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1. INTRODUCTION

The multiplication of constant(s) by a variable is a ubiquitous and crucial operation
that has a significant impact on the design of Digital Signal Processing (DSP) systems,
such as Finite Impulse Response (FIR) filters, Infinite Impulse Response (IIR) filters,
Fast Fourier Transforms (FFT), and Discrete Cosine Transforms (DCT). For example,
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Fig. 1. Transposed form of a fully-parallel hardwired FIR filter implementation.

large numbers of single constant multiplications are required in the fast DCT method
described in Hou [1987] and the implementation of a digital FIR filter in its transposed
form needs the multiplication of filter coefficients by the filter input, as illustrated in
Figure 1. In addition to its applications in DSP systems, the multiplication of con-
stant(s) by a variable occurs frequently in cryptography applications, in the design of
compilers, and in computer arithmetic.

A more general version of the multiplication of constant(s) by a variable is the
multiplication of a constant matrix by an input vector. The Constant Matrix-Vector
Multiplication (CMVM) operation is described as Yzx1 = Thym - Xmx1, Wwhere X is an
input vector, Y is an output vector, and 7T is a matrix of constants specifying how the
outputs are obtained from the linear transformation of the inputs. The CMVM oper-
ation is a central operation and performance bottleneck in FIR filter banks [Dempster
and Murphy 20001, IIR filters, linear DSP transforms [Boullis and Tisserand 2005],
and in the implementation of error correcting codes [Potkonjak et al. 1996].

In DSP systems, the constant multiplications are generally realized in a shift-adds
architecture where each constant multiplication is realized using addition/subtraction
and shifting operations [Nguyen and Chatterjee 2000]. This is simply because the
constants to be multiplied by variable(s) are determined by the DSP algorithms be-
forehand, and thus the full-flexibility of a multiplier is not necessary. Note also that
the multiplication operation is expensive in terms of area, delay, and power dissipa-
tion in hardware. Although the relative cost of an adder and a multiplier in hardware
depends on the adder and multiplier architectures, an n x n array multiplier has ap-
proximately n times the area and twice the latency of the slowest ripple carry adder.

Furthermore, the design of constant multiplications in a shift-adds architecture
enables the sharing of common partial products among the constant multiplications,
yielding significant reductions in area and power dissipation of the design. Thus, the
optimization problem is defined as finding the fewest numbers of addition/subtraction
operations that generate the constant multiplications, since shifts can be implemented
using only wires in hardware without representing any area cost. In this problem, it is
also assumed that an adder and a subtracter have the same cost, although an addition
and subtraction operation occupies different amounts of area in hardware, as shown
in Aksoy et al. [2007].

As a simple example of multiple constant multiplications by a variable, consider
29x and 43x, as illustrated in Figure 2(a). The shift-adds implementations of the
constant multiplications are presented in Figures 2(b)-(c). Observe that while the
multiplier-less implementation without partial product sharing requires 6 operations
(Figure 2(b)), the sharing of partial products 3x and 5x in both multiplications reduces
the number of operations to 4 (Figure 2(c)). As an example of more general constant
multiplications, consider the linear transforms y; = 3x; + 11xy and ys = 5x1 + 13x2
obtained as a result of the multiplication of a constant matrix by the input vector in
Figure 3(a). Observe from Figures 3(b)-(c) that while the shift-adds implementation of
linear transforms without subexpression sharing requires 8 operations, the sharing of

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 1, Article 3, Publication date: January 2012.



Optimization Algorithms 3:3

X X
. .
<<2 ‘ <<1 ‘
g L]
L
5x <<3 [<<3 .3X
\ﬁJ HJ
29x 43x
29x 43x
(a) (c)

Fig. 2. (a) Constant multiplications of 29x and 43x; their shift-adds implementations: (b) without partial
product sharing; (¢) with partial product sharing.
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Fig. 3. (a) Constant matrix-vector multiplication realizing y; = 3x1 + 11x9 and y2 = 5x1 + 13x9; their shift-
adds implementations: (b) without subexpression sharing; (¢) with subexpression sharing.

subexpressions x1 +x2 and x1 + 9xg in both transforms leads to an implementation with
4 operations.

The last two decades have seen a tremendous effort for the implementation of effi-
cient algorithms designed for the multiplier-less realization of the constant multiplica-
tions by a variable [Aksoy et al. 2008, 2010; Dempster and Macleod 1995; Gustafsson
et al. 2002; Hartley 1996; Lefevre 2001; Park and Kang 2001; Thong and Nicolici
2009; Voronenko and Piischel 2007]. The exact algorithms [Aksoy et al. 2008, 2010;
Gustafsson et al. 2002] can be easily applied on real-size instances guaranteing the
minimum number of operations solution; the heuristic algorithms [Dempster and
Macleod 1995; Hartley 1996; Lefevre 2001; Park and Kang 2001; Thong and Nicolici
2009; Voronenko and Piischel 2007] can find solutions close to the minimum using little
computational effort, and can deal with large-size instances that the exact algorithms
cannot handle. However, for the multiplier-less realization of linear transforms using
the fewest numbers of operations—to the best our knowledge—there is no exact algo-
rithm that ensures the minimum solution. All existing algorithms are heuristics that
cannot provide any indication on how far from the minimum their solutions are. Also,
the proposed heuristics have generally been the modified versions of the algorithms de-
signed for the multiplier-less realization of the constant multiplications by a variable.

In this article, we introduce an exact algorithm where all possible implementations
of linear transforms are extracted when the constants are defined under a particular
number representation. In the exact algorithm, the maximization of the subexpression
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sharing is realized by formulating the problem of finding the minimum number of
subexpressions required to implement the linear transforms as a 0-1 Integer Linear
Programming (ILP) problem and by finding the optimal solution using a generic 0-1
ILP solver. Due to the exponential growth in the size of the 0-1 ILP problem as the
number of nonzero digits in the representation of a constant increases and the limita-
tions of the 0-1 ILP solvers, there are still instances that the exact algorithm cannot
handle. Hence, we also introduce a greedy heuristic algorithm that iteratively finds the
most common 2-term subexpressions in the linear transforms, selects the one with the
minimum conflicts, and implements it using a single operation. Furthermore, we pro-
pose a hybrid algorithm that iteratively finds alternative realizations of linear trans-
forms using a numerical difference method [Muhammad and Roy 2002] and applies the
heuristic algorithm to further reduce the complexity of design by sharing the common
subexpressions. In this work, we also developed a tool that automatically generates
the synthesizable VHDL code of direct implementation of linear transforms and their
shift-adds implementations obtained by the high-level optimization algorithms for
circuit synthesis.

The algorithms introduced in this article are compared with previously proposed al-
gorithms on a comprehensive set of instances, including randomly generated constant
matrices and linear DSP transforms. Experimental results show that the proposed ap-
proximate algorithms find solutions close to the minimum using little computational
effort, compared to the solutions of the exact algorithm, and obtain significantly better
solutions than those obtained by previously proposed algorithms. It is also observed
that the design of linear transforms in a shift-adds architecture using the fewest num-
bers of operations leads to low-complexity and low-power circuits after its implemen-
tation at gate-level.

The rest of the article proceeds as follows. Section 2 gives the background concepts
and Section 3 presents the problem definitions and an overview on previously proposed
algorithms. Sections 4 and 5 introduce the exact and approximate algorithms, respec-
tively. Experimental results are given in Section 6, and, finally, Section 7 concludes
the article.

2. BACKGROUND

In this section, we provide basic notations on number representations, Boolean satis-
fiability, and the 0-1 ILP problem.

2.1 Number Representation

The binary representation decomposes a number in a set of additions of powers of two.
The representation of numbers using a signed digit system makes use of positive and
negative digits. Thus, an integer number represented in the binary signed digit system
using n digits can be written as 2?;01 d;2!, where d; € {1, 0, —1}. Hereafter, we denote
the digit —1 by 1. Observe that the binary signed digit system is a redundant number
system, for example, both 0101 and 101 1 correspond to the integer value 5.

The Canonical Signed Digit (CSD) representation [Avizienis 1961] is a signed digit
system that has a unique representation for each number and verifies the following
main properties: (i) two nonzero digits are not adjacent; (ii) the number of nonzero
digits is minimal. Any n digit number in CSD has at most [(n + 1)/2] nonzero digits
and, on average, the number of nonzero digits is reduced by 33% when compared to the
binary representation [Garner 1965]. This representation is widely used in multiplier-
less implementations of constant multiplications, because it reduces the hardware re-
quirements due to the minimum number of nonzero digits. The Minimal Signed Digit
(MSD) representation [Park and Kang 2001] is obtained by dropping the first property
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Fig. 4. A combinational circuit and its corresponding CNF formula.

of the CSD representation. Thus, a constant can have several representations under
MSD, including the CSD representation of the constant, but all with a minimum num-
ber of nonzero digits.

As an example, suppose the constant 23 is defined in six bits. The representation of
23 in binary, 010111, includes 4 nonzero digits. The constant is represented as 101001
in CSD, and both 101001 and 011001 denote 23 in MSD.

2.2 Boolean Satisfiability

A propositional formula denotes a Boolean function ¢ : {0, 1}* — {0, 1}. A Conjunctive
Normal Form (CNF) is a representation of a propositional formula ¢ consisting of a
conjunction of propositional clauses where each clause is a disjunction of literals, and
a literal [ is either a variable x; or its complement x;. Note that if a literal of a clause
assumes value 1, then the clause is satisfied. If all literals of a clause assume value 0,
then the clause is unsatisfied. The satisfiability (SAT) problem is to find an assignment
on n variables of the Boolean formula in CNF that evaluates the formula to 1 or to
prove that the formula is equal to the constant 0.

A combinational circuit is a directed acyclic graph with nodes corresponding to logic
gates and directed edges corresponding to wires connecting the gates. Incoming edges
of a node are called fanins and outgoing edges are called fanouts. The primary inputs
of the network are the nodes without fanins. The primary outputs are the nodes with-
out fanouts. The primary inputs and outputs define the external connections of the
network.

The CNF formula of a combinational circuit is the conjunction of the CNF formu-
las of each gate, where the CNF formula of each gate denotes the valid input-output
assignments to the gate. The derivation of CNF formulas of basic logic gates can be
found in Larrabee [1992]. As a small example, consider the combinational circuit and
its CNF formula given in Figure 4. In this Boolean formula, the first three clauses
represent the CNF formula of the 2-input AND gate, and the last three clauses denote
the CNF formula of the 2-input OR gate. Observe from Figure 4 that the assignment
x1 = x3 = x4 = x5 = 0 and x2 = 1 makes the formula ¢ equal to 1, indicating a valid
assignment. However, the assignment x; = x3 = x4 = 0 and x3 = x5 = 1 makes the last
clause of the formula equal to 0, and, consequently, the formula ¢, indicating a conflict
between the values of inputs and output of the OR gate.

2.3 0-1 Integer Linear Programming

The 0-1 Integer Linear Programming (ILP) problem is the minimization or the maxi-
mization of a linear cost function, subject to a set of linear constraints, and is generally
defined as follows:!

Minimize w7 .x D
Subjectto A-x>Db, xe{0,1}" (2)

IThe maximization objective can be easily converted to a minimization objective by negating the cost func-
tion. Less-than-or-equal and equality constraints are accommodated by the equivalences, A -x < b &
—A-x>-bandA-x=b & (A-x>b)A(A-x <b), respectively.
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In (1), w; in w is an integer value associated with each of the n variables x;,
1 < j < n, in the cost function; and in (2), A - x > b denotes the set of m linear
constraints, where b € 7, w € 7", and A € 7™ x 7Z". These linear constraints are
commonly referred to as pseudo-Boolean (PB) constraints [Aloul et al. 2002].

A clause, [1 +...+1;, where k < n, to be satisfied in a CNF formula can be interpreted
as a linear inequality, /; + ...+, > 1, where x; is represented by 1 — x; as shown
in Barth [1995]. These linear inequalities are the special cases of PB constraints, and
are commonly referred to as CNF constraints, where g;; € {—1,0, 1} and b; is equal to 1
minus the total number of complemented variables in its CNF formula. For instance,
the set of clauses, (x1 +x2), (X3 +x3), and (X1 +X3), has the equivalent linear inequalities
given as x1 +xg > 1, —xg + x3 > 0, and —x; — x3 > —1, respectively.

3. RELATED WORK

In this section we define the constant multiplication problems and summarize the
previously proposed algorithms designed for these problems.

3.1 Multiple Constant Multiplications

The problem of finding the minimum number of operations solution for the Multiple
Constant Multiplications (MCM) by a variable can be defined as follows:

Definition 3.1 The MCM Problem. Given a set of constants, T' = {¢,...,#%} C N,
composed of positive and odd unrepeated constants, find the minimum number of ad-
dition/subtraction operations that generate the constant multiplications.

The MCM problem has been proven to be an NP-complete problem in Cappello and
Steiglitz [1984]. Note that the Single Constant Multiplication (SCM) problem is a
special case of the MCM problem, when the number of elements of the set 7" is 1.

The straightforward way for the shift-adds realization of constant multiplications,
generally known as the digit-based recoding method [Ercegovac and Lang 2003], ini-
tially defines the constants in multiplications in binary representation. Then, for each
1 in the binary representation of the constant, according to its bit position, it shifts
the variable and adds up the shifted variables to obtain the result. For our example in
Figure 2(a), the decompositions of constant multiplications 29x and 43x under binary
are given as

29x = (11101 )ppx =x K 4+x K 3+x K 2+x
43x = (101011)pjpx =x K H+x K 3+x K 1 +x

where each constant multiplication requires 3 operations, (actually, the number of
terms in its decomposed form minus 1), a total of 6 operations, as given in Figure 2(b).
Furthermore, we can also define the constants under CSD representation, where each
constant is represented with the minimum number of nonzero digits.

However, the digit-based recoding techniques do not consider the sharing of partial
products among the constant multiplications that may yield an MCM design with a
lesser number of operations. The algorithms that aim to maximize the partial product
sharing in MCM can be categorized in two classes: the Common Subexpression Elimi-
nation (CSE) [Aksoy et al. 2008; Hartley 1996; Lefevre 2001; Park and Kang 2001] and
graph-based (GB) methods [Aksoy et al. 2010; Dempster and Macleod 1995; Gustafsson
et al. 2002; Voronenko and Piischel 2007]. Although the algorithms in both classes aim
to find a solution with the fewest number of operations for the constant multiplications,
by maximizing the partial product sharing, they differ in the search space that they
explore. The CSE algorithms, which are also referred to as the pattern search meth-
ods, initially define the constants under a particular number representation, such as
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binary, CSD, or MSD. Then, all possible subexpressions are extracted from the repre-
sentations of the constants and the “best” subexpression, generally the most common
one, is chosen to be shared in constant multiplications. While the algorithm of Hart-
ley [1996] iteratively extracts the most common 2-term subexpressions, the algorithm
of Lefevre [2001] in each iteration finds a subexpression with the maximal number of
terms and with at least 2 occurrences in the expressions. These heuristic algorithms
generally define the constants under the CSD representation, where each constant has
a unique representation with the minimum number of nonzero digits. The redundancy
in the MSD representation of the constants is exploited in Park and Kang [2001], so
that the proposed algorithm can consider alternative possible implementations of the
constant multiplications. The exact CSE algorithm of Aksoy et al. [2008] that formal-
izes the MCM problem as a 0-1 ILP problem can handle the constants under binary,
CSD, and MSD representations. For the example given in Figure 2(a), the exact CSE
algorithm of Aksoy et al. [2008] finds the sharing of partial products 3x = (11)p;,x and
5x = (101)pspx in both multiplications, when constants in multiplications 29x and 43x
are defined in binary, and obtains a solution with 4 operations, as shown in Figure 2(c).

The GB algorithms are not restricted to any particular number representation while
finding the common partial products, thus they obtain better solutions than CSE
algorithms, as shown in Voronenko and Piischel [2007] and in Aksoy et al. [2010].
Prominent GB heuristics [Dempster and Macleod 1995; Voronenko and Piischel 2007]
synthesize a constant multiplication using a single operation, including partial prod-
ucts in each iteration of their algorithms. While the partial product that can be im-
plemented using the fewest number of operations is favored in Dempster and Macleod
[1995], the partial product, which also has the maximum benefit over the implemen-
tation of the not-yet synthesized constant multiplications, is preferred in Voronenko
and Pischel [2007]. The exact GB algorithms which find the minimum number of op-
erations solution of the MCM problem using breadth-first and depth-first search were
introduced in Aksoy et al. [2010]. For our example in Figure 2(a), the exact GB algo-
rithm of Aksoy et al. [2010] finds a solution with the minimum number of 3 operations
as Tx =x € 3—x,29% = Tx <€ 2+x, and 43x = 7x < 1+ 29«x, sharing the common
partial product 7x. Observe that the partial product 7x = (111);,x cannot be extracted
from the binary representations of both multiplications 29x and 43x.

In addition to the CSE and GB algorithms, an intermediate approach was
proposed in Wang and Roy [2005], where the partial products required for the real-
ization of constant multiplications are explored using the differential coefficient tech-
nique [Muhammad and Roy 2002] which exploits the differences between the constant
values. In this algorithm, the search space is represented by an undirected and com-
plete graph, where the vertices denote the constants and the edges represent the differ-
ences between each vertex. The weight of each edge is defined as the implementation
cost of the difference under a set of subexpressions, and is computed by the CSE al-
gorithm of Hartley [1996]. Since different ways of subexpression elimination lead to
different solutions, a genetic algorithm is applied to find a set of subexpressions, that
yields the fewest number of operations in the implementation of constants based on
their differences. Since the possible implementations of constant multiplications are
extracted from the differences of absolute values of constants, it considers a smaller
search space than that of a GB algorithm. However, it may find possible implementa-
tions that cannot be extracted by a CSE algorithm.

3.2 Constant Matrix-Vector Multiplication

The problem of multiplier-less realization of the constant matrix-vector multiplication
(CMVM) operation using the fewest number of operations can be defined as follows:
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Definition 3.2 The CMVM Problem. Given a constant matrix, T;y,, where t;; € Z,
1 < i <k, 1< j< m,tobe multiplied by an m x 1 input vector, find the mini-
mum number of addition/subtraction operations that generate the linear transforms
resulting from the multiplication of each row of the matrix T%.,, by the input vector.

Notice that the CMVM problem corresponds to an SCM problem when both 2 and m
are 1, and to an MCM problem when £ is greater than 1 and m is 1. Hence, the algo-
rithms designed for the MCM problem can be extended to handle the CMVM problem
instances. In this case, each constant in the set 7" and the single variable x in the MCM
problem is replaced with a constant vector and an input vector, respectively. Thus, the
CMVM problem is also an NP-complete problem due to the NP-completeness of the
MCM problem.

The multiplier-less realization of linear transforms can also be obtained by the
digit-based recoding method [Ercegovac and Lang 2003]. For our example given in
Figure 3(a), the decomposed forms of linear transforms under binary are given as

y1 = 3x1 + 11lxg = (11)pinx1 + (1011)p %0
= X1 +2061+X9+ 200 +8xg =x1+x1 K 1 +x0+x2 K 1+x2 K3
y2 = bxy + 13x2 = (101)p 21 + (1101)p %2

= X1 +4x1+X9 +4x0 +8xg =1+ X1 K 2+x2 +x2 K 2+x2 K3

where the computation of y; and y, requires a total of 8 operations, as illustrated in
Figure 3(b).

Furthermore, for the multiplierless realization of linear transforms, we can simply
apply a constant multiplication algorithm on each constant of the matrix or on the
constants of each column of the matrix. The sharing of constants in the rows of the
matrix can be also utilized. Returning to our example in Figure 3(a), when the exact
GB algorithm [Aksoy et al. 2010] is used as an MCM algorithm for the first column
constants, the operations 3x; = x; <« 1+ x; and 5x1 = x; <« 2 + x1, and for the sec-
ond column constants, the operations 3xg = x3 < 1+ xg, 11xe = x2 < 3 + 3x2, and
13x2 = 3x2 < 2 + x9 are obtained. Then, the linear transforms are implemented using
two operations as y; = 3x1 + 11x and ys = 5x1 + 13x2, with a total of 7 operations. Sim-
ilar to this approach, the algorithm of Potkonjak et al. [1996] uses a CSE technique
that initially finds the common subexpressions for the columns, and then the common
subexpressions for the rows.

The algorithms designed for the CMVM problem can again be categorized in two
classes as CSE and GB algorithms. The CMVM problem was formalized as a 0-1 ILP
problem in Yurdakul and Diindar [1999]. The possible implementations of linear trans-
forms were found when constants are defined under a number representation in their
decomposed forms. However, due to the exponential growth in the size of 0-1 ILP
problems, the CSE algorithm [Yurdakul and Diindar 1999] only considers the 2-term
subexpressions. The CSE heuristics [Arfaee et al. 2009; Boullis and Tisserand 2005;
Hosangadi et al. 2005] initially determine each linear transform by simply multiply-
ing each row of the constant matrix with the input vector, define the constants under
CSD representation, and obtain the decomposed forms of linear transforms. Then,
the sharing of common subexpressions is achieved based on heuristics. The algorithm
of Hosangadi et al. [2005] selects the most common 2-term subexpression and elimi-
nates its occurrences in the expressions in each iteration until there is no subexpres-
sion with a maximum number of occurrence greater than 1. For our example, given
in Figure 3(a), the CSE heuristic [Hosangadi et al. 2005] first finds the subexpression
a = x1 + xo and then the subexpression b6 = a + 8xy and realizes the linear trans-
forms with 4 operations, as given in Figure 3(c). The algorithm of Arfaee et al. [2009]
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chooses its subexpressions based on a cost value which is computed as the product of
the number of occurrences of a subexpression and its number of terms. The algorithm
of Boullis and Tisserand [2005] relies on an efficient CSE algorithm [Lefevre 2001] that
iteratively searches a subexpression with the maximal number of terms and with at
least 2 occurrences. In Boullis and Tisserand [2005], the selection of a subexpression is
also modified by taking into account the conflicts between the possible subexpressions.

The GB heuristic of Dempster et al. [2003] iteratively approaches the linear
transforms to be implemented with the available expressions (in the beginning, the
input variables (x1, xo, ..., x,,) and their shifted values are available) by implementing
subexpressions that require the minimum implementation cost as in the MCM
algorithm of Dempster and Macleod [1995]. However, the GB algorithm of Dempster
et al. [2003] is computationally intensive when compared to CSE algorithms, and
can only be applied on small-size matrices. The method of Gustafsson et al. [2004]
computes differences between each two rows of the matrix and determines the cost of
each difference in terms of the total number of nonzero digits in CSD representation
of each constant. Then, it finds a set of difference arrays with the minimum cost using
a Minimum Spanning Tree (MST) algorithm, forms a new matrix with these arrays,
where each row of the new matrix is one of the differences between two rows of the
previous matrix, and continues the search with the new matrix. However, as stated
in Gustafsson et al. [2004], this method is restricted in terms of the size and entries
of the matrix due to the application of the MST algorithm in each iteration. Also, it
cannot guarantee a solution with the minimum number of operations, although it
finds the minimum cost difference arrays in each iteration.

4. THE EXACT CSE ALGORITHM

In this section, we describe the exact CSE algorithm designed for the multiplier-less
realization of the linear transforms using the fewest numbers of operations. In the
exact algorithm, finding the minimum number of operations solution is realized by
finding the minimum number of subexpressions that are required for the implemen-
tation of the linear transforms and that require a single operation to be implemented.
The exact algorithm consists of four main steps: (i) generation of all possible imple-
mentations of expressions; (ii) construction of the Boolean network; (iii) conversion of
the Boolean network that represents the CMVM problem into a 0-1 ILP problem; and
(iv) finding the minimum number of operations solution.

4.1 Generation of Subexpressions

In a preprocessing phase, each linear transform, also called a primary expression, is
obtained by multiplying each row of the matrix with the input vector and is converted
to an odd and positive expression, that is, the expression is divided by 2 until one of its
constants is odd, and the expression is multiplied by —1, if the sign of the first nonzero
constant in the expression is negative. Then, each primary expression is stored in a set
called Eset without repetition. Thus, Eset includes all the necessary linear expressions
to be synthesized.

The exact algorithm can handle the constants in the expressions under binary,
CSD, and MSD representations. Initially, the constants in the expressions are de-
fined under the given number representation and are decomposed such that each
term in the expression is an element of the input vector, x1, xo, ..., X, multiplied
by an integer power of two. Then, the implementations of primary expressions and
subexpressions are found simply by partitioning the terms in the decomposed form
of an expression in two parts using an addition operation. The part of the algorithm
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where the subexpressions are generated and determined for the implementation of
expressions is given as follows.

(1) Take an unimplemented expression from Eset, Eset;. Define the constants under
a number representation, find the decomposed forms of the expression, and store
all of its decomposition(s) in a set called Dset;.? Form an empty set of arrays called
Sset; associated with Eset;. Sset; will contain all subexpressions that are required
to implement Eset;.

(2) Take a decomposition of Eset; from Dset;, Dset;(j).3

(3) Find an operation from Dset;(j) that implements Eset;;

(a) Obtain the nonrepeated inputs of the operation. Make these subexpressions
odd and positive. Store the subexpressions that are neither an element of the
input vector nor a primary expression in an empty array called Iarray. Thus,
Iarray may be empty, or it may contain one or two subexpressions.

(b) If Iarray is empty, then make Sset; empty and go to Step 6. In this case, Eset;
can be implemented using a single operation, whose inputs are input vector
elements or primary expressions, which is the minimum implementation cost.

(c) If Iarray is not empty, then check for each array of Sset;, Sset;(k).*

i. If Sset;(k) dominates® Iarray, then go to Step 4.
ii. If Iarray dominates Sset;(k), then delete Sset;(k).

(d) Add Iarray to Sset;.

(4) Repeat Step 3 until all possible implementations of Eset; in Dset;(j) are considered.

(5) Repeat Step 2 until all decompositions of Eset; in Dset; are considered.

(6) Label Eset; as implemented. Add all subexpressions in Sset; to Eset without repeti-
tion and label them as unimplemented.

(7) Repeat Step 1 until all elements in Eset are labeled as implemented.

Note that Eset contains the primary expressions to be implemented in the beginning of
the algorithm and it is augmented with the subexpressions required for the implemen-
tation of primary expressions in later iterations. Also, Dset includes the decomposed
forms of primary expressions and subexpressions.

As an example, consider the linear transforms y; = 5x1 + 7x2 and y2 = x1 + 3x2 to be
synthesized. Table I presents the decomposed forms and all possible implementations
of the linear transforms when constants are defined under CSD.

Observe from Table I that finding all possible implementations of an expression
(Step 3 of the algorithm) is realized by partitioning its decomposed form in two
subexpressions using an addition operation. For the primary expression Eset; whose
decomposed form in CSD is x1 +4x7 — x9 + 8x9 (with 4 terms), there exist 7 different im-
plementations.® Since implementations 1—4 include the input vector elements or their
shifted versions (the first subexpressions of these implementations) as an input, the
second subexpressions of these implementations are required as a single subexpres-
sion. Also, both subexpressions of implementations 5-7 are neither an input vector

2The number of decompositions in Dset;, |Dset;|, is equal to [Ti-1 R(,), where m denotes the number of
constants in the expression Eset; and R(¢;,) denotes the number of representations of a constant # under a
given number representation, that is, binary, CSD, or MSD. Hence, under binary and CSD, |Dset;| is always
equal to 1 and can be greater than 1 under MSD due to the alternative representations of a constant.

3 jranges from 1 to | Dset;].

4k ranges from 1 to the number of elements in Sset;.

5A dominates B,if A(\B=A.

6In general, the total number of implementations of an expression extracted from its decomposed form
including n terms is 271 — 1.
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Table I. All Possible Implementations of 5x1 + 7x9 and x7 + 3xg under CSD

Eset = {5x1 + Txg, x1 + 3x2}

Eset; = 5x1 + Txo

Dset; = (101)x + (1001D)xg = x71 + 4x; — x9 + 8xg
Implementations of 5x1 + 7xg:

1. (x1) + (4xy — x9 + 8x9), Iarray = [4x1 + Txa]

2. (4x1) + (x1 — x9 + 8x9), Iarray = [x1 + Txa]

3. (—x2) + (x1 + 4x1 + 8x2), Iarray = [6x1 + 8x2]

4. (8xg) + (x1 +4x1 — x9), Iarray = [6x1 — x2]

5. (x1 +4x1) + (—x9 + 8x2), Iarray = [5x1, Txa]

6. (x1 —x9) + (4x1 + 8x92), Iarray = [x1 — xg, x1 + 2x2]
7. (x1 + 8x9) + (dx1 — x2), Iarray = [x1 + 8xg, 421 — x2]

Ssety = {[4x1 + Txal, [x1 + Txol, [6x1 + 8x2], [5x1 — x2l, [6x1, Twal, [x1 — x2, x1 + 2x2],
[x1 + 8x2, 4x1 — xz]}

Esety = x1 + 3x2

Dsety = x1 + (101)xg = x1 — x9 + 4x9
Implementations of x; + 3xg:

1. (x1) + (—x2 + 4x2), Larray = [3x2]

2. (—x9) + (x1 + 4x9), Iarray = [x1 + 4x2]
3. (dxg) + (x1 —x9), larray = [x1 — x9]

Sseto = {[3x2], [x1 + 4x2], [x1 — x2]}

element nor a primary expression. Hence, these subexpressions are required as a pair
for the implementation of Eset;. For the primary expression Esefe, since all its im-
plementations include the input vector elements or their shifted versions (the first
subexpressions of its implementations) as an input, the second subexpressions of these
implementations are required as a single subexpression. After the subexpressions re-
quired for the implementation of an expression in Eset are determined, they are made
odd and positive, are added to the Eset, and their implementations are found in a
similar way.

Note that when constants in an expression are defined under binary or CSD, where
a constant has a unique representation, there exists a single decomposition. However,
the representation of the constants under MSD may allow possible representations
of the constants increasing the number of decompositions and the possible sharing of
subexpressions. For the expression Esets, Dsety includes two decompositions, x1 + xg +
2x9 and x1 — x2 + 4x2, when constants are defined under MSD representation.

Also, in Step 3b of the algorithm, we determine that the implementation of an ex-
pression requires the minimum implementation cost, that is, a single operation, if
there exists an operation implementing the expression with the input vector elements
or primary expressions at its inputs. This is simply because all primary expressions
will be implemented and the elements of the input vector are just inputs and require
no implementation cost. Furthermore, in Step 3¢ of the algorithm, we avoid the rep-
etition of a single or a pair of subexpressions required for the implementation of an
expression and remove the redundant subexpressions determined by the dominance
rule described in Coudert [1996].

4.2 Construction of the Boolean Network

After all subexpressions required to implement each primary expression and subex-
pression are found, these implementations are represented in a Boolean combinational
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- _7;(: 1 > X1+ 7X2
X1+ 8x2
Ax1 - x2 > 4x1 + 7Txz2
X1+ 2X2
\ 5x1- x2
5x1 /
b—j\ Sx1 + Bx2 é>. 5x1+ 7x2

i 5} e
X1+ 4x2

Fig. 5. The network generated for the linear transforms 5x1 + 7xg and x1 + 3x2 under CSD.

network that includes only AND and OR gates. The properties of the network are given
as follows.

(1) The primary inputs of the network are the expressions that can be implemented
using a single operation whose inputs are the elements of the input vector that
the constants are multiplied with (x1, xo, ..., x,,,), the primary expressions, or their
shifted versions.

(2) An OR gate, representing a primary expression or a subexpression, combines all
subexpressions that can be used for the implementation of the associated primary
expression or subexpression.

(3) An AND gate represents a pair of subexpressions and combines two subexpressions.

(4) The outputs of the network are the OR gate outputs associated with the primary
expressions.

The part of the algorithm where the Boolean network is constructed as follows.

(1) For each expression in Eset, Eset;, if its associated Sset, Sset;, is not empty, then
generate an OR gate corresponding to the expression, otherwise make the expres-
sion as a primary input of the network.

(2) For each Sset, Sset;, that is not empty, if it includes a pair of subexpressions, then
generate an AND gate corresponding to this pair and assign its output to the input
of the OR gate corresponding to the expression Eset;. If it includes a single subex-
pression, that is, a primary input of the network or an OR gate output, then assign
it to the input of the OR gate corresponding to the expression Eset;.

(3) Identify all the OR gate outputs that represent a primary expression and set them
as the outputs of the network.

The network generated for the linear transforms 5x; + 7x9 and x; + 3xe under CSD is
presented in Figure 5. Observe that when the constants in an expression are defined
under MSD, which introduces alternative representations of a constant compared to
binary and CSD, all subexpressions required for the implementation of an expression
will simply be the inputs of an OR gate representing the expression.
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OPTrx2 —e
OPTx1-x2 >
OPTx1+8x2 I
OPTx1+7x2
OPTax1-x2 >
OPTx1+2x2 _
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) D= e
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UL

OPTaxe——— —— X1+ 3x2
OPTx1+4x2

Fig. 6. Inclusion of the optimization variables to the network in Figure 5.

To construct the cost function to be minimized in the 0-1 ILP problem, we need to
include optimization variables into the Boolean network. Since we aim to find the min-
imum number of operations solution of the CMVM problem by finding the minimum
number of subexpressions, we associate the optimization variables with the subexpres-
sions. Hence, for each subexpression that is represented as an output of an OR gate
in the network, we add a 2-input AND gate, where one of its input is an optimization
variable and the other is the output of the OR gate. For each subexpression that is a
primary input of the network, we represent it as an optimization variable. The Boolean
network after the optimization variables are included is presented in Figure 6.

4.3 Conversion to a 0-1 ILP Problem

After the Boolean network is generated, the conversion of the CMVM problem into a
0-1 ILP problem is straightforward, since the Boolean network in fact represents the
optimization problem. Initially, the cost function of the 0-1 ILP problem is constructed
as a linear function of the optimization variables, where the cost value of each opti-
mization variable is 1. For our example given in Figure 6, the cost function is in the
form of OPT7,, + OPTy,_, + ...+ O PT5y, 48.,. Then, the CNF formulas of each gate in
the network are found and each clause in the CNF formulas is expressed as a linear
inequality, as described in Section 2. Finally, the OR gate outputs that represent the
primary expressions are assigned to 1, since our aim is to implement the primary ex-
pressions. Thus, the model obtained can serve as an input to a generic 0-1 ILP solver
that will find the minimum cost solution (the minimum number of subexpressions),
while respecting the constraints that represent the subexpressions that are required
for the implementation of expressions.

4.4 Finding the Minimum Solution

After the minimum number of subexpressions required to implement the primary ex-
pressions are found, the primary expressions and subexpressions are synthesized in a
bottom-up approach in order to realize the linear transforms in a reduced delay, that
is, the maximum number of operations in series, generally known as the number of
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adder-steps. Hence, in the selection of an operation for the implementation of each pri-
mary expression and subexpression among possible operations whose inputs are in the
found solution or the input vector elements, the one that leads to the smallest number
of adder-steps is chosen.

4.5 Complexity of the Exact CSE Algorithm

As we cast the CMVM problem into a 0-1 ILP problem, the relevant complexity pa-
rameters are the number of variables, constraints, and optimization variables. In this
section, we give the complexity analysis of the exact algorithm based on a single pri-
mary expression, assuming that the primary expression includes n terms, where n > 3,
in its decomposed form when the constants are defined under a given number repre-
sentation. Observe that n is directly related to the number of nonzero digits in the
representation of the constants, which is also related to the bit-width of the constants,
as shown in Faust and Chang [2010].

The number of subexpressions, #spexp, to be considered in an n term expression can
be computed as 2" — n — 2. This value corresponds to the total number of all possible i
element combinations on an n element set where i ranges from 0 to n, that is, 2", except
when i is equal to 0, 1, and n. This comes from the fact that a subexpression extracted
from an n term expression includes at least two terms and at most n — 1 terms. Also,
the number of primary inputs of the network, #,;, can be determined as n(n—1)/2, that
is, the number of all possible 2-element combinations on an n element set. Note that
in this case, a primary input of the network is a 2-term subexpression with the input
vector elements or their shifted versions. Thus, the number of gates in the Boolean
network is given by

#OR = #subexp - #pi +1

(#OR—1>+i(’Z)§(;>/2

i=4 =2

#aND

where in the equation for #4 yp, while the first term of the addition operation, (#or—1),
stands for the number of AND gates including an optimization variable, the sec-
ond term denotes the number of AND gates representing subexpression pairs. Note
that a subexpression pair is found in the implementation of an expression includ-
ing at least 4 terms (corresponding to the initial value of i of the first sum in the
second term of #4nyp equation), which can easily be observed on the example in
Table I. Also, observe that in a subexpression pair, each subexpression has at least
2 terms (corresponding to the initial value of j of the second sum in the second term
of #4np equation), and due to the distributive law of addition, there exist repeated
subexpression pairs that are avoided by dividing 2 in the equation of #4yp. As an ex-
ample, consider the expression 5x; + 7xe that includes n = 4 terms when the constants
are defined in CSD, as shown in Table I. The network constructed for this expression
includes 7 AND and 5 OR gates, as can be seen in the related part of Figure 6.

Thus, the number of variables, constraints, and optimization variables in the 0-1
ILP problem can be given as follows:

Hoars = #subexp +#or +#anND

#eons = 3(#anp) + Z (?) 2i-1

i=3

#optvars = #subexp
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Table Il. Upper Bounds on the Size of Boolean Network and
0-1 ILP Problem

| n | | #AND #or Huars #eons #optvars
4 7 5 22 45 10

6 171 42 269 841 56

8 2,255 219 2,720 9,981 246
10 24,403 968 26,383 102,633 1,012
12 241,143 4,017 249,242 989,005 4,082
14 2,276,795 | 16,278 2,309,441 9,221,673 | 16,368
16 20,999,071 | 65,399 21,129,988 | 84,520,317 | 65,518

where in the equation for #.,,s, the first term denotes the number of constraints ob-
tained from the AND gates’ in the network and the second term stands for the number
of constraints obtained from the OR gates in the network.

Table II gives the size of a Boolean network in terms of the number of AND and OR
gates, and the size of 0-1 ILP problem in terms of the number of variables, constraints,
and optimization variables for different values of n.

4.6 Limitations of the Exact CSE Algorithm

As can be easily observed from Table II, the size of 0-1 ILP problem grows exponen-
tially with the number of terms in the decomposed form of the expression denoted by
n. We note that current SAT-based 0-1 ILP solvers can handle the problems that are
generated for an expression including up to 12 terms. Thus, the limitations of the ex-
act CSE algorithm on the constant matrices, in terms of the size of the matrix and the
bit-widths of the constants in the matrix, can be derived. Assume that the constants
in the matrix are defined under binary. Thus, the exact algorithm can be applied up
to £ x 12 matrices including only 1, 0, and -1, that is, 1-bit constants, where £ denotes
both the number of rows of the matrix and the number of linear transforms. It can
also be applied up to £ x 6 and % x 4 matrices when the constants in these matrices are
2-bit and 3-bit constants, respectively. However, by representing the constants under
CSD (with the minimum number of nonzero digits), the exact algorithm can be applied
on larger size matrices including larger constants. Also, the limitations of the exact
CSE algorithm on the number of rows of the constant matrix depend heavily on the
constants in the linear transforms. Although it may increase the size of the 0-1 ILP
problem by considering alternative subexpressions that are not encountered in other
linear transforms, it may not add too much complexity if most of the subexpressions
required for a linear transform are shared among other linear transforms.

In the exact CSE algorithm, all possible implementations of an expression are ex-
tracted when the constants in the expression are defined under a number representa-
tion. Thus, the number of operations in its minimum solution depends on the number
representation. Returning to our example in this section, for the linear transforms
y1 = bx1+7x2 and ys = x1+3x2 under CSD, the minimum solution includes 4 operations,
a=x1—x2,b=a+x <K3,y1=b +x1 <2,and y2 =a + x9 < 2. When the constants
are defined under binary, the minimum solution consists of 3 operations, ¢ = x1 + xg,
yo =c+x2 < 1,and y; = y2 + ¢ K 2. Moreover, the exact CSE algorithm may not con-
sider the implementations of an expression taken into account in an algorithm which is
not restricted to any particular number representation. As a simple example, consider
the linear transforms, y; = x1 + x2, y2 = x1 + x3, and y3 = 2x1 + x2 + x3. The minimum

"Every AND gate in the Boolean network has 2 inputs.
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solution consists of 3 operations,® y; = x1 + x2, y2 = x1 + x3, and y3 = y1 + y2. However,
the solution of the exact CSE algorithm under binary, CSD, and MSD representation
includes 4 operations, y; = x1 + X2, y2 = X1 + X3, d = X2 + x3, and y3 =d + x1 < 1.
Thus, the solution of the exact CSE algorithm is in fact a local minimum solution of
the CMVM problem, since the search space that the exact CSE algorithm covers is
the subspace of an exact GB algorithm that is not restricted by any particular number
representation. Yet, to the best of our knowledge, no exact GB algorithm has been
proposed for the CMVM problem.

However, the local minimum solution of the exact CSE algorithm can be guaranteed
as the global minimum on special instances, such as the constant matrices that consist
of only 1, 0, and —1 (the error-correcting codes [Potkonjak et al. 1996] are generally
in this form). Its local minimum solution can also be ensured as the global minimum
if it is equal to the lower bound on the number of operations in a CMVM problem
[Gustafsson 2007]. We note that the solution of the exact CSE algorithm on linear
transforms given in Figure 3(a), (the same as in Figure 3(c)) and its solution on linear
transforms 5x; + 7xe and x; + 3x3 when constants are defined under binary are the
global minimum solutions determined with the use of lower bound given in Gustafsson
[2007].

5. THE APPROXIMATE ALGORITHMS

As described in Sections 4.5 and 4.6, there are still instances that the exact CSE algo-
rithm cannot cope with. Hence, as for all NP-complete problems, a heuristic algorithm
that can find a solution close to the minimum using little computational effort is al-
ways desirable. In this section, we introduce a CSE heuristic algorithm, called Hapc,
based on the CSE heuristics [Hartley 1996; Hosangadi et al. 2005] that iteratively
utilize the most common (MC) 2-term subexpressions. However, the subexpression
selection heuristic, which significantly affects the final solution due to the iterative
decision making, can be improved by choosing an MC 2-term subexpression, among
many others, in an iteration such that its selection leads to the least loss of subexpres-
sion sharing in the next iterations. These subexpressions are called the most common
minimum conflicting (MCmec) 2-term subexpressions. Since the CSE algorithms in
this scheme are restricted to a particular number representation, we also present a
hybrid algorithm, called HCMVM, which iteratively finds promising realizations of lin-
ear transforms using a numerical difference method and applies Hsjc to achieve the
sharing of common subexpressions.

5.1 Implementation of the Hyyc Algorithm

The Hgpsc algorithm can handle the constants under binary and CSD representations
where there is a unique representation for each constant. As in the exact CSE algo-
rithm, in the preprocessing phase of Hsjyc, each primary expression is obtained by
multiplying each row of the matrix with the input vector, converted to an odd and posi-
tive expression, and stored in a set called Eset without repetition. The decompositions
of expressions when the constants are defined under a given number representation
are found and stored in a set called Dset. Also, an empty set called Sset, which will
store the 2-term subexpressions selected in each iteration is formed. The part of the

8Note that % distinct linear transforms cannot be implemented using less than % operations, as % constant
multiplications cannot be realized using less than % operations, as proved in Dempster and Macleod [1995].
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Table Ill. Procedure of Hspsc on Linear Transforms 15x1 + 43x9 and 38x1 + 51x9 under CSD

Initial expressions: Initial expressions in Dset:
y1 = 1521 + 43x9 Dset; = —x1 + 16x1 — x9 — 4x9 — 16x9 + 64x9
y9 = 38x1 + 51xe Dsety = —2x1 + 8x1 + 32x1 — x9 + 4x9 — 16x9 + 64x9

Iteration 1

MC 2-terms: xo + 16x9, —x9 + 4x9 (#occurrences = 3)
MCmc 2-terms: x9 + 16x9, —x9 + 4x9

Current expressions in Dset: Current expressions in Sset:
Dset; = —x1 + 16x1 — 4x9 + 64x9 —a  Sset; = a = x9 + 16x9
Dsety = —2x1 + 8x1 +32x1 —a+4a

Iteration 2

MC 2-terms: —x1 + 16x1, x1 + 4x9, 2x1 + a (#occurrences = 2)
MCme 2-terms: x1 + 4x9, 2x1 +a

Current expressions in Dset: Current expressions in Sset:
Dset; = —x1 + 16x1 — 4x9 +64x9 —a  Sset; = a = x9 + 16x9
Dsety =32x1 — b +4b Ssetg =b =2x1 +a

Iteration 3

MC 2-terms: x71 + 4x9 (#occurrences = 2)
MCmc 2-terms: x1 + 4x9

Current expressions in Dset: Current expressions in Sset:
Dset; = —a—c +4c Sset] = a = x9 + 16x9
Dseto = 32x1 — b +4b Ssetg =b =2x1 +a

Ssets = ¢ = x1 + 4xo

algorithm, where the MCmc 2-term subexpressions are found and replaced in the de-
compositions of expressions, follows.

(1) For each 2-term subexpression that is extracted from the decompositions of expres-
sions in Dset, convert the subexpression to odd and positive, find the occurrences
of the subexpression in the elements of Dset considering its shifted and negated
versions, and determine the MC 2-term subexpressions.

(2) If the number of occurrence of the MC 2-term subexpressions in Dset is 1, then
return Dset and Sset.

(3) Otherwise, find the minimum conflicting 2-term subexpressions in the MC 2-term
subexpressions, that is, the MCmc 2-term subexpressions.

(4) Choose one of the MCmc 2-term subexpressions, add it to Sset by labeling it with
a variable, replace its occurrences in Dset with its label, and go to Step 1.

We note that the number of 2-term subexpressions to be considered in a decomposed
form of an expression including n terms is n(n — 1)/2. Thus, the maximum number of
2-term subexpressions considered in Step 1 of the algorithm is simply Zle n;(n; —1)/2,
where £ and n; denote the number of expressions and the number of terms in the i
decomposed form of the expression, respectively.

The procedure of Hypc is described via the example of Table III using the linear
transforms y; = 15x; + 43x2 and ys = 38x1 + 51x2. Suppose that the constants are de-
fined under CSD. In the first iteration, two MC 2-term subexpressions that occur both
in y; once and in yq twice, with a total of 3 occurrences, are obtained. Note that the
occurrences can be also found in shifted or negated forms. However, the occurrences of
the MC 2-term subexpressions in the linear transforms conflict with each other, indi-
cating that selecting one of them will eliminate the other in the next iteration. Hence,
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the MCmc 2-term subexpressions are determined as MC 2-term subexpressions. In
this iteration, the subexpression xg + 16x9 is chosen and replaced in the expressions.
In the second iteration, there are three MC 2-term subexpressions with two occur-
rences. The subexpressions x; + 4x9 and 2x; + a occur only in y; and ys, respectively.
The subexpression —x; + 16x; occurs in both expressions and its occurrences conflict
with the occurrences of both x; + 4x9 and 2x; + a. Thus, the MCmc 2-term subexpres-
sions are determined as xq + 4x2 and 2x; + a. In this iteration, 2x; + a is chosen and
replaced in the expressions. Hence, in the third iteration, the x; + 4x2 is encountered
again, is selected, and replaced in the expressions. The resulting expressions do not
include 2-term subexpressions with a maximum number of occurrence greater than 1.
Thus, the solution is obtained with the 2-term subexpressions selected in each itera-
tion (the elements of the final Sset) and the elements of the final Dset, with a total of 7
operations, 3 for the chosen subexpressions and 4 for the final expressions.

To illustrate the effect of selecting an MCmec 2-term subexpression, observe that if
the MC 2-term subexpression —x; + 16x; was selected in the second iteration, there
would not be any 2-term with a maximum occurrence greater than 1 in the next iter-
ation, since this subexpression would remove the occurrences of x; + 4x9 and 2x; + a.
Thus, 8 operations would be required to implement the linear transforms.

Furthermore, as stated in Aksoy et al. [2007], finding the fewest number of op-
erations does not always lead to a design with optimal area at gate-level. Hence, to
further reduce the area of a CMVM design, while synthesizing the expressions in the
final Dset, we apply some hardware optimizations that do not change the number of
operations but change their realizations. Thus, for each expression in the final Dset
including more than 2 terms, we initially separate the terms into two sets Pset and
Mset, considering their sign. This comes from the fact that although the cost of an
adder and a subtracter is assumed to be equal in high-level algorithms, a subtracter
occupies a larger area than an adder at gate-level. Then, in each set, we iteratively
select two terms that have the smallest bit-width, that is, the narrowest, to be real-
ized using an adder in order to reduce the size of the operation. Finally, if Mset is not
empty, we use a subtracter to realize the expression. Thus, for our example in Table III,
Dset; and Dsety in the final Dset are implemented as 4¢ — (a + ¢) and (32x; +4b) — b,
respectively.

5.2 Implementation of the Hcmvm Algorithm

Although CSE algorithms are computationally efficient due to their greedy heuristics,
their solution depends heavily on the number representation used in defining the con-
stants. On the other hand, using the difference method described in Muhammad and
Roy [2002] and Wang and Roy [2005], promising realizations of linear transforms can
be obtained by exploring the differences of linear transforms. Since all linear trans-
forms are to be implemented at the end, a difference that requires fewer operations
can be chosen to implement a linear transform that requires more operations. Fur-
thermore, as a set of promising differences is found for the implementation of linear
transforms, Hoy e can be applied to find common subexpressions to be shared among
these expressions.

In the preprocessing phase of HCMVM, each linear transform is converted to an
odd and positive expression and is stored in a set called Eset without repetition.
Then, as done in the GB algorithms designed for the MCM problem [Aksoy et al.
2010; Dempster and Macleod 1995; Voronenko and Pischel 2007], the linear trans-
forms that can be synthesized using a single operation whose inputs are an element
of the input vector, an implemented linear transform, or their shifted versions are
found iteratively and moved from Eset to Iset which will include the implemented
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expressions. As a simple example, consider the linear transforms y; = x1 + 4uxo,
yo = 2x1 + x3, and y3 = 5x1 + 4x9 + 2x3. After the linear transforms y; and ys are
implemented using a single operation with the input variables, ys can be synthesized
as ys = y1 + y2 < 1. Hence, this is the optimal part, meaning that when all the linear
transforms are realized in this part, the minimum number of operations solution is
obtained.

If there are still linear transforms in Eset after the optimal part, the algorithm
switches to its heuristic part. In this part, it initially finds a solution on expressions
in Eset with the CSE algorithm, Hyysc, and records its solution as the best solution
found so far. Then, the cost of each linear transform in Eset is computed as the total
number of nonzero digits of each constant in a number representation, binary or CSD,
which Hoyc uses in the definition of constants. The linear transforms are sorted in a
descending order based on their cost values. For each expression in Eset, Eset;, with
its cost value cost;, where i < k£ and % denotes the number of expressions in Eset, all
the differences of Eset; with an expression in Eset, Esetj, wherei < j < k, are computed
as d;j < Iy = Eset; — Eset; < Iz, where [1,ly > 0 denote the left shifts. The cost of
each difference is determined in terms of the total number of nonzero digits of each
constant under the given number representation and a difference with the minimum
cost value costy is determined. If costy < cost; — 1, then Eset; is moved from Eset to Iset,
and the difference with the minimum cost is added into Eset in place of Eset;. After
all differences for each expression in Eset except Eset;, are explored, Hoyc is applied
on the expressions in Eset and a set of operations realizing the expressions in Eset
is obtained. If its solution considering the elements in Iset is better than the best one
that has been found so far, it is updated with this solution. HCMVM iterates until there
are no more differences that can be replaced with the expressions in Eset.

The procedure of HCMVM is illustrated on Example 1 of Gustafsson et al. [2004]
when Hsje defines the constants under CSD as given in Table IV. In this table, the
values between parenthesis next to the expressions denote the respective cost values.
Initially, Hopc is applied on linear transforms and a solution with 19 operations is
obtained. Then, in the first iteration of HCMVM, the linear transforms Eset;, Eseto,
and Esets are realized using a single operation whose inputs are an element of Eset
and a difference with the minimum cost. They are synthesized as Eset; = Esety + dy2,
Esety = Esets + dag, Esets = Esety +dsy < 1. Then, these linear transforms are moved
from Eset to Iset and the associated differences are added to Eset. In this case, Haopc
finds a solution with 10 operations on Eset. Thus, a total of 13 operations are required,
considering that the expressions in Iset are synthesized using a single operation. In the
second iteration, HCMVM follows the same procedure realizing Eset; as Esety +di4 < 1
and finding a solution with a total of 13 operations again. Since there are no more
promising differences, HCMVM takes only two iterations. As reported in Gustafsson
et al. [2004], the algorithms of Dempster et al. [2003] and Gustafsson et al. [2004] find
a solution with 14 operations on this instance.

Thus, the HCMVM algorithm may find better solutions than CSE algorithms when a
linear transform including a large number of terms in its decomposed form can be im-
plemented using a single operation that requires an expression found by the difference
method, which includes a few terms in its decomposed form.

6. EXPERIMENTAL RESULTS

In this section, we compare the exact and approximate algorithms with previously
proposed algorithms on randomly generated constant matrices and linear DSP trans-
forms.? This section is divided in three parts. In the first part, the instances which

9The algorithms and instances are available at http:/algos.inesc-id.pt/multicon.
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Table IV. Procedure of HCMVM on Example 1 of Gustafsson et al. [2004]

Initial expressions:

y1 = Tx1 + 8x9 + 2x3 + 13x4

yo = 12x1 + 11xg + Tx3 + 13x4

y3 = bx1 + 8xg + 2x3 + 15x4

y4 = Tx1 + 11xg + Tx3 + 11xy

Solution of Hopsc on initial expressions: 19 operations

Iteration 1

The expressions of Eset and chosen differences:
Eset;(10) : 12x1 + 11xg + Tx3 + 13x4  d12(3) : 5y + 2x4
Esety(10) : Txq + 1129 + Txg + 11xy do3(5) : 3xg + bxg — 2x4

Eset3(7) : Tx1 + 8xg + 2x3 + 13x4 d34(2) 1 x1 — x4

Esety(6) : 5x1 + 8xg + 2x3 + 15x4

Current expressions in Eset: Current expressions in Iset:
5x1 + 2x4 12x1 + 11x2 + 7x3 + 13x4
3x9 + Hxg — 2x4 Tx1 + 11xg + 7Txg + 11xy

X1 — X4 Tx1 + 8x9 + 2x3 + 13x4

5x1 + 8xg + 2x3 + 15x4
Solution of Hopc on Eset: 10 operations Total: 10 + 3 = 13 operations

Iteration 2

The expressions of Eset and chosen differences:

Eset1(6) : 5x1 + 8xg + 2x3 + 15x4 d14(4) : 2x1 + 4x9 + x3 + 8x4
Esety(5) : 3x9 + bxg — 2x4

Eset3(3) : bx1 + 2x4

Esety(2) : x1 — x4

Current expressions in Eset: Current expressions in Iset:
2x1 + 4x9 + x3 + 8x4 12x1 + 11x9 + 7xg + 13x4
3x9 + Hxg — 2x4 Tx1 + 11xg + Txg + 11xy

5x1 + 2x4 Tx1 + 8x9 + 2x3 + 13x4

X1 — X4 5x1 + 8x2 + 2x3 + 15x4

Solution of Hopc on Eset: 9 operations Total: 9 + 4 = 13 operations

the exact CSE algorithm can handle were used to compare the results of CSE heuris-
tics with the minimum solutions and to determine the limitations of the exact CSE
algorithm. Then, large-size problem instances, which go beyond the applicability of
the exact CSE algorithm, were used to compare the CSE heuristics. Finally, the gate-
level results of DCT designs, which were obtained from the direct realization of linear
transforms and from the solutions of the CSE heuristic [Hosangadi et al. 2005] and
HcwmvM algorithms, are presented.

6.1 Comparison of Exact and Heuristic Algorithms

As the first experiment set, we used randomly generated k& x 2 constant matrices, where
kis 2,5, 10, 15, and 20. The constants are generated in the range [-2° + 1, 26 — 1] with
40 instances for each type of matrix. Table V presents the results of various algorithms
in terms of the average number of operations: the exact GB MCM algorithm [Aksoy
et al. 2010] when it is applied on the constants of each column of the constant matrix;
the heuristic of [Hosangadi et al. 2005], Hzpc, and HCMVM when constants are defined
under CSD; and the exact CSE algorithm under CSD and MSD.
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Table V. Summary of Results of the Algorithms on Randomly Generated
k x 2 Matrices

| Algorithms [2x2 ] 5x2 ] 10x2 ] 15x2 [ 20x2 |
[Aksoy et al. 2010] 6.2 137 || 25.2 35.6 45.0
[Hosangadi et al. 2005] - CSD 6.1 13.7 23.5 32.8 41.7
Haye - CSD 6.0 136 || 234 32.7 414
HcMmvM - CSD 5.8 123 || 21.1 29.1 36.7
Exact CSE - CSD 6.0 133 || 223 30.9 385
Exact CSE - MSD 5.4 12.1 20.6 28.6 35.8

Table VI. Size of 0-1 ILP Problems on
Randomly Generated k x k Matrices
under CSD

| Ins. || Type | vars | cons | optvars

1 2x2 2592 9487 247
2x2 4982 | 18413 448
4x4 7018 | 25195 701
4 x4 7034 | 25252 696
6 x6 8841 | 31995 818
6 x6 | 12883 | 47668 988
8x8 1832 6061 277
8x8 2114 7057 315

W 1 O Uk W N

Observe from Table V that although the minimum number of operations solution on
the constants of each column of a matrix is obtained by the exact GB algorithm [Aksoy
et al. 2010], since the sharing of partial products is limited within the constants in
each column, it obtains worse solutions than algorithms designed specifically for the
CMVM problem. The results of the CSE heuristic [Hosangadi et al. 2005] and Hsyc
are close to each other, and also to the minimum solutions obtained by the exact CSE
algorithm under CSD on instances, where % is 2, 5, and 10. On the other hand, HCMVM
obtains significantly better solutions than these CSE heuristics, where the difference
of the average number of operations between these heuristics and HCMVM is almost 5
operations on 20 x 2 matrices. Also, for each matrix type, on average, HCMVM obtains
better solutions than those of the exact CSE algorithm when constants are defined
under CSD, since HCMVM considers alternative implementations of linear transforms
obtained with the difference method which may not be considered in the exact CSE
algorithm. However, the use of the MSD representation in the exact CSE algorithm
increases the number of possible implementations of linear transforms, yielding better
solutions than all the algorithms given in Table V.

As the second experiment set, we used 8 randomly generated 2 x k& matrices,
where % is 2, 4, 6, and 8, and constants were generated in between [—28 + 1,28 — 1],
{—24 +1,2* — 1], [-22+ 1,22 — 1], and [—1, 1], respectively. The size of 0-1 ILP prob-

ems generated by the exact CSE algorithm under CSD is given in Table VI, where
vars, cons, and optvars denote the number of variables, constraints, and optimization
variables, respectively.

Table VII presents the results of algorithms on randomly generated £ x & matrices.
In this table, op and as denote the number of operations and adder-steps (maximum
number of operations in series), respectively. While CPU stands for the CPU time in
seconds for the heuristic algorithms, all written in MATLAB, it represents the CPU
time of the SAT-based 0-1 ILP solver minisat+ used to find the minimum solution [Een
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Table VII. Summary of Results of the Algorithms on Randomly Generated k x k Matrices

Ins. [Hosangadi et al. 2005] Hoyce HcmvMm Exact CSE - CSD
op | as | CPU op | as | CPU op | as | CPU op | as | CPU
1 8| 4 0.1 7] 4] 00 7] 4| 02 7] 5 6.3
2 10| 4 0.1 10| 4| 00 8| 4| 00 9| 4| 1280
3 19 | 4 0.1 19| 4] 01 || 19| 4| 01 || 18| 5 | 330537
4 18| 4 0.1 18| 4 01 || 15| 4| 01 | 18| 5| 77332
5 26 | 4 0.1 25| 4| 02 || 22| 5| 01 | 24| 7| 30294
6 26 | 4 0.2 26| 4| 02 | 24| 5| 02 || 24| 5| 115816
7 22 | 4 0.1 22| 4] 02 || 20| 4| 01 || 20| 5 28.1
8 21 | 4 0.1 21 4] 01 || 21| 4] 01 || 19| 5 21.2
| Total [ 150 [ 32 [ 09 [ 148 [32] 09 [ 136 ]34 ] 09 [ 139 | 41 | 828475 |

and Sorensson 2006]. Note that all the algorithms were run on a PC with Intel Xeon
at 3.16GHz and 8GB memory, and their solutions were obtained when the constants
are defined under the CSD representation.

Observe from Table VII that although the exact CSE algorithm finds similar and
better solutions than the CSE heuristic [Hosangadi et al. 2005] and Hgjpsc, obtaining
the minimum solution may require much more computational effort with respect to
that required for the heuristic algorithms, restricting its application only to small-
size instances. Observe from Tables VI and VII that the required computation time
for the exact CSE algorithm depends on the size of 0-1 ILP problem which in turn de-
pends heavily on the constants in the matrices. Also, HCMVM may find better solutions
than the exact CSE algorithm, since promising realizations of linear transforms can
be found using a numerical difference method.

These experiments indicate that the exact CSE algorithm can only be applied on
small-size instances due to the NP-completeness of the problem. However, there are
instances where the exact CSE algorithm finds better solutions than the CSE heuris-
tics in a reasonable time. Also, the use of MSD representation yields better solutions
than those of the CSE algorithms that define the constants under CSD, since possible
alternative implementations of linear transforms increase the sharing of subexpres-
sions. The CSE heuristics can find solutions close to the minimum guaranteed by the
exact CSE algorithm using little computational effort. The hybridization of CSE and
numerical methods in HCMVM leads to significant reductions in the number of opera-
tions when compared to the CSE algorithms.

6.2 Comparison of Heuristic Algorithms

As the third experiment set, we used % x £ matrices where % varies in between 2 and 16,
consisting of randomly generated 8-bit constants, with 100 instances for each matrix
type. Table VIII presents the results of the CSE heuristics when constants are defined
under CSD. In this table, stdev denotes the standard deviation. Note that the results
of the algorithm [Boullis and Tisserand 2005] were taken from its paper.

As can be observed from Table VIII, the heuristic algorithms [Hosangadi et al. 2005;
Boullis and Tisserand 2005], and Hgyc obtain similar solutions on 2 x £ matrix in-
stances, where £ is up to 6. For instances, where % is greater than 6, Hspc obtains
better solutions than the heuristic of Hosangadi et al. [2005], where the difference
in the average number of operations between these algorithms reaches up to 9.76 on
16 x 16 matrices. This is simply because while the heuristic of Hosangadi et al. [2005]
iteratively extracts the MC 2-term subexpressions, Hoyc finds the most promising
one among these MC 2-term subexpressions, that is, the minimum conflicting terms.
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Table VIII. Summary of Results of the Algorithms on k x kK Randomly Generated Matrices with 8-bit Constants

k [Hosangadi et al. 2005] [Boullis and Tisserand 2005] Hopye HcvmvMm
avg. stdev avg. stdev avg. | stdev avg. stdev
2 8.79 1.12 9.7 1.3 8.73 | 1.04 8.16 | 0.93
3 18.28 1.66 17.1 0.9 18.07 | 1.60 1647 | 1.11
4 32.15 2.16 31.2 2.2 31.70 | 2.04 2762 | 1.61
5 48.85 2.64 47.1 3.3 48.16 | 2.42 41.38 | 1.82
6 67.81 2.81 66.1 4.0 66.52 | 2.81 57.29 | 2.18
7 90.30 3.49 88.9 5.3 88.77 | 3.26 75.42 | 2.36
8 116.26 3.63 113.2 6.7 114.10 | 3.49 96.27 | 2.80
9 144.41 4.02 141.6 7.0 14194 | 4.16 119.09 | 3.03
10 175.67 5.22 172.4 8.5 172.03 | 4.60 143.49 | 3.21
11 209.04 4.72 207.1 10.8 205.04 | 4.32 170.59 | 3.36
12 246.30 4.79 241.6 11.9 240.87 | 4.14 200.39 | 3.71
13 284.89 5.64 279.6 13.3 278.61 | 5.12 231.40 | 3.71
14 326.60 6.55 322.9 17.0 320.00 | 5.33 264.26 | 4.39
15 370.05 5.60 370.0 20.0 360.94 | 5.61 300.44 | 4.09
16 417.25 6.50 412.4 194 407.49 | 6.60 338.33 | 4.89

Table IX. Summary of Results of the Algorithms on Linear DSP Transforms

| Algorithms | H264 || DCT8 || IDCTS || DHT | DST |
[Potkonjak et al. 1996] - 227 222 211 || 252
[Nguyen and Chatterjee 2000] - 202 183 209 238
[Arfaee et al. 2009] 53 161 140 161 181
[Hosangadi et al. 2005] - CSD 51 147 138 159 || 176
Hape - CSD 49 150 137 150 || 174
HcmvM - CSD 42 145 136 150 || 172

Besides, the heuristic of Boullis and Tisserand [2005], which considers the subexpres-
sions with the maximal number of terms and with at least 2 occurrences, obtains sim-
ilar solutions to Hype. On the other hand, HCMVM finds the best solutions among
the algorithms where the maximum difference on the average number of operations
between Haopc and HCMVM is 69.16, obtained on 16 x 16 matrices. Also, observe that
the standard deviation values on the results of HCMVM are smaller than those of the
CSE heuristics, indicating that its solutions are close to the average value.

The fourth experiment set was provided by Kastner, and consists of a 7 x 3 H.264
video compression transform, an 8-point DCT, an 8-point Inverse DCT (IDCT), an 8 x 8
Discrete Hartley Transform (DHT), and an 8 x 8 Discrete Sine Transform (DST), where
the constants are defined under 14 bits. The solutions of the high-level algorithms in
terms of the number of operations are given in Table IX, where the results of algo-
rithms [Nguyen and Chatterjee 2000; Potkonjak et al. 1996; Arfaee et al. 2009] were
taken from Arfaee et al. [2009]. As can be observed from Table IX, HCMVM finds better
solutions than all algorithms in terms of the number of operations, except that both
Hspyc and HCMVM obtain the best solution on the DHT instance.

As the fifth experiment set, we used £ x £ DCTSs, where & ranges from 4 to 20 in an
increment of 2, and the constants were defined under bit-widths between 1 and 16. Ta-
ble X presents the results of algorithms when constants are defined under CSD, where
avg. and CPU present the average number of operations and CPU time in seconds,
respectively.
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Table X. Summary of Results of the Algorithms on k x k DCTs

Algorithm [Hosangadi et al. 2005] Hopye HcvmvMm
DCTs avg. | CPU avg. CPU avg. CPU
4x4 16.25 0.08 16.25 0.08 | 16.25 0.17
6 x 6 30.81 0.51 30.69 0.47 || 30.69 1.36
8x8 53.94 3.27 54.06 492 || 53.88 8.68

10 x 10 72.56 12.88 71.13 739 || 17025 29.26
12 x 12 97.81 51.88 96.06 25.88 || 95.94 112.56
14 x 14 138.31 110.16 136.69 53.51 || 135.75 202.32
16 x 16 178.94 317.84 175.94 | 138.44 || 175.13 562.33
18 x 18 180.75 934.72 177.75 | 467.79 || 176.94 | 3368.99
20 x 20 227.44 2164.48 223.31 | 1100.24 || 221.75 | 5546.38
22 x 22 315.88 4768.48 310.56 | 2553.37 || 309.06 | 8927.03
24 x 24 323.00 8080.29 310.44 | 4336.18 || 309.75 | 28831.11

Table XI. Summary of High-Level Algorithms on 10 x 10 and 20 x 20 DCTs

10 x 10 DCTs 20 x 20 DCTs

bw [Hosangadi et al. 2005] HcMmvMm [Hosangadi et al. 2005] HcMmvMm

op | as | CPU op | as | CPU op | as | CPU op | as | CPU
2 | 4] 4 0.3 32 4] o8] 118] 6 6.5 98 | 5 16.0
4] 56| 5 15 48| 7| 48| 156 | 7 46.7 156 | 8 | 1933
6| 65| 6 3.6 65 | 7| 109 | 192 | 8| 1053 189 | 8| 3928
8| 72| 6 8.2 72| 7| 193 || 232 |11 | 2504 232 | 11 | 9054
10 | 8 | 7 13.0 77| 8| 881 | 257 | 11| 4146 254 | 11 | 213538
12 | 92| 8 17.7 89 | 8| 391 300 |13 | 6247 295 | 13 | 3808.9
14 || 99| 8 34.4 98 | 11 | 49.7 || 323 | 13 | 962.7 319 | 13 | 481438
16 | 112 ] 9 46.5 110 | 10 | 111.8 || 376 | 15 | 15569 357 | 15 | 9002.1

|Total]| 617 | 53 | 1252 [| 591 | 62 [ 2745 [| 1954 | 84 [ 3967.8 [| 1900 | 84 [ 21269.1 |

As can be observed from Table X, on small-size matrices, the algorithms obtain
similar results. However, on larger-size instances, Hsj ¢ obtains better solutions than
the heuristic of Hosangadi et al. [2005]. The difference in the average number of
operations between the results of these algorithms is 12.56 on 24 x 24 DCTs. On
the other hand, HCMVM finds similar solutions to Hopc, since the difference method
cannot find valuable subexpressions that can be used for the implementation of linear
transforms using fewer operations on DCTs. The reason is that the DCT matrices
include a small number of different constants, which diminishes the advantage of
using the difference method. Moreover, HCMVM takes more time to find a solution
than the heuristics of Hosangadi et al. [2005] and Hgpsc, due to the new differences
obtained in each iteration.

6.3 Synthesis of Linear DSP Transforms

In this experiment, we used 10 x 10 and 20 x 20 DCTs, where the bit-width (bw) of the
constants were defined from 2 bits to 16 bits with an increment of 2. Table XI presents
the solutions of high-level algorithms when constants are defined under CSD.
Observe from Table XI that HCMVM finds better solutions in terms of the number of
operations than the CSE heuristic [Hosangadi et al. 2005] on total, requiring 3.25 and
6.75 fewer operations on average on 10 x 10 and 20 x 20 DCTs, respectively. However,
there are instances where both algorithms obtain a solution with the same number of
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Table XIl. Summary of Low-Level Results of the Algorithms on 10 x 10 DCTs

bw Direct Realization [Hosangadi et al. 2005] HcMmvMm

area | delay | power area | delay | power area | delay | power
2 17.8 2496 0.6 134 2705 0.5 10.6 2646 0.4
4 32.1 3208 1.6 174 3330 0.9 14.9 3657 0.8
6 475 3257 2.3 20.7 3588 1.2 19.3 3726 1.2
8 64.7 3568 3.4 23.2 4077 1.5 21.5 4025 1.3
10 74.2 3573 3.8 26.4 4423 1.7 24.1 4294 1.6
12 82.4 3735 4.4 30.6 4592 2.0 27.2 4611 1.9
14 94.7 4046 5.2 32.5 5336 2.4 29.2 5420 2.2
16 89.8 4628 4.8 39.2 5107 3.1 33.7 5261 2.7

Total || 503.2 | 28511 | 26.0 | 203.4 | 33158 | 13.3 [| 1805 | 33640 | 12.1 ]

Table XIll. Summary of Low-Level Results of the Algorithms on 20 x 20 DCTs

bw Direct Realization [Hosangadi et al. 2005] HcMmvMm

area | delay | power area | delay | power area | delay | power
2 68.4 2874 3.3 36.5 3202 2.0 29.6 3066 1.7
4 115.2 3712 7.5 49.3 4132 3.5 45.1 4015 3.3
6 160.8 3772 10.0 60.7 4176 4.6 53.8 4237 4.2
8 235.4 3772 14.6 76.3 5473 6.4 64.5 4971 5.6
10 271.2 3838 17.1 87.7 5435 7.7 73.6 5325 6.5
12 304.7 4029 19.8 101.9 5262 9.4 84.4 5704 7.6
14 346.8 4410 22.5 112.7 5837 10.8 94.3 5724 9.2
16 353.3 5074 22.8 122.5 5812 13.1 103.6 5846 11.0

| Total || 1855.8 | 31481 | 117.6 || 647.6 | 39329 | 57.5 || 548.7 | 38888 | 49.1 |

operations, that is, on 10 x 10 DCTs when bw is 6 and 8 and on 20 x 20 DCTs when bw
is 4 and 8.

Tables XII and XIII present the low-level design results of 10 x 10 and 20 x 20
DCTs, respectively, which are synthesized using the Cadence Encounter® RTL Com-
piler with the Nangate 45nm Open Cell library.l? In these tables, area (mm?), de-
lay (ps), and power (mW) indicate area, delay, and power dissipation, respectively.
In this experiment, the bit-width of each element of the input vector was taken as
16. Also, in the direct realization of linear transforms, they were described as the
additions/subtractions of constant multiplications in VHDL, and the solutions of the
heuristic [Hosangadi et al. 2005] and HCMVM were translated into VHDL using only
addition/subtraction and shift operations. The same design script was used for each
VHDL code during the synthesis of DCT circuits.

Observe from Tables XII and XIII that the use of high-level algorithms targeting a
shift-adds architecture leads to significant improvements in terms of area and power
dissipation when their results are compared with those obtained using direct real-
izations of DCTs. Also, the solutions of HCMVM yield low-complexity DCT designs
when compared to Hosangadi et al. [2005]. This is simply because, besides its better
high-level results, some hardware optimizations are also considered in HCMVM. Its
efficiency can be easily observed in the solutions of algorithms that have the same
number of operations, that is, on 10 x 10 DCTs when bw is 6 and 8, and on 20 x 20
DCTs when bw is 4 and 8. We also note that the values of average and maximum area

10The gate library is available at http:/www.nangate.com/.
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improvements obtained by HCMVM over the CSE algorithm [Hosangadi et al. 2005]
are 12.7% and 26.4% on 10 x 10 DCTs, respectively. These values are 18.0% and 23.4%
on 20 x 20 DCTs, respectively.

7. CONCLUSIONS

In this article, we introduced optimization algorithms for the realization of linear
transforms using the fewest number of addition and subtraction operations in a shift-
adds architecture. We started by formalizing the CMVM problem as a 0-1 ILP problem
and presented the complexity of the exact CSE algorithm in terms of 0-1 ILP problem
parameters. Due to the NP-completeness of the problem, we introduced a CSE heuris-
tic algorithm that finds the most common minimum conflicting 2-term subexpressions
iteratively. Since the solutions of the CSE algorithms are restricted to a particular
number representation, we also proposed a hybrid algorithm that combines the nu-
merical difference method with the proposed CSE heuristic. It is observed from the
experimental results on randomly generated constant matrices and linear DSP trans-
forms that the proposed approximate algorithms find solutions close to the minimum
and obtain better results than previously proposed efficient heuristics. The exper-
imental results on the synthesis of DCTs also indicate that the solutions with the
fewest number of operations obtained by the proposed hybrid algorithm lead to low-
complexity and low-power DCT circuits.
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