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Abstract-This paper addresses the problem of multiplierless 
realization of linear transforms using the fewest number of 
addition and subtraction operations and introduces a hybrid 
algorithm that incorporates a graph-based technique, called the 
difference method, and a Common SUbexpression Elimination 
(CSE) algorithm. In the proposed algorithm, while the difference 
method extracts the most promising realizations of linear trans­
forms in each iteration, the CSE algorithm achieves the most 
common minimum conflicting sUbexpressions in each solution 
of the difference method. This paper also describes how the 
hybrid algorithm can be modified in order to find a solution 
with the fewest number of operations under a delay constraint. 
The experimental results on a comprehensive set of instances 
show the efficiency of the hybrid algorithms, at both high-level 
and gate-level, in comparison to previously proposed algorithms. 

I. INTRODUCTION 

The mUltiplication of data samples with constant coefficients 
is a ubiquitous operation in Digital Signal Processing (DSP) 
systems and can be categorized in four main classes: (a) the 
Single Constant Multiplication (SCM), where an integer coef­
ficient C is mUltiplied by a single variable x, i.e., CX. The SCM 
operation is frequently used in realizations of Fast Fourier 
Transforms (FFTs) [1] and fast Discrete Cosine Transforms 
(DCTs) [2]; (b) the Multiple Constant Multiplications (MCM), 
that is the multiplication of a set of constants C with a single 
variable x, i.e., Yj = Cjx. Among many others, the MCM op­
eration dominates the complexity of Finite Impulse Response 
(FIR) filters in transposed form [3]; (c) the multiplication of 
multiple constants with the input data x shifted in time, i.e., 

Y = LjCjX(t - j), which actually computes the output of an 
FIR filter in direct form [4]; (d) and the Constant Matrix­
Vector Multiplication (CMVM), where a constant matrix C is 
multiplied with a vector X including mUltiple variables, i.e., 

Yj = Lk Cj,kXk· The CMVM operation occurs in implementa­
tions of DCTs, Infinite Impulse Response (IIR) filters, filter 
banks, and error correcting codes [5]. Observe that the CMVM 
operation corresponds to an SCM operation when both j and 
k are set to I, to an MCM operation when k is 1, and to an 
operation described in (c) when j is l. 

Since the realization of a multiplication operation in hard­
ware is expensive in terms of area, delay, and power dissipation 
and the constant coefficients are determined beforehand by 
the DSP algorithms, the multiplication of constants with data 
samples are generally realized using only addition, subtraction, 
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Fig. I. (a) Direct realization of linear transforms YI 3xI + IIx2 and 
Y2 = 5xI + l3x2; Shift·adds implementations of the linear transforms: 
(b) without partial product sharing; (c) with partial product sharing. 

and shift operations [6]. Note also that shifts can be realized 
using only wires without representing any area cost. Hence, an 
important optimization problem is to realize the constant mul­
tiplications using the fewest number of addition/subtraction 
operations, which is an NP-complete problem [7]. 

A straightforward way for the multiplierless realization of 
constant multiplications, generally known as the digit-based 
recoding method [8], is to define the constants in binary and 
for each I in the binary representation of the constant, is to 
shift the variable and add up the shifted variables. As a simple 
example, consider the multiplication of a constant matrix by a 
variable vector, as illustrated in Figure l(a). The decomposed 
forms of linear transforms Yl = 3Xl + 11x2 and Y2 = 5xI + 13x2 
are given as follows: 

Yl (11 )binXI + (1011)binX2 = Xl + 2Xl +X2 + 2X2 + 8X2 

Xl +Xl « I +X2 +X2« I +X2« 3 

Y2 (lOl)binXI + (1101)binX2 =XI +4xl +X2 +4X2 +8X2 

XI +XI «2 +X2 +X2 «2+X2« 3 

where the computation of each YI and Y2 requires 4 operations, 
a total of 8 operations, as depicted in Figure l(b). 

Moreover, the shift-adds design of constant multiplications 
enables the sharing of partial products among the constant 
multiplications that significantly reduces the required number 
of operations and, consequently, the area and power dissipation 
of the design. Returning to our example given in Figure lea), 
finding the common sUbexpressions XI +X2 and XI +9X2 yields 
a solution with 4 operations, as illustrated in Figure l(c). 

The last two decades have seen tremendous effort on the 
development of high-level algorithms for the multiplierless 
realization of constant multiplications. These algorithms can 
be categorized in two classes: Common Subexpression Elim-
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ination (CSE) [4], [5], [9], [10] and graph-based (GB) [11]­
[14] techniques. Although both CSE and GB algorithms aim 
to maximize the sharing of partial products, they differ in the 
search space that they explore. The CSE algorithms initially 
define the constants under a number representation. Then, all 
possible subexpressions are extracted from the representations 
of the constants and the "best" subexpression, generally, the 
most common, is chosen to be shared among the constant 
multiplications. The GB algorithms are not limited to any 
particular number representation and consider a larger number 
of alternative implementations of a constant multiplication, 
yielding better solutions than the CSE algorithms [12]. 

However, little attention has been given to the multiplierless 
realization of the CMVM operation compared to the MCM 
design. This is mainly because a high-level algorithm designed 
for the MCM problem can be used for the implementation 
of a CMVM operation or can be modified for the CMVM 
problem. In the former, one can apply an MCM algorithm 
on the constants of each column of the matrix C initially 
and then, utilize the sharing of constants in the rows of the 
matrix [9]. In the latter, each constant Cj and the variable x in 
MCM can be replaced with a constant vector Cj and a variable 
vector X respectively. While the former method yields poor 
results when compared to algorithms designed for the CMVM 
problem as shown in Section IV, the efficient GB algorithms 
modified for the CMVM problem can be only applied to small 
size matrices with small constants as noted in [13], [14]. 

In this paper, we introduce a hybrid algorithm for the design 
of CMVM operations that incorporates less-complex and time­
efficient CSE and GB algorithms to take the advantages of both 
techniques. The hybrid algorithm iteratively finds alternative 
realizations of linear transforms using the GB difference 
method and applies a CSE heuristic to further reduce the 
complexity by sharing the common subexpressions. Hence, in 
the hybrid algorithm, the main drawback of a CSE algorithm, 
i.e., its limitation to a number representation, is partially 
eliminated by using a GB algorithm and the main drawback 
of a GB algorithm, i.e., its time-consuming search process, 
is partially decreased by using a CSE heuristic. Although 
the proposed algorithm finds good solutions in terms of 
the number of operations, leading to low-complexity designs 
at gate-level, its solutions are generally realized in a large 
number of operations in series, yielding CMVM designs with 
large delay. To overcome this disadvantage, we also describe 
its modified version that can find a solution under a delay 
constraint and enables us to find the optimal tradeoff between 
area and delay in the design of linear transforms. 

The rest of the paper proceeds as follows. Section II 
gives the background concepts and the hybrid algorithms are 
introduced in Section III. Experimental results are presented 
in Section IV and finally, Section V concludes the paper. 

II. BACKGROUND 

This section presents the concepts related with the proposed 
algorithms and gives an overview on the algorithms designed 
for the CMVM problem. 

A. Number Representations 

The binary representation decomposes a number in a set 
of additions of powers of two. The representation of numbers 
using a signed digit system makes the use of positive and 
negative digits, { -1,0, I}. The Canonical Signed Digit (CSD) 
representation [4] is a signed digit system that has a unique 
representation for each number and verifies the following 
properties: i) two non-zero digits are not adjacent; ii) the 
number of non-zero digits is minimal. Any n digit number in 
CSD has at most r(n+ 1)/21 non-zero digits, and on average, 
the number of non-zero digits is reduced by 33% when 
compared to binary. Since hardware requirements are reduced 
due to the minimum number of non-zero digits, it is widely 
used in multiplierless realizations of constant multiplications. 

B. Problem Definitions 

Given an m x n constant matrix C with C j,k E Z and an n x 1 
variable vector X with Xk E Z, the multiplication of C by X is a 
linear transformation from zn to zm and each linear transform 
can be computed as 

n 
Yj = L Cj,kXk 

k=l 
(1) 

where j and k range from 1 to m and n respectively. 
For the shift-adds realization of the CMVM operation, the 

fundamental optimization problem, which is called the CMVM 
problem, is defined as: Given the set of linear transforms 
Y = {Yl, . . .  ,Ym}, find the minimum number of addition and 
subtraction operations that generate the linear transforms. 

In many DSP systems, performance is also a crucial pa­
rameter. Hence, circuit area is generally expandable in order 
to achieve a given performance target. Although the delay 
parameter is dependent on several implementation issues, such 
as placement and routing, the delay of the CMVM operation 
is generally considered as the number of adder-steps, which 
denotes the maximal number of adders/subtracters in series to 
produce any constant multiplication [3]. The minimum adder­
step of a linear transform Y j is computed by decomposing the 
constants c· k in Y j under a number representation and finding 

], 

( ) 
. 

the number of terms in its decomposed form, S Y j . Thus, Its 
minimum adder-step value is determined as rlog2S(Yi)1, as if 
all its terms in the decomposed form were realized in a binary 
tree. For example, each linear transform given in Figure l(a), 
i.e., Yl and Y2, has minimum 3 adder-step realizations when 
constants are defined under binary. Hence, for a set of linear 
transforms, Y = {Yl, . . .  ,Ym}, the minimum adder-step of the 
CMVM operation [3] is computed as: 

min_delaYcMVM = maxi pog2S(Yj)1} 
Yj 

(2) 

Note that, in general, min_delaYcMvM is determined when 
constants are defined under CSD, since the CSD representation 
of a constant includes the minimum number of non-zero digits. 
Thus, the CMVM problem under a delay constraint can be 
defined as: Given the set of linear transforms Y = {Yl, . . .  ,Ym} 
and the delay constraint dc with dc 2:: min_delaYcMvM, find 
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the minimum number of addition and subtraction operations 
that generate the linear transforms without exceeding de. 

C. Related Work 

Although there are many efficient algorithms designed for 
the MCM problem, only a few methods have been proposed 
for the CMVM problem. Here, we mention only the algorithms 
applied to the CMVM problem, although any MCM algorithm 
can be easily modified for the CMVM problem. 

The CMVM problem was formalized as a 0-1 Integer Linear 
Programming (lLP) problem in [15]. The possible implemen­
tations of linear transforms were found when constants are 
defined under a number representation in their decomposed 
forms. However, due to the exponential growth in the size of 
0-1 ILP problems, the CSE algorithm [15] only considers the 
2-term subexpressions. On the other hand, the CSE heuristic 
of [10] initially obtains the decomposed forms of linear 
transforms when constants are defined under binary or CSD. 
Then, in each iteration, it finds the most common 2-term 
subexpression and replaces it within the linear transforms. 
This algorithm was also extended to handle a delay constraint 
in [16]. The CSE algorithm [5] is similar to the algorithm [10] 
but, it relies on an efficient CSE algorithm [17] that iteratively 
searches a subexpression with the maximal number of terms 
and with at least 2 occurrences. In the heuristic of [5], the 
selection of a subexpression is also modified by taking into 
account the conflicts between the possible subexpressions. 
Furthermore, in [9], a CSE algorithm designed for the MCM 
problem is initially applied to find the common subexpressions 
in the columns of the constant matrix and then, in its rows. 

In [13], an efficient GB algorithm [11] designed for the 
MCM problem is modified to handle the CMVM problem. 
As done in [11], the algorithm of [13] iteratively approaches 
to the linear transforms to be implemented with the available 
expressions by implementing subexpressions that require the 
minimum implementation cost. Note that in the beginning, 
the input variables XI ,X2, . . .  ,Xn and their shifted values are 
available. However, the procedure in the GB algorithm of [13] 
is computationally intensive and thus, it can only be applied on 
small size matrices. Moreover, the algorithm of [14] initially 
computes the differences between each two linear transforms 
and determines their implementation cost values. Then, it 
uses a Minimum Spanning Tree (MST) algorithm to find the 
realizations of linear transforms with differences that have 
the minimum cost and replaces the linear transforms with the 
required differences. The algorithm iterates until all the linear 
transforms are synthesized. However, as stated in [14], due to 
the application of the MST algorithm in each iteration, the 
algorithm is highly restricted in terms of the number of linear 
transforms and the bit-widths of constants. 

III. THE H YBRID ALGORIT HMS 

This section presents the hybrid algorithm, called HCMVM, 

designed for the CMVM problem and its modified version, 
HCMVM-DC, for the CMVM problem under a delay constraint. 

A. The HCMVM Algorithm 

The HCMVM algorithm can handle the constants under 
binary and CSD representation where there is a unique rep­
resentation for each constant. In its preprocessing phase, each 
linear transform is converted to an odd and positive expression, 
i.e., the expression is divided by 2 until one of its constants 
is odd and the expression is multiplied by -1, if the sign of 
the first non-zero constant in the expression is negative. The 
expressions are stored in a set called Eset without repetition. 

Then, as done in the GB algorithms [11], [12], the lin­
ear transforms that can be synthesized using a single op­
eration, whose inputs are an element of the input vector, 
an implemented linear transform, or their shifted versions, 
are found iteratively and moved from Eset to [set, which 
includes the implemented expressions. As a simple example, 
consider the linear transforms YI =XI +X2, Y2 =XI +X3, and 
Y3 = 3xI + X2 + 2x3. Observe that YI and Y2 can be implemented 
using a single operation from the input variables and Y3 can be 
synthesized as YI + Y2 « 1. This is the optimal part, meaning 
that, when all the linear transforms are realized in this part, 
the minimum solution is obtained. 

If there are still linear transforms in Eset after the optimal 
part, the algorithm switches to its heuristic part. In this part, 
initially it finds a solution on expressions in Eset with the CSE 
algorithm, H2MC, that will be described in Section III-AI, and 
records its solution, considering also the number of elements 
in [set, as the best solution found so far (bs). Then, the cost of 
each linear transform in Eset is computed as the total number 
of non-zero digits of each constant in a number representation, 
binary or CSD, that H2MC uses in definition of constants. The 
linear transforms are sorted in a descending order based on 
their cost values. For each expression in Eset, Esetj, with 
its cost value eostj, where i < m and m denotes the number 
of expressions in Eset, all the differences of Esetj with an 
expression in Eset, Eset) , where i < j ::; m, are computed as 
dij « II = Esetj - Eset) « h, where 11,/2 2:: 0 denote the left 
shifts. The cost of each difference is determined in terms of 
the total number of non-zero digits of each constant under 
the given number representation and a difference with the 
minimum cost value (eostd) is determined. If eostd < eostj -1, 
then Esetj is moved from Eset to [set and the difference with 
the minimum cost is added into Eset in place of Esetj. After 
all differences for each expression in Eset (except Esetm) are 
explored, H2MC is applied on the expressions in Eset and a 
set of operations realizing the expressions in Eset is obtained. 
If the number of operations in the solution of H2MC plus the 
number of elements in [set is less than bs, it is updated with 
this value. HCMVM iterates until there are no more differences 
that can be replaced with the expressions in Eset. 

The procedure of HCMVM is illustrated on the first example 
of [14] when H2MC defines the constants under CSD as given 
in Figure 2. In this figure, the values between parenthesis 
next to the expressions denote the respective cost values. 
Initially, H2MC is applied on linear transforms and a solution 
with 19 operations is obtained. Then, in the first iteration 
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Initial expressions: 
YI = 7xI + 8X2 + 2x3 + 13x4 
Y2 = 12x1 + llX2 + 7X3 + 13X4 
Y3 = 5xI + 8X2 + 2x3 + 15x4 
Y4 = 7xI + 11x2 + 7X3 + 11x4 
Solution of H2MC on initial expressions: 19 operations, bs = 19 

Iteration 1 

Expressions of Eset and chosen differences: 
Esetl (10) : 12x1 + llX2 + 7X3 + 13X4 dl2 (3) : 5xI + 2x4 
Eset2 (10) : 7xI + llX2 + 7X3 + llX4 d23 (5 ) : 3X2 + 5X3 -2x4 
Eset3 (7 ) : 7xI +8X2 +2x3 + 13X4 d34 (2 ) : XI -X4 
Eset4 (6) : 5xI +8X2 +2x3 + 15x4 

Expressions in Eset: 
5xI +2X4 

3X2 + 5X3 -2x4 
XI-X4 
5xI + 8X2 + 2x3 + 15x4 

Expressions in [set: 
12xI + llX2 + 7X3 + 13X4 
7xI + llX2 + 7X3 + 11x4 
7xI + 8X2 + 2x3 + 13X4 

Solution of H2MC on Eset:lO operations, Total:1O+3=13, bs = 13 

Iteration 2 

Expressions of Eset and chosen differences: 
Esetl (6) : 5xI +8X2 +2x3 + 15x4 dl4 (4 ) : 2x1 +4X2 +X3 + 8X4 
Eset2 (5 ) : 3X2 + 5X3 -2x4 
Eset3 (3 ) : 5xI +2x4 
Eset4 (2 ) : XI -X4 

Expressions in Eset: Expressions in [set: 
2x1 +4X2 +X3 +8X4 12xI + llX2 +7X3 + 13X4 
3X2 +5X3 -2x4 7xI + 11x2 + 7X3 + 11x4 
5xI + 2X4 7xI + 8X2 + 2x3 + 13X4 
XI -X4 5xI +8X2 +2x3 + 15x4 
Solution of H2MC on Eset:9 operations, Total: 9+4= 13 

Fig. 2. The procedure of the HCMVM algorithm. 

of HCMVM, the linear transforms Esetl. Eset2, and Eset3 

are realized using a single operation whose inputs are an 
element of Eset and a difference with the minimum cost. They 
are synthesized as Esetl = Eset2 + d12, Eset2 = Eset3 + d23, 

Eset3 = Eset4 + d34 « 1. Then, these linear transforms are 
moved from Eset to lset and the associated differences are 
added to Eset. In this case, H2MC finds a solution with 10 
operations on Eset. Thus, a total of 13 operations are required, 
considering that the expressions in lset are synthesized using a 
single operation. In the second iteration, HCMVM follows the 
same procedure realizing Esef! as Eset4 +d14 « 1 and finding 
a solution with a total of 13 operations again. The HCMVM 

algorithm takes only two iterations, since there are no more 
promising differences. As reported in [14], the algorithms 
of [13], [14] find a solution with 14 operations on this instance. 

l) The H2MC algorithm: This previously mentioned method 
is based on the CSE heuristics [4], [10] that compute the most 
common (MC) 2-term subexpressions iteratively. We improved 
their subexpression selection heuristic (that significantly af­
fects the final solution due to the iterative decision making) by 
choosing an MC 2-term subexpression such that its selection 
leads to the least loss of subexpression sharing in the next it­
erations. These subexpressions are called as the most common 
minimum conflicting (MCmc) 2-term subexpressions. 

In HCMVM, the H2MC algorithm takes Eset as an input and 
returns the Sset that includes the subexpressions required to 
realize all the expressions of Eset. In H2MC, for each element 
of Eset, the constants in expressions are defined under a given 
number representation and the decompositions of expressions 

are obtained and stored in a set called Dset. The part of 
H2MC, where the MCmc 2-term subexpressions are found and 
replaced in the decompositions of expressions, is as follows: 

1) Form an empty set called Sset that will store the selected 
2-term subexpressions. 

2) For each 2-term subexpression that is extracted from 
the decompositions of expressions in Dset, convert the 
subexpression to positive and odd, find the occurrences 
of the subexpression in the elements of Dset considering 
its shifted and signed versions, and determine the MC 
2-term subexpressions. 

3) If the maximum number of occurrences of the MC 2-
term subexpressions is 1, then return Dset and Sset. 

4) Otherwise, find the minimum conflicting 2-term subex­
pressions in the MC 2-term subexpressions, i.e., MCmc 
2-term subexpressions. 

5) Choose one of the MCmc 2-term subexpressions, add 
it to Sset by labeling it with a variable, replace its 
occurrences in Dset with its label, and go to Step 2. 

After the sharing of the MCmc 2-term subexpressions is 
exploited, in each decomposed form of an expression in the 
final Dset, which includes greater than one term, in an iterative 
manner, two terms are selected and are realized by a single 
operation. The result is labeled with a variable, is stored in 
Sset, and these two terms are replaced with this variable in the 
decomposed form of the expression. This process continues 
until the number of terms is 1. However, as stated in [18], 
finding the fewest number of operations does not always lead 
to a design with optimal area at gate-level. Hence, to further 
reduce the area of a CMVM design, for an expression in the 
final Dset, we initially separate the terms into two sets Pset 

and Mset considering their sign. This comes from the fact that 
although the cost of an adder and a subtracter is assumed to be 
equal in high-level algorithms, a subtracter occupies larger area 
than an adder at gate-level. Then, in each set, we iteratively 
select two terms that have the smallest bit-width, i.e., the 
narrowest, to be realized using an adder in order to reduce 
the size of the operation. Finally, if Mset is not empty, we use 
a subtracter to realize the expression. Consider the expression 
y = a - b - e - d where each term is a subexpression and their 
bit-widths are 16, 8, 10, and 16 respectively. Thus, y is realized 
as a - (( b + e) + d ) in H2MC. 

B. The HCMVM-DC Algorithm 

In the preprocessing phase of HCMVM-DC, we also compute 
the minimum adder-step of each linear transform as described 
in Section II-B. Then, given the delay constraint, de, in 
the optimal part, we synthesize the linear transforms using 
a single operation if their realizations do not exceed de 

considering their minimum adder-step values. While searching 
the promising differences, we compute the minimum adder­
step of each difference and accept the implementation of an 
expression if its realization does not violate de. Returning to 
our example in Figure 2, given the delay constraint, de = 4, 
i.e., the minimum adder-step of the CMVM operation, the 
realization of Esetl = Eset2 + dl in the first iteration is not 
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TABLE I 
SUMMARY OF RESULTS OF HIGH-LEVEL SYNTHESIS ALGORITHMS ON m X m RANDOMLY GENERATED MATRICES WITH 8-BIT CONSTANTS. 

CMVM Problem II CMVM Problem under a Delay Constraint I 
m (9) II (10) II (5) II H2MC II . HCMVM II l8) II . llb) II HCMVM-DC I 

adder I step II adder I step II adder II adder step I adder step II adder I step II adder I step II adder step I 
2 9.00 4.89 8.80 3.54 9.7 8.73 3.60 
4 33.27 7.06 32.09 5.88 31.2 31.70 5.84 
6 72.41 8.93 67.95 7.59 66.1 66.52 7.66 
8 125.59 10.55 116.39 9.23 113.2 114.10 9.16 

10 192.69 11.62 175.72 10.68 172.4 172.03 10.48 
12 275.13 12.62 246.54 12.02 241.6 240.87 11.68 
14 371.05 13.65 327.08 13.23 322.9 320.00 13.00 
16 483.85 14.32 417.89 14.38 412.4 407.49 13.96 

possible in HCMVM-DC, because the realizations of both Esetl 

and Eset2 require minimum 4 adder-steps and hence, any 
implementation of Esetl with Eset2 always violates de = 4. 

Moreover, in H2MC, we initially find the most common 
2-term subexpressions, whose selections will not lead to a 
realization greater than dc, and then, we obtain the minimum 
conflicting 2-term subexpression among these subexpressions. 
We also consider the hardware optimizations described in 
Section III-A I taking into account dc. Thus, with these mod­
ifications, the HCMVM-DC algorithm can find a solution with 
the fewest number of operations under a delay constraint. 

IV. EXPERIMENTAL RESULT S  

This section presents the high-level results of hybrid algo­
rithms on random instances and DCTs and compare them with 
those obtained by the previously proposed algorithms. It also 
introduces the gate-level results of DCTs designed using the 
solutions of high-level algorithms. To design linear transforms 
at gate-level, we also developed a tool that automatically 
describes the solutions of the high-level synthesis algorithms 
under the shift-adds architecture in VHDL and uses the 
Cadence Encounter RTL Compiler to synthesize the circuits 
with the Nangate 45nm Open Cell library [19]. 

As the first experiment set, we used m x m matrices, where 
m varies in between 2 and 16 in step of 2, consisting of 
randomly generated numbers in between [27 + 1,28 -1 ], i.e., 

8-bit constants. There exist 100 instances for each matrix 
type, a total of 800 instances. Table I presents the results of 
algorithms, where adder and step denote the average number 
of operations and of adder-steps respectively. In the algorithm 
of [9], we used the exact GB algorithm [12] as an MCM 
algorithm to obtain the minimum number of operations for 
each column of a matrix. We also implemented the algo­
rithms [10], [16] and the results of the algorithm [5] were 
taken from its paper. In HCMVM-DC and the algorithm [16], 
the delay constraint (de) was set to the minimum delay of 
the CMVM operation as computed in Eqn. 2. In digit-based 
recoding technique [8], the constants were defined under CSD 
and the linear transforms were realized in a binary tree so that 
the minimum number of adder-step is achieved, as done in 
HCMVM-DC and the algorithm [16]. Note that its adder results 
represent the worst-case scenario for both CMVM problems. 
In CSE algorithms, the constants were defined under CSD. 

Observe from Table I that the hybrid HCMVM algorithm 
finds significantly better solutions than the CSE algorithms [5], 
[10] and H2MC in terms of the number of operations due 

8.16 4.38 10.90 3.12 8.99 3.12 8.80 3.12 
27.62 7.67 42.96 4.07 32.82 4.07 32.13 4.07 
57.29 10.00 95.28 5.00 68.10 5.00 66.75 5.00 
96.27 11.86 165.58 5.08 119.65 5.08 117.21 5.08 

143.49 13.19 251.84 6.00 175.76 6.00 157.72 6.00 
200.39 14.59 355.20 6.00 247.06 6.00 241.57 6.00 
264.26 15.54 472.93 6.00 330.20 6.00 324.01 6.00 
338.33 16.30 607.10 6.03 431.00 6.03 423.24 6.03 

to the use of the difference method. However, its solutions 
lead to CMVM designs with large number of adder-steps. On 
the other hand, the algorithm of [16] and HCMVM-DC find 
solutions with the minimum number of adder-steps, including 
greater number of operations than the algorithm of [10] and 
HCMVM respectively. Although the effect of the difference 
method is partially diminished due to the minimum delay 
constraint in HCMVM-DC, it finds better solutions in terms of 
the number of operations than [16] on all matrix types. Also, 
its adder results are similar to those of the algorithms [5], 
[10] and H2MC, although they are not restricted to any delay 
constraint. Moreover, the results of [8] and [9] clearly show 
the importance of partial product sharing and using algorithms 
that target directly the CMVM problem respectively. 

As the second experiment, we used 20 x 20 DCTs, where 
the bit-width (bw) of the constants were defined from 2 bits to 
16 bits with an increment of 2. Table II presents the high-level 
results of the algorithms, all written in MATLAB, where CPU 
denotes their run time in seconds on a PC with Intel Xeon at 
2.33GHz and 4GB memory. Again, the constants were defined 
under CSD, and in the algorithm of [16] and HCMVM-DC, de 

was set to the minimum adder-step of the design. 
Observe from Table II that HCMVM finds better solutions 

than the CSE heuristic [10], requiring 6.75 less operations 
on average, although they obtained a solution with the same 
number of operations for DCTs when bw is equal to 4 
and 8. Also, HCMVM-DC obtains on average better solutions 
than [16] in terms of the number of operations. The run times 
of HCMVM and HCMVM-DC are greater than those of [10], 
[16], since they may take more than one iteration due to the 
new realizations of linear transforms found by the difference 
method. Also, the run time of HCMVM is larger than HCMVM­

DC on average, since HCMVM-DC may require less iterations 
than HCMVM due to the delay constraint. 

Table III presents the gate-level results of DCT designs 
synthesized based on the solutions of algorithms given in 
Table II. Also, it introduces the results on direct realizations of 
DCTs, where each linear transform was described in VHDL as 
the additions of constant multiplications by an input variable, 
as given in Eqn. 1. In this experiment, the bit-widths of 
input variables were taken as 16 and DCTs were synthesized 
under the minimum area design strategy in the synthesis tool, 
which includes advanced optimization techniques. In this table, 
area (mm

2
), delay (ps), and power (mW) indicate area, delay, 

and RTL power estimation, respectively, as reported by the 
Cadence Encounter RTL Compiler after synthesis. 
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TABLE II 
SUMMARY OF RESULTS OF HIGH-LEVEL SYNTHESIS ALGORITHMS ON 20 X 20 DCTs. 

bw 

2 
4 
6 
8 

10 
12 
14 
16 

II 
II 
II adder 

118 
156 
192 
232 
257 
300 
323 
376 

[10] 
step 

6 
7 
8 

11 
11 
13 
13 
15 

CMVM Problem 

CPU 

6.5 
46.7 

105.3 
250.4 
414.6 
624.7 
962.7 

1556.9 

II HCMVM 

II adder I step 

98 5 
156 8 
189 8 
232 11 
254 11 
295 13 
319 13 
357 15 

CPU 

16.0 
193.3 
392.8 
905.4 

2135.8 
3808.9 
4814.8 
9002.1 

II CMVM Problem under a Delay Constraint 

II [16] 

II adder I step 

118 5 
156 6 
194 6 
232 7 
260 7 
303 7 
326 7 
391 7 

II 
CPU II adder 

15.5 98 
115.1 156 
245.2 191 
573.3 232 
938.8 258 

1406.3 298 
2107.2 323 
3362.4 379 

HCMVM-DC 
step I CPU 

5 35.8 
6 412.9 
6 250.7 
7 1077.9 
7 3573.8 
7 1437.0 
7 2156.7 
7 3385.6 

I 
I 
I 

Tot. II 1954 84 I 3967.8 II 1900 I 84 I 21269.1 II 1980 I 52 I 8763.8 II 1935 52 12330.4 

TABLE III 
SUMMARY OF GATE-LEVEL RESULTS ON 20 x 20 DCTs. 

Direct II CMVM Problem CMVM Problem under a Delay Constraint 
bw Realization II [lU] HCMVM [l6] HCMVM-DC 

area delay I power II area delay power area delay power area delay power area delay I power 

2 68.4 2874 3.3 36.5 3202 2.0 29.6 3066 1.7 35.7 2963 1.8 30.3 3019 1.7 
4 115.2 3712 7.5 49.3 4132 3.5 45.1 4015 3.3 48.5 3924 3.4 48.2 3911 3.5 
6 160.8 3772 10.0 60.7 4176 4.6 53.8 4237 4.2 61.0 4094 4.5 58.4 4060 4.5 
8 235.4 3772 14.6 76.3 5473 6.4 64.5 4971 5.6 71.7 4439 5.7 69.9 4539 5.6 

10 271.2 3838 17.1 87.7 5435 7.7 73.6 5325 6.5 84.5 4775 6.9 80.6 4799 6.8 
12 304.7 4029 19.8 101.9 5262 9.4 84.4 5704 7.6 99.7 4988 8.3 94.8 4966 8.1 
14 346.8 4410 22.5 112.7 5837 10.8 94.3 5724 9.2 111.9 5205 10.2 105.4 5480 9.5 
16 353.3 5074 22.8 122.5 5812 13.1 103.6 5846 11.0 126.0 5417 12.0 120.6 5683 11.5 

I Tot. II 1855.8 I 31481 I 117.6 " 647.6 I 39329 I 57.5 II 548.7 I 38888 I 49.1 II 639.0 I 35805 I 52.9 II 608.2 I 36457 I 51.2 I 

Observe from Table III that the use of high-level algorithms (4) R. Hartley, "Subexpression Sharing in Filters Using Canonic Signed 

targeting a shift-adds architecture leads to significant improve- Digit Multipliers," IEEE TCAS II, vol. 43, no. 10, pp. 677-688, 1996. 
(5) N. Boullis and A. Tisserand, "Some Optimizations of Hardware Mul-

ments in terms of area and power dissipation when compared tiplication by Constant Matrices," IEEE Transactions on Computers, 

to the direct realizations of DCTs. Also, while the solutions vol. 54, no. 10, pp. 1271-1282,2005. 

of HCMVM yield low-complexity DCT designs (with great (6) H. Nguyen and A. Chatterjee, "Number-Splitting with Shift-and-Add 
Decomposition for Power and Hardware Optimization in Linear DSP 

latency due to the large number of adder-steps), high-speed Synthesis," IEEE TVLSI, vol. 8, no. 4, pp. 419--424, 2000. 
DCT designs with low-complexity are obtained by the solu- [7] P. Cappello and K. Steiglitz, "Some Complexity Issues in Digital 

tions of HCMVM -DC with respect to designs obtained by [10] Signal Processing," IEEE Transactions on Acoustics, Speech, and Signal 

d [16] . I Th' . b b 'd h '  b h' h 
Processing, vol. 32, no. 5, pp. 1037-1041, 1984. 

an respectIve y. IS IS ecause, eSI es t elr etter Ig - [8] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 
level results, HCMVM and HCMVM-DC also consider some 2003. 

hardware optimizations, whose impact can be easily observed (9) M. Potkonjak, M. Srivastava, and A. Chandrakasan, "Multiple Constant 
Multiplications: Efficient and Versatile Framework and Algorithms for 

on the results given in Table III when bw is 4 and 8, where Exploring Common Subexpression Elimination," IEEE TCAD, vol. 15, 
all the algorithms find a solution with the same number of no. 2, pp. 151-165, 1996. 

operations as can be seen in Table II. [10] A. Hosangadi, F. Fallah, and R. Kastner, "Reducing Hardware Com-
plexity of Linear DSP Systems by Iteratively Eliminating Two-Term 

V. CONCLUSIONS 

We introduced a hybrid algorithm that includes an efficient 
GB difference technique and an improved CSE algorithm for 
the optimization of the number of operations in multiplierless 
realization of linear transforms. Since the proposed algorithm 
yields a solution with the fewest number of operations but with 
larger adder-steps due to the sharing of partial products, we 
also presented its modified version that can handle the delay 
constraint. The experimental results showed that they yield 
significantly better solutions than the previously proposed 
algorithms at both high-level and gate-level. 
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