforms using the GB difference
method and applies a CSE heuristic to further reduce the
complexity by sharing the common subexpressions. Hence, in
the hybrid algorithm, the main drawback of a CSE algorithm,
i.e., its limitation to a number representation, is partially
eliminated by using a GB algorithm and the main drawback
of a GB algorithm, i.e., its time-consuming search process,
is partially decreased by using a CSE heuristic. Although
the proposed algorithm finds good solutions in terms of
the number of operations, leading to low-complexity designs
at gate-level, its solutions are generally realized in a large
number of operations in series, yielding CMVM designs with
large delay. To overcome this disadvantage, we also describe
its modified version that can find a solution under a delay
constraint and enables us to find the optimal tradeoff between
area and delay in the design of linear transforms.

The rest of the paper proceeds as follows. Section II
gives the background concepts and the hybrid algorithms are
introduced in Section III. Experimental results are presented
in Section IV and finally, Section V concludes the paper.

II. BACKGROUND

This section presents the concepts related with the proposed
algorithms and gives an overview on the algorithms designed
for the CMVM problem.

A. Number Representations

The binary representation decomposes a number in a set
of additions of powers of two. The representation of numbers
using a signed digit system makes the use of positive and
negative digits, { -1,0, I}. The Canonical Signed Digit (CSD)
representation [4] is a signed digit system that has a unique
representation for each number and verifies the following
properties: i) two non-zero digits are not adjacent; ii) the
number of non-zero digits is minimal. Any n digit number in
CSD has at most r(n+ 1)/21 non-zero digits, and on average,
the number of non-zero digits is reduced by 33% when
compared to binary. Since hardware requirements are reduced
due to the minimum number of non-zero digits, it is widely
used in multiplierless realizations of constant multiplications.

B. Problem Definitions

Given an m x n constant matrix C with C j,k E Z and an n x 1
variable vector X with Xk E Z, the multiplication of C by X is a
linear transformation from zn to zm and each linear transform
can be computed as

n
Yj = L Cj,kXk

k=l
(1)

where j and k range from 1 to m and n respectively.
For the shift-adds realization of the CMVM operation, the

fundamental optimization problem, which is called the CMVM
problem, is defined as: Given the set of linear transforms
Y = {Yl, . . . ,Ym}, find the minimum number of addition and
subtraction operations that generate the linear transforms.

In many DSP systems, performance is also a crucial pa­
rameter. Hence, circuit area is generally expandable in order
to achieve a given performance target. Although the delay
parameter is dependent on several implementation issues, such
as placement and routing, the delay of the CMVM operation
is generally considered as the number of adder-steps, which
denotes the maximal number of adders/subtracters in series to
produce any constant multiplication [3]. The minimum adder­
step of a linear transform Y j is computed by decomposing the
constants c· k in Y j under a number representation and finding

],

()
.

the number of terms in its decomposed form, S Y j . Thus, Its
minimum adder-step value is determined as rlog2S(Yi)1, as if
all its terms in the decomposed form were realized in a binary
tree. For example, each linear transform given in Figure l(a),
i.e., Yl and Y2, has minimum 3 adder-step realizations when
constants are defined under binary. Hence, for a set of linear
transforms, Y = {Yl, . . . ,Ym}, the minimum adder-step of the
CMVM operation [3] is computed as:

min_delaYcMVM = maxi pog2S(Yj)1}
Yj

(2)

Note that, in general, min_delaYcMvM is determined when
constants are defined under CSD, since the CSD representation
of a constant includes the minimum number of non-zero digits.
Thus, the CMVM problem under a delay constraint can be
defined as: Given the set of linear transforms Y = {Yl, . . . ,Ym}
and the delay constraint dc with dc 2:: min_delaYcMvM, find

149

the minimum number of addition and subtraction operations
that generate the linear transforms without exceeding de.

C. Related Work

Although there are many efficient algorithms designed for
the MCM problem, only a few methods have been proposed
for the CMVM problem. Here, we mention only the algorithms
applied to the CMVM problem, although any MCM algorithm
can be easily modified for the CMVM problem.

The CMVM problem was formalized as a 0-1 Integer Linear
Programming (lLP) problem in [15]. The possible implemen­
tations of linear transforms were found when constants are
defined under a number representation in their decomposed
forms. However, due to the exponential growth in the size of
0-1 ILP problems, the CSE algorithm [15] only considers the
2-term subexpressions. On the other hand, the CSE heuristic
of [10] initially obtains the decomposed forms of linear
transforms when constants are defined under binary or CSD.
Then, in each iteration, it finds the most common 2-term
subexpression and replaces it within the linear transforms.
This algorithm was also extended to handle a delay constraint
in [16]. The CSE algorithm [5] is similar to the algorithm [10]
but, it relies on an efficient CSE algorithm [17] that iteratively
searches a subexpression with the maximal number of terms
and with at least 2 occurrences. In the heuristic of [5], the
selection of a subexpression is also modified by taking into
account the conflicts between the possible subexpressions.
Furthermore, in [9], a CSE algorithm designed for the MCM
problem is initially applied to find the common subexpressions
in the columns of the constant matrix and then, in its rows.

In [13], an efficient GB algorithm [11] designed for the
MCM problem is modified to handle the CMVM problem.
As done in [11], the algorithm of [13] iteratively approaches
to the linear transforms to be implemented with the available
expressions by implementing subexpressions that require the
minimum implementation cost. Note that in the beginning,
the input variables XI ,X2, . . . ,Xn and their shifted values are
available. However, the procedure in the GB algorithm of [13]
is computationally intensive and thus, it can only be applied on
small size matrices. Moreover, the algorithm of [14] initially
computes the differences between each two linear transforms
and determines their implementation cost values. Then, it
uses a Minimum Spanning Tree (MST) algorithm to find the
realizations of linear transforms with differences that have
the minimum cost and replaces the linear transforms with the
required differences. The algorithm iterates until all the linear
transforms are synthesized. However, as stated in [14], due to
the application of the MST algorithm in each iteration, the
algorithm is highly restricted in terms of the number of linear
transforms and the bit-widths of constants.

III. THE H YBRID ALGORIT HMS

This section presents the hybrid algorithm, called HCMVM,

designed for the CMVM problem and its modified version,
HCMVM-DC, for the CMVM problem under a delay constraint.

A. The HCMVM Algorithm

The HCMVM algorithm can handle the constants under
binary and CSD representation where there is a unique rep­
resentation for each constant. In its preprocessing phase, each
linear transform is converted to an odd and positive expression,
i.e., the expression is divided by 2 until one of its constants
is odd and the expression is multiplied by -1, if the sign of
the first non-zero constant in the expression is negative. The
expressions are stored in a set called Eset without repetition.

Then, as done in the GB algorithms [11], [12], the lin­
ear transforms that can be synthesized using a single op­
eration, whose inputs are an element of the input vector,
an implemented linear transform, or their shifted versions,
are found iteratively and moved from Eset to [set, which
includes the implemented expressions. As a simple example,
consider the linear transforms YI =XI +X2, Y2 =XI +X3, and
Y3 = 3xI + X2 + 2x3. Observe that YI and Y2 can be implemented
using a single operation from the input variables and Y3 can be
synthesized as YI + Y2 « 1. This is the optimal part, meaning
that, when all the linear transforms are realized in this part,
the minimum solution is obtained.

If there are still linear transforms in Eset after the optimal
part, the algorithm switches to its heuristic part. In this part,
initially it finds a solution on expressions in Eset with the CSE
algorithm, H2MC, that will be described in Section III-AI, and
records its solution, considering also the number of elements
in [set, as the best solution found so far (bs). Then, the cost of
each linear transform in Eset is computed as the total number
of non-zero digits of each constant in a number representation,
binary or CSD, that H2MC uses in definition of constants. The
linear transforms are sorted in a descending order based on
their cost values. For each expression in Eset, Esetj, with
its cost value eostj, where i < m and m denotes the number
of expressions in Eset, all the differences of Esetj with an
expression in Eset, Eset) , where i < j ::; m, are computed as
dij « II = Esetj - Eset) « h, where 11,/2 2:: 0 denote the left
shifts. The cost of each difference is determined in terms of
the total number of non-zero digits of each constant under
the given number representation and a difference with the
minimum cost value (eostd) is determined. If eostd < eostj -1,
then Esetj is moved from Eset to [set and the difference with
the minimum cost is added into Eset in place of Esetj. After
all differences for each expression in Eset (except Esetm) are
explored, H2MC is applied on the expressions in Eset and a
set of operations realizing the expressions in Eset is obtained.
If the number of operations in the solution of H2MC plus the
number of elements in [set is less than bs, it is updated with
this value. HCMVM iterates until there are no more differences
that can be replaced with the expressions in Eset.

The procedure of HCMVM is illustrated on the first example
of [14] when H2MC defines the constants under CSD as given
in Figure 2. In this figure, the values between parenthesis
next to the expressions denote the respective cost values.
Initially, H2MC is applied on linear transforms and a solution
with 19 operations is obtained. Then, in the first iteration

150

Initial expressions:
YI = 7xI + 8X2 + 2x3 + 13x4
Y2 = 12x1 + llX2 + 7X3 + 13X4
Y3 = 5xI + 8X2 + 2x3 + 15x4
Y4 = 7xI + 11x2 + 7X3 + 11x4
Solution of H2MC on initial expressions: 19 operations, bs = 19

Iteration 1

Expressions of Eset and chosen differences:
Esetl (10) : 12x1 + llX2 + 7X3 + 13X4 dl2 (3) : 5xI + 2x4
Eset2 (10) : 7xI + llX2 + 7X3 + llX4 d23 (5) : 3X2 + 5X3 -2x4
Eset3 (7) : 7xI +8X2 +2x3 + 13X4 d34 (2) : XI -X4
Eset4 (6) : 5xI +8X2 +2x3 + 15x4

Expressions in Eset:
5xI +2X4

3X2 + 5X3 -2x4
XI-X4
5xI + 8X2 + 2x3 + 15x4

Expressions in [set:
12xI + llX2 + 7X3 + 13X4
7xI + llX2 + 7X3 + 11x4
7xI + 8X2 + 2x3 + 13X4

Solution of H2MC on Eset:lO operations, Total:1O+3=13, bs = 13

Iteration 2

Expressions of Eset and chosen differences:
Esetl (6) : 5xI +8X2 +2x3 + 15x4 dl4 (4) : 2x1 +4X2 +X3 + 8X4
Eset2 (5) : 3X2 + 5X3 -2x4
Eset3 (3) : 5xI +2x4
Eset4 (2) : XI -X4

Expressions in Eset: Expressions in [set:
2x1 +4X2 +X3 +8X4 12xI + llX2 +7X3 + 13X4
3X2 +5X3 -2x4 7xI + 11x2 + 7X3 + 11x4
5xI + 2X4 7xI + 8X2 + 2x3 + 13X4
XI -X4 5xI +8X2 +2x3 + 15x4
Solution of H2MC on Eset:9 operations, Total: 9+4= 13

Fig. 2. The procedure of the HCMVM algorithm.

of HCMVM, the linear transforms Esetl. Eset2, and Eset3

are realized using a single operation whose inputs are an
element of Eset and a difference with the minimum cost. They
are synthesized as Esetl = Eset2 + d12, Eset2 = Eset3 + d23,

Eset3 = Eset4 + d34 « 1. Then, these linear transforms are
moved from Eset to lset and the associated differences are
added to Eset. In this case, H2MC finds a solution with 10
operations on Eset. Thus, a total of 13 operations are required,
considering that the expressions in lset are synthesized using a
single operation. In the second iteration, HCMVM follows the
same procedure realizing Esef! as Eset4 +d14 « 1 and finding
a solution with a total of 13 operations again. The HCMVM

algorithm takes only two iterations, since there are no more
promising differences. As reported in [14], the algorithms
of [13], [14] find a solution with 14 operations on this instance.

l) The H2MC algorithm: This previously mentioned method
is based on the CSE heuristics [4], [10] that compute the most
common (MC) 2-term subexpressions iteratively. We improved
their subexpression selection heuristic (that significantly af­
fects the final solution due to the iterative decision making) by
choosing an MC 2-term subexpression such that its selection
leads to the least loss of subexpression sharing in the next it­
erations. These subexpressions are called as the most common
minimum conflicting (MCmc) 2-term subexpressions.

In HCMVM, the H2MC algorithm takes Eset as an input and
returns the Sset that includes the subexpressions required to
realize all the expressions of Eset. In H2MC, for each element
of Eset, the constants in expressions are defined under a given
number representation and the decompositions of expressions

are obtained and stored in a set called Dset. The part of
H2MC, where the MCmc 2-term subexpressions are found and
replaced in the decompositions of expressions, is as follows:

1) Form an empty set called Sset that will store the selected
2-term subexpressions.

2) For each 2-term subexpression that is extracted from
the decompositions of expressions in Dset, convert the
subexpression to positive and odd, find the occurrences
of the subexpression in the elements of Dset considering
its shifted and signed versions, and determine the MC
2-term subexpressions.

3) If the maximum number of occurrences of the MC 2-
term subexpressions is 1, then return Dset and Sset.

4) Otherwise, find the minimum conflicting 2-term subex­
pressions in the MC 2-term subexpressions, i.e., MCmc
2-term subexpressions.

5) Choose one of the MCmc 2-term subexpressions, add
it to Sset by labeling it with a variable, replace its
occurrences in Dset with its label, and go to Step 2.

After the sharing of the MCmc 2-term subexpressions is
exploited, in each decomposed form of an expression in the
final Dset, which includes greater than one term, in an iterative
manner, two terms are selected and are realized by a single
operation. The result is labeled with a variable, is stored in
Sset, and these two terms are replaced with this variable in the
decomposed form of the expression. This process continues
until the number of terms is 1. However, as stated in [18],
finding the fewest number of operations does not always lead
to a design with optimal area at gate-level. Hence, to further
reduce the area of a CMVM design, for an expression in the
final Dset, we initially separate the terms into two sets Pset

and Mset considering their sign. This comes from the fact that
although the cost of an adder and a subtracter is assumed to be
equal in high-level algorithms, a subtracter occupies larger area
than an adder at gate-level. Then, in each set, we iteratively
select two terms that have the smallest bit-width, i.e., the
narrowest, to be realized using an adder in order to reduce
the size of the operation. Finally, if Mset is not empty, we use
a subtracter to realize the expression. Consider the expression
y = a - b - e - d where each term is a subexpression and their
bit-widths are 16, 8, 10, and 16 respectively. Thus, y is realized
as a - ((b + e) + d) in H2MC.

B. The HCMVM-DC Algorithm

In the preprocessing phase of HCMVM-DC, we also compute
the minimum adder-step of each linear transform as described
in Section II-B. Then, given the delay constraint, de, in
the optimal part, we synthesize the linear transforms using
a single operation if their realizations do not exceed de

considering their minimum adder-step values. While searching
the promising differences, we compute the minimum adder­
step of each difference and accept the implementation of an
expression if its realization does not violate de. Returning to
our example in Figure 2, given the delay constraint, de = 4,
i.e., the minimum adder-step of the CMVM operation, the
realization of Esetl = Eset2 + dl in the first iteration is not

15 1

TABLE I
SUMMARY OF RESULTS OF HIGH-LEVEL SYNTHESIS ALGORITHMS ON m X m RANDOMLY GENERATED MATRICES WITH 8-BIT CONSTANTS.

CMVM Problem II CMVM Problem under a Delay Constraint I
m (9) II (10) II (5) II H2MC II . HCMVM II l8) II . llb) II HCMVM-DC I

adder I step II adder I step II adder II adder step I adder step II adder I step II adder I step II adder step I
2 9.00 4.89 8.80 3.54 9.7 8.73 3.60
4 33.27 7.06 32.09 5.88 31.2 31.70 5.84
6 72.41 8.93 67.95 7.59 66.1 66.52 7.66
8 125.59 10.55 116.39 9.23 113.2 114.10 9.16

10 192.69 11.62 175.72 10.68 172.4 172.03 10.48
12 275.13 12.62 246.54 12.02 241.6 240.87 11.68
14 371.05 13.65 327.08 13.23 322.9 320.00 13.00
16 483.85 14.32 417.89 14.38 412.4 407.49 13.96

possible in HCMVM-DC, because the realizations of both Esetl

and Eset2 require minimum 4 adder-steps and hence, any
implementation of Esetl with Eset2 always violates de = 4.

Moreover, in H2MC, we initially find the most common
2-term subexpressions, whose selections will not lead to a
realization greater than dc, and then, we obtain the minimum
conflicting 2-term subexpression among these subexpressions.
We also consider the hardware optimizations described in
Section III-A I taking into account dc. Thus, with these mod­
ifications, the HCMVM-DC algorithm can find a solution with
the fewest number of operations under a delay constraint.

IV. EXPERIMENTAL RESULT S

This section presents the high-level results of hybrid algo­
rithms on random instances and DCTs and compare them with
those obtained by the previously proposed algorithms. It also
introduces the gate-level results of DCTs designed using the
solutions of high-level algorithms. To design linear transforms
at gate-level, we also developed a tool that automatically
describes the solutions of the high-level synthesis algorithms
under the shift-adds architecture in VHDL and uses the
Cadence Encounter RTL Compiler to synthesize the circuits
with the Nangate 45nm Open Cell library [19].

As the first experiment set, we used m x m matrices, where
m varies in between 2 and 16 in step of 2, consisting of
randomly generated numbers in between [27 + 1,28 -1], i.e.,

8-bit constants. There exist 100 instances for each matrix
type, a total of 800 instances. Table I presents the results of
algorithms, where adder and step denote the average number
of operations and of adder-steps respectively. In the algorithm
of [9], we used the exact GB algorithm [12] as an MCM
algorithm to obtain the minimum number of operations for
each column of a matrix. We also implemented the algo­
rithms [10], [16] and the results of the algorithm [5] were
taken from its paper. In HCMVM-DC and the algorithm [16],
the delay constraint (de) was set to the minimum delay of
the CMVM operation as computed in Eqn. 2. In digit-based
recoding technique [8], the constants were defined under CSD
and the linear transforms were realized in a binary tree so that
the minimum number of adder-step is achieved, as done in
HCMVM-DC and the algorithm [16]. Note that its adder results
represent the worst-case scenario for both CMVM problems.
In CSE algorithms, the constants were defined under CSD.

Observe from Table I that the hybrid HCMVM algorithm
finds significantly better solutions than the CSE algorithms [5],
[10] and H2MC in terms of the number of operations due

8.16 4.38 10.90 3.12 8.99 3.12 8.80 3.12
27.62 7.67 42.96 4.07 32.82 4.07 32.13 4.07
57.29 10.00 95.28 5.00 68.10 5.00 66.75 5.00
96.27 11.86 165.58 5.08 119.65 5.08 117.21 5.08

143.49 13.19 251.84 6.00 175.76 6.00 157.72 6.00
200.39 14.59 355.20 6.00 247.06 6.00 241.57 6.00
264.26 15.54 472.93 6.00 330.20 6.00 324.01 6.00
338.33 16.30 607.10 6.03 431.00 6.03 423.24 6.03

to the use of the difference method. However, its solutions
lead to CMVM designs with large number of adder-steps. On
the other hand, the algorithm of [16] and HCMVM-DC find
solutions with the minimum number of adder-steps, including
greater number of operations than the algorithm of [10] and
HCMVM respectively. Although the effect of the difference
method is partially diminished due to the minimum delay
constraint in HCMVM-DC, it finds better solutions in terms of
the number of operations than [16] on all matrix types. Also,
its adder results are similar to those of the algorithms [5],
[10] and H2MC, although they are not restricted to any delay
constraint. Moreover, the results of [8] and [9] clearly show
the importance of partial product sharing and using algorithms
that target directly the CMVM problem respectively.

As the second experiment, we used 20 x 20 DCTs, where
the bit-width (bw) of the constants were defined from 2 bits to
16 bits with an increment of 2. Table II presents the high-level
results of the algorithms, all written in MATLAB, where CPU
denotes their run time in seconds on a PC with Intel Xeon at
2.33GHz and 4GB memory. Again, the constants were defined
under CSD, and in the algorithm of [16] and HCMVM-DC, de

was set to the minimum adder-step of the design.
Observe from Table II that HCMVM finds better solutions

than the CSE heuristic [10], requiring 6.75 less operations
on average, although they obtained a solution with the same
number of operations for DCTs when bw is equal to 4
and 8. Also, HCMVM-DC obtains on average better solutions
than [16] in terms of the number of operations. The run times
of HCMVM and HCMVM-DC are greater than those of [10],
[16], since they may take more than one iteration due to the
new realizations of linear transforms found by the difference
method. Also, the run time of HCMVM is larger than HCMVM­

DC on average, since HCMVM-DC may require less iterations
than HCMVM due to the delay constraint.

Table III presents the gate-level results of DCT designs
synthesized based on the solutions of algorithms given in
Table II. Also, it introduces the results on direct realizations of
DCTs, where each linear transform was described in VHDL as
the additions of constant multiplications by an input variable,
as given in Eqn. 1. In this experiment, the bit-widths of
input variables were taken as 16 and DCTs were synthesized
under the minimum area design strategy in the synthesis tool,
which includes advanced optimization techniques. In this table,
area (mm

2
), delay (ps), and power (mW) indicate area, delay,

and RTL power estimation, respectively, as reported by the
Cadence Encounter RTL Compiler after synthesis.

152

TABLE II
SUMMARY OF RESULTS OF HIGH-LEVEL SYNTHESIS ALGORITHMS ON 20 X 20 DCTs.

bw

2
4
6
8

10
12
14
16

II
II
II adder

118
156
192
232
257
300
323
376

[10]
step

6
7
8

11
11
13
13
15

CMVM Problem

CPU

6.5
46.7

105.3
250.4
414.6
624.7
962.7

1556.9

II HCMVM

II adder I step

98 5
156 8
189 8
232 11
254 11
295 13
319 13
357 15

CPU

16.0
193.3
392.8
905.4

2135.8
3808.9
4814.8
9002.1

II CMVM Problem under a Delay Constraint

II [16]

II adder I step

118 5
156 6
194 6
232 7
260 7
303 7
326 7
391 7

II
CPU II adder

15.5 98
115.1 156
245.2 191
573.3 232
938.8 258

1406.3 298
2107.2 323
3362.4 379

HCMVM-DC
step I CPU

5 35.8
6 412.9
6 250.7
7 1077.9
7 3573.8
7 1437.0
7 2156.7
7 3385.6

I
I
I

Tot. II 1954 84 I 3967.8 II 1900 I 84 I 21269.1 II 1980 I 52 I 8763.8 II 1935 52 12330.4

TABLE III
SUMMARY OF GATE-LEVEL RESULTS ON 20 x 20 DCTs.

Direct II CMVM Problem CMVM Problem under a Delay Constraint
bw Realization II [lU] HCMVM [l6] HCMVM-DC

area delay I power II area delay power area delay power area delay power area delay I power

2 68.4 2874 3.3 36.5 3202 2.0 29.6 3066 1.7 35.7 2963 1.8 30.3 3019 1.7
4 115.2 3712 7.5 49.3 4132 3.5 45.1 4015 3.3 48.5 3924 3.4 48.2 3911 3.5
6 160.8 3772 10.0 60.7 4176 4.6 53.8 4237 4.2 61.0 4094 4.5 58.4 4060 4.5
8 235.4 3772 14.6 76.3 5473 6.4 64.5 4971 5.6 71.7 4439 5.7 69.9 4539 5.6

10 271.2 3838 17.1 87.7 5435 7.7 73.6 5325 6.5 84.5 4775 6.9 80.6 4799 6.8
12 304.7 4029 19.8 101.9 5262 9.4 84.4 5704 7.6 99.7 4988 8.3 94.8 4966 8.1
14 346.8 4410 22.5 112.7 5837 10.8 94.3 5724 9.2 111.9 5205 10.2 105.4 5480 9.5
16 353.3 5074 22.8 122.5 5812 13.1 103.6 5846 11.0 126.0 5417 12.0 120.6 5683 11.5

I Tot. II 1855.8 I 31481 I 117.6 " 647.6 I 39329 I 57.5 II 548.7 I 38888 I 49.1 II 639.0 I 35805 I 52.9 II 608.2 I 36457 I 51.2 I

Observe from Table III that the use of high-level algorithms (4) R. Hartley, "Subexpression Sharing in Filters Using Canonic Signed

targeting a shift-adds architecture leads to significant improve- Digit Multipliers," IEEE TCAS II, vol. 43, no. 10, pp. 677-688, 1996.
(5) N. Boullis and A. Tisserand, "Some Optimizations of Hardware Mul-

ments in terms of area and power dissipation when compared tiplication by Constant Matrices," IEEE Transactions on Computers,

to the direct realizations of DCTs. Also, while the solutions vol. 54, no. 10, pp. 1271-1282,2005.

of HCMVM yield low-complexity DCT designs (with great (6) H. Nguyen and A. Chatterjee, "Number-Splitting with Shift-and-Add
Decomposition for Power and Hardware Optimization in Linear DSP

latency due to the large number of adder-steps), high-speed Synthesis," IEEE TVLSI, vol. 8, no. 4, pp. 419--424, 2000.
DCT designs with low-complexity are obtained by the solu- [7] P. Cappello and K. Steiglitz, "Some Complexity Issues in Digital

tions of HCMVM -DC with respect to designs obtained by [10] Signal Processing," IEEE Transactions on Acoustics, Speech, and Signal

d [16] . I Th' . b b 'd h ' b h' h
Processing, vol. 32, no. 5, pp. 1037-1041, 1984.

an respectIve y. IS IS ecause, eSI es t elr etter Ig - [8] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
level results, HCMVM and HCMVM-DC also consider some 2003.

hardware optimizations, whose impact can be easily observed (9) M. Potkonjak, M. Srivastava, and A. Chandrakasan, "Multiple Constant
Multiplications: Efficient and Versatile Framework and Algorithms for

on the results given in Table III when bw is 4 and 8, where Exploring Common Subexpression Elimination," IEEE TCAD, vol. 15,
all the algorithms find a solution with the same number of no. 2, pp. 151-165, 1996.

operations as can be seen in Table II. [10] A. Hosangadi, F. Fallah, and R. Kastner, "Reducing Hardware Com-
plexity of Linear DSP Systems by Iteratively Eliminating Two-Term

V. CONCLUSIONS

We introduced a hybrid algorithm that includes an efficient
GB difference technique and an improved CSE algorithm for
the optimization of the number of operations in multiplierless
realization of linear transforms. Since the proposed algorithm
yields a solution with the fewest number of operations but with
larger adder-steps due to the sharing of partial products, we
also presented its modified version that can handle the delay
constraint. The experimental results showed that they yield
significantly better solutions than the previously proposed
algorithms at both high-level and gate-level.

REFERENCES

[1] F. Quereshi and O. Gustafsson, "Low-Complexity Reconfigurable Com­
plex Constant Multiplication for FFTs," in ISCAS, 2009, pp. 24-27.

(2) J. Thong and N. Nicolici, "A Novel Optimal Single Constant Multipli­
cation Algorithm," in DAC, 2010, pp. 613-616.

[3] H.-J. Kang and I.-C. Park, "FIR Filter Synthesis Algorithms for Mini­
mizing the Delay and the Number of Adders," IEEE TCAS II, vol. 48,
no. 8, pp. 770-777, 2001.

Common Subexpressions," in ASPDAC, 2005, pp. 523-528.
[11] A. Dempster and M. Macleod, "Use of Minimum-Adder Multiplier

Blocks in FIR Digital Filters," IEEE TCAS II, vol. 42, no. 9, pp. 569-
577, 1995.

[l2] L. Aksoy, E. Gunes, and P. Flores, "Search Algorithms for the Multiple
Constant Multiplications Problem: Exact and Approximate," Elsevier

Journal on Embedded Hardware Design, vol. 34, pp. 151-162,2010.
[13] A. Dempster, O. Gustafsson, and 1. Coleman, "Towards an Algorithm

for Matrix Multiplier Blocks," in ECCTD, 2003, pp. 1--4.
[l4] O. Gustafsson, H. Ohlsson, and L. Wanhammar, "Low-Complexity

Constant Coefficient Matrix Multiplication Using a Minimum Spanning
Tree," in Nordic Signal Processing Symposium, 2004, pp. 141-144.

[15] A. Yurdakul and G. Diindar, "Multiplieriess Realization of Linear DSP
Transforms by Using Common Two-Term Expressions," The Journal of

VLSI Signal Processing, vol. 22, no. 3, pp. 163-172, 1999.
(16) A. Hosangadi, F. Fallah, and R. Kastner, "Simultaneous Optimization

of Delay and Number of Operations in Multiplieriess Implementation
of Linear Systems," in IWLS, 2005.

[17] V. Lefevre, "Multiplication by an Integer Constant," Institut National de
Recherche en Informatique et en Automatique, Tech. Rep., 2001.

(18) L. Aksoy, E. Costa, P. Flores, and 1. Monteiro, "Optimization of Area
in Digital FIR Filters Using Gate-Level Metrics," in DAC, 2007, pp.
420--423.

(19) Nangate website, http://www.nangate.comJ.

153

