
Universidade Técnica de Lisboa

Instituto Superior Técnico

Parallel MiniSAT

Lúıs Filipe Colaço Messias Gil

Diploma Thesis

Degree in Computer Science

Supervisors from INESC–ID:

Prof. Lúıs Miguel Silveira

Prof. Paulo Flores

Supervisor from DM–IST:

Prof. Jaime Ramos

July 2007

i

Agradecimentos

Se um homem esvazia a sua carteira para
a sua cabeça, ninguém lhe pode ficar com
nada. Um investimento em conhecimento
paga sempre o melhor proveito.
Benjamin Franklin

Em primeiro lugar quero agradecer aos meus orientadores Lúıs Miguel Sil-
veira, Paulo Flores e Jaime Ramos todo o apoio, orientação, sugestões e paciência
concedidos para que este trabalho pudesse ser conclúıdo com êxito.

Agradeço ao Professor Amı́lcar Sernadas pela ajuda na escolha do TFC e
por me ter indicado o professor Lúıs Miguel Silveira como especialista em com-
putação paralela.

Ao Dr. Niklas Eén o esclarecimento de dúvidas relacionadas com o funciona-
mento do MiniSAT.

Aos meus amigos Ana Sofia Graça, Bruno Pereira, Carlos Tamulonis, Hélio
Pais, Paulo Abrantes e Sandra Marques pelos comentários e sugestões sobre este
relatório e o programa.

Agradeço ao Professor David Matos por tirar dúvidas e resolver os proble-
mas com a grid.

Também quero agradecer ao INESC–ID o facto de ter colocado à minha
disposição os meios computacionais necessários para desenvolver e testar o pro-
grama.

Finalmente quero agradecer aos meus pais que me ofereceram esta licen-
ciatura. Sem eles nada teria sido posśıvel. Obrigado pelo apoio e incentivo
para alcançar sempre os objectivos propostos, o carinho e atenção dados nos
momentos dif́ıceis, e o mais importante de tudo, o esforço e sacrif́ıcio para que
eu tivesse sempre uma boa educação.

ii

Acknowledgements

If a man empties his purse into his head,
no man can take it away from him. An in-
vestment in knowledge always pays the best
interest.
Benjamin Franklin

First of all, I want to thank my supervisors Lúıs Miguel Silveira, Paulo Flo-
res and Jaime Ramos for all the help, guidance, suggestions and patience given,
allowing me to finish this work with success.

I also want to thank Professor Amı́lcar Sernadas for helping me choose my
final year project and by suggesting professor Lúıs Miguel Silveira as an expert
in parallel computing.

Thanks to Dr. Niklas Eén for having answered some of our doubts about
MiniSAT.

To my friends Ana Sofia Graça, Bruno Pereira, Carlos Tamulonis, Hélio Pais,
Paulo Abrantes e Sandra Marques for the comments and suggestions about this
report and the program.

Thanks to Professor David Matos for answering my questions and solving
the problems with the grid.

I also want to thank INESC–ID for providing the computational means to
develop and test the program.

Finally, last but not the least, I want to thank to my parents that offered me
this degree. Without them nothing would be possible. Thanks for the support
for me to always reach all the proposed goals, the care and attention on the
rough times, and most of all, the effort and sacrifice so that I would always get
a good education.

iii

Resumo

O problema SAT, verificar se uma fórmula booleana pode ser verdadeira, ocorre
em diversas áreas da ciência e engenharia como por exemplo automação de
desenho electrónico, pesquisa, planeamento e verificação formal.

Existem vários programas para resolver o problema que utilizam os algo-
ritmos mais avançados que a ciência conhece. Um deles é o MiniSAT que é
amplamente utilizado.

Este trabalho apresenta a pesquisa, planeamento e implementação de uma
versão paralela do MiniSAT que utiliza a tecnologia MPI (Message Passing
Interface) para ser executada numa grid ou cluster de computadores. São de-
scritas as principais caracteŕısticas do programa: modos de busca, remoção de
hipóteses e partilha de cláusulas aprendidas. Também é avaliada a eficiência da
paralelização e do esquema de distribuição de carga entre os processadores.

Palavras chave: Computação Paralela, SAT-Solver, Satisfiabilidade.

iv

Abstract

The SAT problem, determine if a given boolean formula can be true, is largely
used in several areas of science and engineering like electronic design automation,
search, planning and formal verification.

There are several programs to search for satisfiability, called SAT-solvers,
that use some of the most advanced techniques known. One of them is MiniSAT
that is widely used.

This work presents a research, planning and implementation of a parallel
version of MiniSAT with MPI (Message Passing Interface) technology to be
executed in clusters or grids of computers. Are described the main features of
the program: search modes, assumptions pruning and share of learnt clauses.
Is also made an analysis of its performance and load balance.

Keywords: Parallel Computing, SAT-Solver, Satisfiability.

v

Contents

1 Introduction 1

2 Logic and complexity 2
2.1 Boolean Logic . 2
2.2 Computational complexity . 4

3 Parallel computing 6
3.1 Technology . 6

3.1.1 Hardware . 6
3.1.2 Software . 8

3.2 Programming . 9
3.2.1 Methodology . 9
3.2.2 Concerns . 11

3.3 Performance measures . 12
3.3.1 Metrics . 12
3.3.2 Times . 13

4 The SAT-Solver 15
4.1 General algorithms . 15
4.2 MiniSAT . 17

5 Parallel implementation 19
5.1 PCAM design . 19

5.1.1 Partitioning . 19
5.1.2 Communication . 20
5.1.3 Agglomeration . 20
5.1.4 Mapping . 20

5.2 Implementation details . 20
5.2.1 Variables selection . 21
5.2.2 Assumptions generation 21
5.2.3 Assumptions pruning . 26
5.2.4 Sharing learnt clauses . 26
5.2.5 Messages . 27
5.2.6 Automatic settings . 28

vi

5.3 Application’s work flow . 29
5.4 Modules of the program . 31
5.5 Technology . 32

6 Experimental results and performance analysis 33
6.1 Grid resources . 33
6.2 Methodology . 33
6.3 Goals and difficulties . 35
6.4 Time measurement . 36
6.5 Results . 37

6.5.1 Communication delay . 38
6.5.2 Modes and options . 38
6.5.3 Granularity . 40
6.5.4 Load distribution . 41

7 Conclusion 42

A User manual 45
A.1 How to use this manual . 45
A.2 System requirements and installation 45
A.3 Quick start . 45
A.4 Usage . 46
A.5 Options . 47
A.6 Examples . 50
A.7 Inputs and Outputs . 50
A.8 Hints for better performance . 52
A.9 Error messages . 53
A.10 FAQ . 54

B Performance tables 56

vii

List of Figures

2.1 Circuit . 5

3.1 Pipeline . 10
3.2 Task Farm . 10

4.1 Davis-Putnam algorithm . 15

5.1 Task Farm organization . 21
5.2 Function test4SAT() . 29
5.3 Program’s main() . 30

6.1 Timed operations (gray fill) . 37

A.1 Program’s options . 48
A.2 Configuration file . 49

viii

List of Tables

4.1 Mapping of modules in the file system 18

5.1 Message for Equal mode . 27
5.2 Message for Progressive mode, assuming n < k literals 27
5.3 Result message . 28
5.4 Set of learnt clauses . 28
5.5 Model of the formula . 28
5.6 Mapping of modules in the file system 32

6.1 Benchmark files . 34

B.1 Sequential vs Parallel with master and local worker 58
B.2 Sequential vs Parallel with master and remote worker 59
B.3 Average time of each file taken by the sequential MiniSAT . . . 59
B.4 Average of each file in 3, 6 and 9 workers 60
B.5 Average of each SAT file in 3, 6 and 9 workers 60
B.6 Average of each UNSAT file in 3, 6 and 9 workers 61
B.7 Best performances without options 61
B.8 Worst performances without options 62
B.9 Best performances with conflicts 63
B.10 Worst performances with conflicts 64
B.11 Best performances sharing learnt clauses 65
B.12 Worst performances sharing learnt clauses 66
B.13 Best performances with different granularity 67
B.14 Worst performances with different granularity 68
B.15 Tests with 6 variables to fpga10 11 uns rcr.cnf 69
B.16 Tests with 6 variables to fpga10 12 uns rcr.cnf 70
B.17 Tests with 6 variables to fpga10 13 uns rcr.cnf 71
B.18 Tests with 6 variables to frb40-19-1.cnf 72
B.19 Tests with 6 variables to frb40-19-2.cnf 73
B.20 Tests with 6 variables to frb40-19-3.cnf 74
B.21 Tests with 6 variables to frb40-19-4.cnf 75
B.22 Tests with 6 variables to frb40-19-5.cnf 76
B.23 Tests with 6 variables to hole11.cnf 77
B.24 Tests with 6 variables to mod2-3cage-unsat-9-11.cnf 78

ix

B.25 Tests with 6 variables to mod2-3cage-unsat-9-4.cnf 79
B.26 Tests with 6 variables to mod2-3g14-sat.cnf 80
B.27 Tests with 6 variables to mod2c-rand3bip-sat-150-11.cnf . . . 81
B.28 Tests with 6 variables to mod2c-rand3bip-sat-150-15.cnf . . . 82
B.29 Tests with 6 variables to sat2.cnf 83
B.30 Tests with 6 variables to unif-r4.cnf 84
B.31 Tests with 6 variables to unif-r5.cnf 85
B.32 Tests with 6 variables to vmpc 21.renamed-as.sat05-1923.cnf 86
B.33 Tests with 6 variables to vmpc 23.renamed-as.sat05-1927.cnf 87
B.34 Tests with 6 variables to vmpc 25.renamed-as.sat05-1913.cnf 88
B.35 Tests with 6 variables to vmpc 25.shuffled-as.sat05-1945.cnf 89
B.36 Tests with 6 variables to vmpc 26.renamed-as.sat05-1914.cnf 90
B.37 Tests with 6 variables to vmpc 26.shuffled-as.sat05-1946.cnf 91
B.38 Tests with 6 variables to vmpc 27.renamed-as.sat05-1915.cnf 92
B.39 Tests with 6 variables to vmpc 27.shuffled-as.sat05-1947.cnf 93
B.40 Tests of granularity to fpga10 11 uns rcr.cnf 94
B.41 Tests of granularity to fpga10 12 uns rcr.cnf 95
B.42 Tests of granularity to fpga10 13 uns rcr.cnf 96
B.43 Tests of granularity to frb40-19-1.cnf 97
B.44 Tests of granularity to frb40-19-2.cnf 98
B.45 Tests of granularity to frb40-19-3.cnf 99
B.46 Tests of granularity to frb40-19-4.cnf 100
B.47 Tests of granularity to frb40-19-5.cnf 101
B.48 Tests of granularity to hole11.cnf 102
B.49 Tests of granularity to mod2-3cage-unsat-9-11.cnf 103
B.50 Tests of granularity to mod2-3cage-unsat-9-4.cnf 104
B.51 Tests of granularity to mod2-3g14-sat.cnf 105
B.52 Tests of granularity to mod2c-rand3bip-sat-150-11.cnf 106
B.53 Tests of granularity to mod2c-rand3bip-sat-150-15.cnf 107
B.54 Tests of granularity to sat2.cnf 108
B.55 Tests of granularity to unif-r4.cnf 109
B.56 Tests of granularity to unif-r5.cnf 110
B.57 Tests of granularity to vmpc 21.renamed-as.sat05-1923.cnf . . 111
B.58 Tests of granularity to vmpc 23.renamed-as.sat05-1927.cnf . . 112
B.59 Tests of granularity to vmpc 25.renamed-as.sat05-1913.cnf . . 113
B.60 Tests of granularity to vmpc 25.shuffled-as.sat05-1945.cnf . 114
B.61 Tests of granularity to vmpc 26.renamed-as.sat05-1914.cnf . . 115
B.62 Tests of granularity to vmpc 26.shuffled-as.sat05-1946.cnf . 116
B.63 Tests of granularity to vmpc 27.renamed-as.sat05-1915.cnf . . 117
B.64 Tests of granularity to vmpc 27.shuffled-as.sat05-1947.cnf . 118

x

Chapter 1

Introduction

The SAT problem deals with finding a satisfying assignment to a boolean for-
mula of propositional logic. This problem is associated to computational com-
plexity and was the first NP-Complete problem ever found in 1971 by Stephen
Cook [3]. Its applications range from industry to science where many problems
are mapped in SAT and solved by specialized programs called SAT-solvers.
Since the last decade there has been much research devoted to create better
algorithms to allow SAT-solvers to search for solutions faster and solve larger
problems with limited resources.

Parallel computing is an old theme in the demand for more computational
power. Supercomputers are built since the 1960’s but in those early days only
some research laboratories and military agencies could support their cost. In
recent years the decrease of hardware cost and the rise of programming tools
made possible the construction of cheap parallel machines using home and office
computers connected by a network, known as clusters or grids. These machines
are used to solve scientific and industrial problems like wind tunnel or earth-
quake simulations.

The aim of this work is to create a parallel version of an existing SAT-solver
called MiniSAT, that was developed by Niklas Eén and Niklas Sörensson at
Chalmers University in Sweden [5]. Our objectives are to create a tool that
runs in generic Linux clusters, can be able to solve larger problems and to re-
search the potential provided by parallel computing to accelerate SAT-solvers

The rest of this document is organized as follows: in Chapters 2 and 3 the
necessary concepts about the SAT problem and parallel computing to allow the
understanding of the rest of the work. Readers familiar with former concepts
can skip these chapters. In Chapter 4 the architecture of MiniSAT is analyzed.
Chapter 5 presents the parallel architecture for the program. Chapter 6 shows
the results of performance analysis and Chapter 7 the conclusion of the work.
Finally as appendix, the user manual and the performance tables.

Chapter 2

Logic and complexity

Logic is the anatomy of thought.
John Locke

In this introductory chapter we will present the main definitions and results
about boolean formulas, computational complexity and their relations with the
SAT problem.

2.1 Boolean Logic

Definition 2.1.1 A boolean variable is a symbol that might assume one of two
values: true or false.

Definition 2.1.2 Given a set X of boolean variables, the class of boolean for-
mulas is the smallest class defined by:

1. true and false are boolean formulas;

2. every boolean variable x ∈ X is a boolean formula;

3. if F1 and F2 are boolean formulas then ¬(F1), (F1 ∧ F2), (F1 ∨ F2) are
also.

The symbols ¬, ∧ and ∨ are called operators that represent the three ba-
sic operations: complement, conjunction and disjunction, respectively. Other
operators are defined to represent abbreviations:

1. Implication: (F1 ⇒ F2) stands for (¬(F1) ∨ F2).

2. Equivalence: (F1 ⇔ F2) stands for ((F1 ⇒ F2) ∧ (F2 ⇒ F1)).

3. Exclusive or: (F1 ⊕ F2) stands for ((F1 ∧ ¬(F2)) ∨ (¬(F1) ∧ F2)).

A boolean formula may be true of false. The operators are used to assert
formula’s logical value by the following way:

2.1 Boolean Logic 3

1. (F1 ∨ F2) = true if F1, F2 or both are true, false otherwise;

2. (F1 ∧ F2) = true if F1 and F2 are true, false otherwise;

3. ¬(F) = true if F = false and vice versa.

Definition 2.1.3 A boolean assignment V is a mapping from a set of boolean
variables to {true,false}. Using assignments we can express the boolean value of
a formula F:

1. V(F) = false if F = false;

2. V(F) = true if F = true;

3. V(F) = V(x) if F = x;

4. V(F) = V(F1) ∨ V(F2) if F = (F1 ∨ F2);

5. V(F) = V(F1) ∧ V(F2) if F = (F1 ∧ F2);

6. V(F) = ¬V(F1) if F = ¬(F1);

7. V(F) = V(F1) if F = ¬(¬(F1)).

For a formula with n variables there are 2n different possible assignments,
since every variable may be true or false.

Definition 2.1.4 A formula F is said to be satisfiable if there is an assignment
V that V(F) = true; otherwise F is unsatisfiable.

Definition 2.1.5 (SAT) The set of all satisfiable boolean formulas is known
as SAT.

The SAT problem is to determine if exists an assignment that makes satis-
fiable a given formula. That assignment is known as model.

Definition 2.1.6 (Literal) A literal is a boolean variable or its complement.

Definition 2.1.7 (Clause) A clause is a disjunction of literals.

Definition 2.1.8 (CNF) The conjunctive normal form (CNF) is a conjunc-
tion of clauses.

Example 2.1.9 The formula (ϕ ∨ ψ) ∧ (γ ∨ ¬δ ∨ ¬ϕ) is in CNF.

Theorem 2.1.10 Every boolean formula can be written in conjunctive normal
form.

Example 2.1.11 The boolean formula (ϕ ∧ ψ) ∨ γ may be written in CNF as
(ϕ ∨ γ) ∧ (ψ ∨ γ).

2.2 Computational complexity 4

The advantage of searching satisfiability in CNF formulas is that each clause
must be true for the entire formula be true.

The search is made by assigning variables successively and verifying conflicts.

Definition 2.1.12 (Unit clause) An unit clause is a clause that has one unas-
signed literal and all the others assigned as false.

Definition 2.1.13 (Implication) An implication is to assign as true a literal
in an unit clause.

Definition 2.1.14 (Conflict) A conflict happens when the same variable is
set to true in one implication and false in another.

Example 2.1.15 Searching the satisfiability of (ϕ ∨ ψ) ∧ (γ ∨ ¬δ ∨ ¬ϕ):
if δ is assigned to true, ψ and γ to false, both clauses become unit clauses. The
implications on ϕ assign to it true in the first clause and false in the second
leading to a conflict. But the clause is satisfiable just by assigning ψ and γ as
true.

2.2 Computational complexity

As was said before, in worst case one needs to test an exponential number of
assignments while seeking for satisfiability of a formula. Until now nobody has
found an algorithm to limit the search time upper-bounded by a polynomial
p(n).

As the matter of fact SAT, is a very difficult problem in terms of compu-
tational complexity and was proved to be NP-Complete in 1971 by Stephen
Cook [3]. We will now present a set of definitions to clarify these assertions and
provide a background in computational complexity.

First of all, lets present the two main theoretical methods used to describe
the computation in mathematical models like automata and Turing machines
[1, 13].

Definition 2.2.1 A deterministic computation is one that we can determine
the next state just by knowing the actual state and the given input.

Definition 2.2.2 A nondeterministic computation allows the existence of sev-
eral ways to proceed from one state for a given input. All transitions are pro-
cessed in parallel.

In a nondeterministic computation may be transitions from one state to
several others by the same input. In that case the machine is split in several
copies and explore the different branches of the computation in parallel.

Notice that every nondeterministic machine can be converted into a deter-
ministic one, which explores the different branches of computations sequentially.

2.2 Computational complexity 5

Complexity classes are used in theoretical computer science to classify several
types of problems according to the relation between the length of the input and
amount of resources (like time or space1) required to solve them [1, 13]. We will
define the most widely known and relevant time and space complexity classes:

Definition 2.2.3 The class P is the set of problems computed in polynomial
time by a deterministic procedure.

Definition 2.2.4 The class NP is the set of problems computed in polynomial
time by a non-deterministic procedure.

The known relation between these classes is P ⊆ NP while the open problem
so far is P = NP.

Theorem 2.2.5 SAT ∈ NP.

The combinations of assignments to n variables can be seen as a binary tree
with depth n. So one can write a nondeterministic procedure that generates
and checks each branch concurrently. The time of execution is upper-bounded
by a p(n) for some polynomial p.

Another way to define NP is classifying it as the class of problems whose
potential solutions can be verified in polynomial time. By this definition, SAT
belongs to NP which means that given an assignment V and a boolean formula
F with n variables, one can determine if V satisfies F in polynomial time.

Definition 2.2.6 A problem G is NP-Complete if belongs to NP and every
other problem e ∈ E of that class can be encoded in g ∈ G by a deterministic
algorithm in polynomial time, such that the answer to g is YES if and only if
the answer to e is YES.

Theorem 2.2.7 SAT is NP-Complete.

The previous theorem states that every problem in NP can be represented
by a boolean formula and solved in that context. Also indicates that there is
no optimal algorithm to solve SAT and probably never will be.

Figure 2.1: Circuit

Example 2.2.8 The digital circuit in Figure 2.1 can be represented by the
boolean formula (A ∧ B) ∨ C. Is converted to CNF as (A ∨ C) ∧ (B ∨ C).
To know if the circuit can output value 1, one should determine if the formula
is satisfiable.

1memory

Chapter 3

Parallel computing

I just bought a Mac to help me
design the next Cray!
Seymour Cray - when informed
Apple got a Cray supercomputer
to help design next Mac

Parallel computing is used with the objective of having more computational
power. There are several types of machines to perform parallel computing: su-
percomputers, clusters and grids. The firsts are the most expensive solution and
currently are only used for dedicated tasks while the latest are cheaper. Grids
represent an evolution from clusters because they allow the user to abstract
from their structure and location.

Definition 3.0.9 (Node) A node is a computer with one or more processors.

Definition 3.0.10 (Task) A task is a process that belongs to a running pro-
gram. A sequential program has one sequential task while a parallel program
may have many tasks running simultaneously.

3.1 Technology

This section describes the hardware and software technology used in parallel
computing. Is presented a historical perspective until today’s most recent inno-
vations.

3.1.1 Hardware

Supercomputers

Supercomputers have been made since the 60’s by IBM, CDC and UNIVAC.
Due to their cost just big companies government’s agencies and laboratories,
or major universities were able to support them. In 1972 an engineer from

3.1 Technology 7

CDC tired of the company’s philosophy to avoid risks on new systems got out
and created his own computer company. His name was Seymour Cray and
wanted to build computers to run simulations rather than data manipulations,
to allow designers to model objects before being built. For several years Cray’s
supercomputers were the fastest in the world.

After Cray, more than twenty supercomputer companies appeared specially
during the 80’s, but got out of scene some years later due to “supercomputer
market crash”. The increase of computational power of the workstations and
the decrease of costs of the hardware were the main causes of this crash.

Until the early 80’s these supercomputers had only a very fast CPU. Then
several processors were added, typically between 2 and 8, to allow the accom-
plishment of parallel calculations. Nowadays they can have several hundreds or
thousands of processors, in most cases off the shelf RISC CPUs.

Supercomputers are still expensive and are used in special intensive CPU
applications like weather forecast, chess games, cipher breaking, fluids dynamics,
analysis of geological data and nuclear energy research.

Clusters

A cluster is a set of dedicated computers, connected by a network, placed in
the same physical space, to provide a large amount of computational power. Its
objective is to be a cheap alternative to a supercomputer.

The history of clusters started when the lack of financial means to get a
supercomputer led a group of engineers at NASA to connect some unused com-
puters, equipped with Linux operating system and open source tools, by an
Ethernet network and use it to perform parallel computing. This architecture,
known as Beowulf, was a success and many universities, companies, laborato-
ries and home users adopted it and started to build their own clusters based
in desktop computers and open source software, that allowed for instance the
teaching of parallel programming in universities with few financial resources.
The costs of building a cluster dropped along the 90’s because of the reduction of
prices of hardware, specially the network components. The programming cost
also decreased due to the creation of tools and libraries that help to develop
parallel applications. Clusters have been used to perform parallel computing in
scientific and engineering problems like fluids dynamics and wind tunnel simu-
lations.

Grids

A grid is different from a cluster because its computer nodes can belong to
different owners, may be scattered by a wide geographical area and connected
by Internet. May not be composed by dedicated machines (some of them are
desktops), having more objectives besides supplying computational power and
may fail or be unavailable. Due to the use of special software, the users see the
grid as a single computer ignoring the status of the nodes, their amount and
location.

3.1 Technology 8

The main objective of grid computing is to take advantage of the unused
resources of the nodes, like CPU cycles and disk storage, in order to offer services
or to perform computation over problems too big for a single supercomputer.

There are several definitions for a grid, one of them is given by Ian Foster
in [8]:

Definition 3.1.1 (Grid) A grid is a system that coordinates resources that are
not subject to centralized control using standard, open, general purpose protocols
and interfaces to deliver non-trivial qualities of service.

As one can see, a grid can be more than a set of computers. In fact there are
several types of grids:

1. computational: for CPU intensive use;

2. data: for storing and sharing distributed data;

3. equipment: to control remotely a hardware sensor and process the data
produced.

There are many projects for grid computing, some of them at a global scale
like the ones to use at home: SETI (search for extraterrestrial intelligence), pro-
tein folding, stock forecasts. Other applications are video on demand, particles
physics, earthquake simulation, genetics and astronomy.

3.1.2 Software

It’s not enough to have a cluster or a grid. To take advantage of it, our programs
must be written in a way to use all (or most part of) the available resources, by
distributing the computation among the nodes. Parallel programming languages
have been made but did not become a working tool for scientists and researchers
because they wanted to use the languages that already knew like C or Fortran.
The solution found was in the form of a library acting as middleware and offering
a message passing protocol to control the communication and synchronization
of the tasks.

Several, but incompatible message passing systems were made, during the
1980’s and early 1990’s:

• PICL, PVM - Oak Ridge National Laboratory;

• PARMACS, P4, Chameleon - Argonne National Laboratory;

• LAM - Ohio Supercomputer Center;

• Express - Caltech/Parasoft;

• TCGMSG - special for quantum chemistry.

3.2 Programming 9

In 1992 during the Supercomputing conference, a committee known as MPI-
Forum was formed to specify a new message passing interface (MPI). The main
goal was to create a standard, portable and efficient message passing system,
available to several architectures and operating systems and that provided a set
of routines for interprocess communication to allow the exchange of messages
with data.

Two years later, in 1994, appeared the first standard MPI-1.0 which was
implemented by many commercial and open-source vendors. MPI-2.0 standard,
published in 1997, added more functionalities. Nowadays MPI has become the
de-facto standard for writing parallel applications, specifying the interface and
functionality of communication routines, due to the high level of portability and
scalability achieved for its programs.

For grids was started a initiative to create software to present the grid as a
single machine. This software is called Globus.

3.2 Programming

Writing a parallel program is very different from writing a sequential one. One
needs to focus not only in the problem to solve but also in its partition, work
distribution, gathering results, data flow, message formats, amount of messages,
delays and bottlenecks.

Now are presented the procedures to create parallel programs as well as
the main concerns that programmers must have in mind when designing such
systems.

3.2.1 Methodology

A methodology to decompose the problem and obtain a parallel algorithm in four
stages was proposed by Ian Foster in [7]. This approach was also used to create
our program. Its four stages are Partitioning, Communication, Agglomeration
and Mapping, also known as PCAM.

Partitioning

In this stage, the computation to solve the problem is partitioned from the
functional or domain points of view.

This early partition should be fine-grained, defining small tasks, even if in a
large number. The granularity (amount and size of the tasks) will be reviewed
in the Agglomeration stage. The partition can be made at the domain level or
at functional level:

• Domain partition: to divide the input, intermediate or output data in
small blocks that can be processed independently.

• Functional partition: if computations can be divided in disjoint tasks.
If the data required for these tasks is also disjoint, one says the partition
is complete.

3.2 Programming 10

Example 3.2.1 A problem where domain partition can be applied is matrix
multiplication, where every element of the result does not depend of any other.

Example 3.2.2 A functional partition is applied in an image processing system
where data suffers successive and independent transformations.

Many parallel programs have similar architectures or use design patterns to
deal with some functional requirements. Two of the most used architectural
styles are Pipeline and Task Farm.

Notation 3.2.3 We will visually represent architectural style in an informal
manner with the notation of boxes and arrows, where the boxes mean processes
and the arrows communication channels and the direction of the information
flux.

Figure 3.1: Pipeline

Figure 3.2: Task Farm

A Pipeline is used to process a stream of data sequentially with several func-
tions running in the different tasks. Is adequate for a functional partition. Each
task receives a stream of data, processes and sends it to other task always differ-
ent from the previous ones. It is commonly used for image or signal processing
where for instance each task may apply one filter to the input and send the
output to the next task.

In Task Farm there is a master task that sends orders for all others (called the
workers) and collects the results. All workers execute the same function, being a
good architecture for domain partition, where different parts of the domain are
sent to different tasks to be processed. For the matrix multiplication example,
each task could calculate a subset of the result matrix.

Obviously, there are problems that have their own particular architectural
style with tasks connected ad hoc.

3.2 Programming 11

Communication

Communication is required to share data among the tasks when data depen-
dency exists, to gather results, to send commands or synchronizing tasks. Can
be categorized as follows:

• Local/Global: is related with the amount of tasks that each one of them
needs to communicate with. Is local when a task only exchanges messages
with a small group of other tasks, and global when it sends and receives
messages for/from a large group.

• Structured/Unstructured: whether a task and its neighbors form a
defined communication structure, or have arbitrary connections.

• Static/Dynamic: this category is related with the identity of commu-
nication partners changes over the computation. If static, a task commu-
nicates always with the same partners. If dynamic the partners change,
most of the times due to the processed data.

• Synchronous/Asynchronous: if the producers and consumers of data
are coordinated or not during the transfers.

Agglomeration

After defining the partition and communication, one needs to increase the gran-
ularity of the tasks by combining a group of them into a unique one, to distribute
them among the available processors and decrease the communication require-
ments, i.e. the number of messages to send.

The reduction of the number of messages, even if the amount of data is
kept, is one of the most important accomplishments in order to decrease the
time spent during communication. The tasks must be big enough to spend
more time computing rather communicating. It is also important to join tasks
that depend on each other.

Mapping

Mapping is about the distribution of the tasks by the machines where they will
run. Two ideas to make computation more effective and quick are to distribute
concurrent tasks by different machines and tasks that communicate frequently
in the same machine. These ideas are inadequate when we have CPU demanding
tasks that need to communicate with many others. In this case they cannot be
put together on a single machine because they would have to wait a lot before
execute or the frequent context switchings could introduce long delays.

3.2.2 Concerns

In both architectural styles some performance issues must be taken into account
when designing the algorithm.

3.3 Performance measures 12

The first one, related with agglomeration, is the processing time of each
task that must exceed the time of one or two messages transmitted, for Pipeline
or Task Farm respectively, to compensate the wasted time of these. A good
agglomeration must make each task work for a significant amount of time.

The second one are the bottlenecks due a high rate of communication to
a single task. For instance in a Pipeline the first task may process the data
very quickly and the second task may take the triple of the time to transform
the input, accumulating messages in the second’s buffer and introducing delays.
The solution is to agglomerate the two tasks in only one, or add more tasks to
the second level to process several messages simultaneously.

In a Task Farm many results from the workers may come at the same time
and the master must process them quickly to avoid that some workers wait too
long.

3.3 Performance measures

The performance measure of parallel programs is tricky and non-trivial due to
the physical separation of the several tasks.

The performance may be influenced by parameters such as number of nodes,
size of the data, amount of memory or cache and communication. For instance
if the data structures do not fit in memory in the sequential program but fit in
the parallel a speedup is achieved because the access to memory is faster.

Sources of overheads are load imbalances (different work performed by the
several tasks), replicated computation and competition for bandwidth (all tasks
communicating simultaneously).

3.3.1 Metrics

Four of the parameters most used to estimate performance are execution time,
relative efficiency, relative speedup and serial fraction [10].

Definition 3.3.1 (Execution time) The execution time is the time elapsed
since the beginning of the execution in the first processor until the last processor
stops and is composed by:

1. computation time: time spent performing computations over data;

2. communication time: time that takes to send and receive messages;

3. idle time: time spent waiting from data sent by other processors.

Notation 3.3.2 In the following we will represent T1 as the execution time of
the sequential program and Tp as the execution time of the parallel program on
p processors.

Definition 3.3.3 (Relative Speedup) Can be classified as sub-linear
(s < p), linear (s = p) or super-linear (s > p).

3.3 Performance measures 13

sp =
T1

Tp
(3.1)

Definition 3.3.4 (Relative Efficiency) Efficiency is the quotient between speedup
and the number of processors.

ep =
sp

p
=

T1

Tp × p
(3.2)

Relative speedup indicates how many times the parallel program was faster
while relative efficiency divides that value by the number of processors and
shows the relative speedup by processor.

The efficiency and speedup are called absolute when T1 is the execution time
of the fastest sequential algorithm.

Other performance measure is serial fraction proposed by Karp and Flatt in
1990.

Definition 3.3.5 (Serial Fraction) The serial fraction determines the frac-
tion of the program that is spent performing sequential computing.

fp =
1
sp
− 1

p

1− 1
p

=
Tp

T1
− 1

p

1− 1
p

(3.3)

It can indicate some characteristics of the program:

• if fp increases as p increases there is an overhead due to load imbalances
or synchronizing processors;

• if fp is negative then there is a super-linear speedup;

• if fp remains constant as p increases the ideal situation was reached. If ep

decreases that is due to limited parallelism of the program.

3.3.2 Times

There are three types of time: Wall, Elapsed and CPU time.

Definition 3.3.6 (Wall time) Run time of a process measured by a stop watch.

Definition 3.3.7 (Elapsed time) Like Wall time but without the times spent
on executing other programs.

Definition 3.3.8 (CPU time) Time spent by the CPU on executing the in-
structions of a program. Can be divided in user time (execution of program’s
instructions) and system time (execution of the system calls).

3.3 Performance measures 14

Computers offer timers and clocks to measure CPU and Wall time. Com-
putation time can be measured by the CPU time. Communication time and
idle time can only be determined by the Wall time because the program is not
running. The Wall time does not provide a good measure for the execution
time because it is influenced by the CPU load, i.e. all other programs that are
running in the same CPU.

The timing of a program should be done in a dedicated machine, with a small
amount of load. It’s an artificial environment, but the simpler to be recreated
by other user. Should be measured just the CPU time to ignore delays provoked
by other programs and because one is just concerned in the time spent by the
application. If the Wall time is measured, it should be referred to allow other
people to understand the result.

In some situations, we can be only interested in some parts of the program.
One can measure only the main algorithm and ignore others, for example the
loading of data.

Chapter 4

The SAT-Solver

I can’t get no satisfaction!
The Rolling Stones

There are many SAT-solvers available due to new improvements in research
made in the last decade. Some of the most popular solvers are Chaff [12], Grasp
[11] and MiniSAT [5] that implement the state of the art technologies. For this
work we have chosen MiniSAT because it is efficient and well documented.

4.1 General algorithms

In this section we will present the general algorithms and techniques used by
most of the actual SAT-solvers and define a set of concepts related with them.

Most of SAT-solvers implement a variation of Davis-Putnam algorithm [4]
combined with conflict-driven backtracking, watched literals and dynamic vari-
able ordering. In Figure 4.1 is presented the main loop of a generic SAT-solver.

while(true){
if(!decide()) return SAT;
while(!BCP()){

if(!resolveConflict()) return UNSAT;
}

}

Figure 4.1: Davis-Putnam algorithm

The decide() function selects an unassigned variable and sets it to true or
false by a heuristic method. This selection may be done by several ways, but
the most common are:

• RAND: selects a random variable;

4.1 General algorithms 16

• DLIS (Dynamical Largest Individual Sum): selects the variable that ap-
pears more times in the clauses;

• VSIDS (Variable State Independent Decaying Sum): associates a counter
to each literal. Every time that a clause is added the counters of its literals
are increased. It is chosen the variable with the same polarity of the literal
with the highest counter. Periodically, all the counters are divided by a
constant.

The BCP() function is responsible for carrying the Boolean Constraint Prop-
agation: to identify unit clauses and create implications until there are no more
implications or a conflict arises.

Most time of the solvers spend about 90% of their time in BCP() [12], so
developers try to make the function very efficient.

The decisions are saved in a stack called decision stack. Each is associated
an integer tag called decision level that corresponds to the height of the decision
in the stack. Every implication is related to the corresponding decision by the
decision level, what makes easy to find the decision responsible for an implica-
tion.

The resolveConflict() is responsible to undo all the implications of the cur-
rent decision level and flip the value of the decision. If both values of the decision
have already been tried, is made a backtrack in the decision stack (canceling de-
cisions and implications) until find a decision not tried both ways. If no such
decision can be found, and we reach the decision level zero, then the problem is
UNSAT.

All the canceled decisions are complemented and grouped to form a conflict
clause that is added in the database to forbid such decisions. This process is
called learning.

Definition 4.1.1 (Learnt clause) A learnt clause is a clause generated by the
learning process and contains complemented literals from decisions that led to a
conflict.

For an efficient BCP() procedure is need to detect implications easily, i.e.,
when in a clause with N literals the number of false literals goes from N-2 to
N-1, meaning that only one literal is not assigned. The watched literals tech-
nique to solve this problem consists in select for each clause two unassigned
literals and just process the clause when one of the watched literals becomes
false. In this situation, two things may occur: there are more unassigned liter-
als and another one becomes watched or the clause becomes implied by setting
to true the watched literal.

Example 4.1.2 Execution of DPLL algorithm, backtrack and learning on the
following formula in CNF format:

4.2 MiniSAT 17

F = (α ∨ γ ∨ δ) ∧ (α ∨ γ ∨ ¬δ) ∧ (α ∨ ¬γ ∨ δ) ∧ (α ∨ ¬γ ∨ ¬δ) ∧ (¬α ∨ β).

1. assign values to the variables: α = false, β = false, γ = false;

2. conflict when BCP assigns δ = true in first and δ = false in the second
clause;

3. a learnt clause is added: F ′ = F ∧ (α ∨ γ);

4. backtrack to assign γ = true;

5. conflict when BCP assigns δ = true in third and δ = false in the fourth
clause;

6. a learnt clause is added: F ′′ = F ′ ∧ (α ∨ ¬γ);

7. backtrack that undoes all assignments;

8. assign α = true;

9. BCP assigns β = true;

10. SAT ! Model: α = true and β = false.

4.2 MiniSAT

MiniSAT is a SAT-solver written in C++ by Niklas Eén and Niklas Sörensson
at Chalmers University in Sweden. Although small with about 600 lines of code,
it implements the state of the art SAT–solving techniques [5].

We now present how the previous procedures and techniques are imple-
mented in MiniSAT and explain their particularities.

MiniSAT is also based in the Davis-Putnam algorithm and its propagation
is similar to the one described above. It uses the techniques of the watched
literals and learnt clauses.

There is a VSIDS activity attached to variables (instead of literals), that is
increased when they appear in a learnt clause. All activities are multiplied by a
constant less than 1 to decay over time. The next variable to be assigned either
is a random variable or the one with the biggest activity.

The new thing in MiniSAT is that learnt clauses are also attached to an
activity. When a learnt clause is analyzed its activity increases. To avoid the
explosion of the number of this clauses, the database is reduced by half.

Other feature is the possibility to give to the solver a set of literals to be
assumed as true and search for satisfiability based on that information. When

4.2 MiniSAT 18

the search ends the assumptions are undone and the solver returns to initial
state even when a contradiction is found (being the result interpreted as UN-
SAT under assumptions) preserving the database of learnt clauses and filling
a vector of conflicts. This vector of conflicts contains a clause contradicting
some of the literals assumed, with opposite polarities, that were responsible for
unsatisfiability.

Example 4.2.1 A boolean formula contains the variables ϕ and ψ. Assuming
the literals ¬ϕ and ¬ψ and running the solver, if it returns UNSAT and the
vector of conflicts has the literal ψ it means that assuming ¬ψ was enough for
the formula be UNSAT.

The solver is composed by several modules responsible for different data
structures and functionalities:

• Global : for data types and functions. Specifies a vector data type and
lifted booleans (a data type that holds the values true, false or undefined),
generation of random numbers, measurement of used resources (memory
and CPU time) and memory management.

• Variables order : to keep the logic variables ordered. Includes the imple-
mentation of a heap.

• Sorting : set of functions to sort vectors. Uses Global module.

• Solver : includes the data types (literals and clauses) and procedures for
the SAT-solver algorithm. Uses all other modules.

• Input readers: functions to read and parse the input formulas.

• Standalone application: program to test satisfiability. Uses all modules
above.

We present the mapping between modules/submodules and the files of source
code in the following table:

Modules File
Global module Global.h

Heap submodule Heap.h
Variables order module VarOrder.h

Sorting module Sort.h
Solver methods module Solver.h and Solver.C

Solver data types module SolverTypes.h
Input readers Main.C

Standalone application Main.C

Table 4.1: Mapping of modules in the file system

Chapter 5

Parallel implementation

If you were plowing a field, which
would you rather use? Two
strong oxen or 1024 chickens?
Seymour Cray

This chapter presents the design, structure and details of the parallel algo-
rithm. Is described its design, features, implementation details, application’s
work flow, modular decomposition and the technology used.

5.1 PCAM design

In this section we describe the design of the parallel algorithm using the PCAM
approach.

5.1.1 Partitioning

Due to the architecture of MiniSAT, the partition of the problem cannot be
functional, because several of its functions rely on the results of others and must
be executed sequentially. They also read and update many data structures in
certain sequences in order to keep them coherent.

However, we realize about the complete independence between assignments
to variables. Each assignment yields a single boolean value from the formula,
independent of any other. The several combinations of assignments can be
organized as a binary tree where every branch and subtree are independent of
all others, allowing their exploration in parallel.

Definition 5.1.1 (Assumption) An assumption is a set of literals assumed
as true.

The strategy used makes assumptions over a small set of variables and search
for satisfiability on subtrees of the assignments tree. Note that there is no need

5.2 Implementation details 20

to change the solver because, as was said in the previous chapter, it can under
assumptions determine whether the problem is SAT or UNSAT. By making a
domain partition, in this manner the search space can be split into which can
be searched concurrently.

5.1.2 Communication

The most appropriate communication model is to have a master task that sends
assumptions to other tasks to test them for satisfiability, i.e. a Task Farm
architectural style. This allows to focus the management in one task and the
search in the others.

Each worker task communicates only with the master task. After receiving
an assumption, the worker runs the solver and reports the solution found (or
not) to the master.

This model provides an independent execution of each worker task reduc-
ing communication’s complexity by avoiding the exchange of messages between
workers.

5.1.3 Agglomeration

Here the agglomeration idea is different: the granularity is seen as the amount of
generated assumptions. It should be large enough to allow each worker to receive
and test more than one assumption. This takes advantage of the reusability of
the solver and contributes to balance the time spent on solving the assumptions
because each one takes a different time.

5.1.4 Mapping

As much as possible, each task should run on a different machine due to the
high processor usage of the solver and because they do not communicate with
each other, just with the master. Putting several tasks running in the same
machine will only affect their performance because they will dispute the CPU
and the memory.

With this design the parallel program has a Task Farm architecture, with
domain decomposition and synchronous, static and structured communication
and granularity based on the number of generated assumptions.

The organization of the algorithm is presented in Figure 5.1 with the arrows
and boxes notation, where the arrows represent the direction of communications
of data and the boxes represent the tasks of the program.

5.2 Implementation details

In this section are explained in detail the following procedures and features of
the application:

5.2 Implementation details 21

Figure 5.1: Task Farm organization

• variables selection;

• assumptions generation;

• assumptions pruning;

• sharing learnt clauses;

• automatic settings;

• messages.

5.2.1 Variables selection

We can select two types of variables to use in the assumptions: the ones that
occur more times or in bigger clauses. The first ones have the objective to affect
more clauses, while the second ones are to simplify the biggest clauses.

To do this selection we have two counters for each variable, one for its positive
literal and other for its negative literal. As we read the literals of the clauses
the respective counter of the variable is increased. For the variables with more
occurrences, the counter is increased by one, while for the variables in bigger
clauses the counter is increased with the number of literals of the clause. In the
end the variables are sorted by the sum of the two counters and the ones with
biggest values are chosen.

We use two counters because the program needs to know which literal oc-
curred more times to create the assumptions.

In the following we will refer to the variables with more occurrences, and to
their literals, as “the most popular”.

5.2.2 Assumptions generation

Given a set of variables, there is more than one way to generate assumptions
and explore the assignments tree. It was decided to allow different assumption

5.2 Implementation details 22

generation and work assignment methods, to provide a freedom of choice to
the user and to analyze their performance. We propose two major methods to
create assumptions subdivided in sub-modes of work assignment:

• Equal : every assumptions has the same number of literals.

1. Random: the assumptions are chosen randomly.

2. Sequential : the assumptions are chosen in a sequential way.

• Progressive: the amount of literals in the assumptions changes.

1. Few first : we start from the assumptions with few literals to those
with many literals.

2. Many first : we start from the assumptions with many literals to those
with few literals.

In the following subsections we shall analyze and describe each method with
more detail. Lets assume that there were already chosen the k most popular
variables and we will refer to them just as the k variables.

Equal method

Each assumption is a branch of the assignments tree over the k variables. All the
possible combinations are generated, making a total of 2k different assumptions.

Example 5.2.1 If the set of most popular variables is {ϕ,ψ}, the four as-
sumptions to test are: {¬ϕ,¬ψ}, {¬ϕ,ψ}, {ϕ,¬ψ} and {ϕ,ψ}, arranged in the
following tree:

vvmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQQ

¬ϕ

}}{{
{{

{{
{{

 A
AA

AA
AA

A ϕ

~~}}
}}

}}
}}

��>
>>

>>
>>

¬ψ ψ ¬ψ ψ

The two sub–modes refer to the testing sequence of the assumptions. In sub–
mode Random the assumptions are chosen randomly to be tested, to explore at
the same time distant subtrees of the assignments tree.

5.2 Implementation details 23

Example 5.2.2 Choosing randomly the branches:

vvlllllllllllllll

((QQQQQQQQQQQQQQQ

¬ϕ

||zz
zz

zz
zz

!!C
CC

CC
CC

C ϕ

~~}}
}}

}}
}}

 B
BB

BB
BB

B

¬ψ ψ ¬ψ ψ

2nd 1st 4th 3rd

In the sub-mode Sequential the assumptions are chosen sequentially, starting
by the one with the most popular literals and traversing the assignments tree
from left to right.

Example 5.2.3 Sequential mode, having {¬ϕ,ψ} as the most popular literals.

vvlllllllllllllll

((RRRRRRRRRRRRRRRR

¬ϕ

}}zz
zz

zz
zz

!!C
CC

CC
CC

C ϕ

~~||
||

||
||

 B
BB

BB
BB

B

¬ψ ψ ¬ψ ψ

4th 1st 2nd 3rd

Progressive method

The Progressive method is a different approach to explore the assignments tree.
While in Equal method all the explored subtrees have the same size and the
number of assumptions grows exponentially when the amount of their literals
increase; in Progressive method the intention is to make the number of assump-
tions grow polynomially as their literals increase but having a variation on the
size of the searched subtrees. The main objective is to provide a way to have
assumptions with many literals, without having an exponential growth of com-
binations, to explore more deeply the assignments tree. For k variables this
method will create 2 × k assumptions. This is accomplished by generating the
assumptions by the following algorithm proposed by us:

Proposition 5.2.4 The following algorithm provides a set of 2×k assumptions,
with an amount of literals ranging from 2 to k, that covers the entire assignments
tree:

5.2 Implementation details 24

1. Organize the most popular literals by the same order, in a list indexed
from 1 to k;

2. for each i − th literal from the list, 1 < i ≤ k, create an assumption
containing:

(a) all the previous j − th literals, 1 ≤ j < i;

(b) the complement of the i− th literal;

3. create an assumption with all the k literals;

4. for each of the previous assumptions, make new ones by complementing
their first literal.

Proof: we will prove that the phases 2 and 3 of the algorithm generate assump-
tions that cover exactly half of the assignments tree and the phase 4 generates
the assumptions of the other half.

Proof by induction on the number of literals k in the list.

Base: k = 1

1. the list has one literal: {ϕ1}.

2. the cycle does not create any assumption because there is no 2nd literal.

3. creates the assumption h1 = {ϕ1}. h1 covers one branch (half) of the
assignments tree for ϕ1.

4. creates the assumption h2 = {¬ϕ1} that covers the other branch of the
tree.

The induction hypothesis asserts that for k = n, with a list of n literals
{ϕ1, . . . , ϕn}, the steps 2 and 3 generate the assumptions h1, . . .hn that cover
half of the assignments tree. Complementing the first literal (ϕ1) that appears
in all h1, . . . , hn by construction, we cover the other half of the tree.

Step: k = n+ 1

1. the list has n+ 1 literals {ϕ1, . . . , ϕn+1}.

2. generates the assumptions {h′1, . . . , h′n} where
h′1 = h1, . . . , h′n−1 = hn−1 by construction and
h′n = {ϕ1, . . . , ϕn,¬ϕn+1} = hn ∪ {¬ϕn+1}.

3. creates the assumption h′n+1 = {ϕ1, . . . , ϕn, ϕn+1} = hn ∪ {ϕn+1}.
The assumptions h′n and h′n+1 extend the assumption hn that covered
the longest branch of that half of the tree by including the two combina-
tions for ϕn+1. For induction hypothesis as h1, . . . , hn cover half of the
assignments tree then h′1, . . . , h

′
n+1 also cover half of the assignments tree.

5.2 Implementation details 25

4. generating n+ 1 assumptions by complementing the literal ϕ1 of the pre-
vious assumptions, the other half of the tree is also covered.

QED

Example 5.2.5 Consider the most popular literals ϕ, ψ and γ. Applying the
steps of the method:

1. Get the list {ϕ,ψ, γ};

2. the assumption for i = 2 is {ϕ,¬ψ} and for i = 3 is {ϕ,ψ,¬γ};

3. create the assumption {ϕ,ψ, γ};

4. create the assumptions {¬ϕ,¬ψ}, {¬ϕ,ψ,¬γ} and {¬ϕ,ψ, γ}.

Six assumptions were created:

1. {ϕ,¬ψ};

2. {ϕ,ψ,¬γ};

3. {ϕ,ψ, γ};

4. {¬ϕ,¬ψ};

5. {¬ϕ,ψ,¬γ};

6. {¬ϕ,ψ, γ}.

As we can see, the assumptions (with the correspondent number under the
branches) cover all the assignments tree:

{{xxx
xx

xx
xx

##F
FF

FF
FF

FF

¬ϕ

}}{{
{{

{{
{{

!!C
CC

CC
CC

C ϕ

}}{{
{{

{{
{{

!!C
CCCCCCC

¬ψ

}}{{
{{

{{
{{

��

ψ

}}{{
{{

{{
{{

��

¬ψ

�� !!C
CC

CC
CC

C ψ

�� !!C
CC

CC
CC

CC

¬γ γ ¬γ γ ¬γ γ ¬γ γ

(4) (4) (5) (6) (1) (1) (2) (3)

The first and fourth assumptions explore a large subtree composed by two
branches.

The two sub–modes allow to decide whether to start from the assumptions
with two literals (Few first) or from those with k literals (Many first).

5.2 Implementation details 26

5.2.3 Assumptions pruning

As was said in the previous chapter, in case of finding a contradiction under
assumptions the solver may fill the vector of conflicts with a subset of the as-
sumed literals, with the opposite polarity, responsible for that contradiction.

The polarity of the vector’s literals is again reversed to get the original ones
and they are added to the result message sent to the master that erases all the
assumptions not yet tested that contain them. The objective is to invalidate
branches from the search tree even without evaluating them in order to save
time.

The vector of conflicts is sent to the master incorporated in the result mes-
sage that has a fixed size and includes an array with twenty slots for it because
are enough for most of the vectors and just one message will be sent most of
the times. To assure the communication of vectors with any size, a protocol has
been made to break a larger vector through several messages and be rebuilt by
the master. Including the vector in the result message avoids sending another
one that would introduce more delays.

5.2.4 Sharing learnt clauses

A mechanism to share learnt clauses between the workers was implemented. If
the option is enabled the worker sends to the master a set of learnt clauses after
finishing a search. Each set may have a maximum number of clauses, each one
with a limited size (amount of literals). These restrictions put a threshold on
the amount and size of the message sent, because there may exist clauses with
hundreds of literals. The selection of the learnt clauses is made after sorting by
activity the array where they are kept, traverse it from end to the middle (to
share only the most active ones) and choose a limited number of those with less
or equal size than the maximum allowed.

The master has a database for each worker where it stores the most recent
set of learnt clauses sent by that worker. The idea is to have always the most
recent ones so the old ones are replaced by new ones that arrive.

When the master has to send a set of learnt clauses to a worker he chooses
one that has not been sent to that worker yet. So the receiver will always get
different information.

As was said in the previous chapter, there is an activity associated to each
learnt clause. When a worker sends a set of learnt clauses to the master their
activities are not included. The responsible for assigning activities to that set is
the worker that receives it to respect the scale of values of the existing learnts.
The activities of the new learnt clauses are set to the maximum value of those
stored in the worker to give them some relevance and to avoid being removed
in the next solver’s learnts cleanup.

5.2 Implementation details 27

Besides sharing, the worker may also remove all the learnt clauses from the
solver after each execution or leave them to be used in the next one.

5.2.5 Messages

The communication between master and workers is made by message passing.
This system only allows messages composed by primitive types or structures
of them. Therefore, all the objects – literals and clauses – had to be encoded
as integers. The variables are already represented internally as integers bigger
or equal than zero. To encode a literal object as integer we need to relate its
variable and polarity. One might think to encode as the variable with positive
or negative sign, but there is the special case of variable 0 (zero). Our solution
is to increase the variable by one and add a sign if the literal is negative.

There are four types of messages: request for work, result, set of learnt
clauses and model.

Request for work

This is a message sent from the master to a worker containing one assumption
to be made by the solver, i.e., a set of literals encoded as integers. Due to
the fact that the Progressive mode uses assumptions with different amount of
literals we had two alternatives: to send messages of different sizes or to send a
message with a fixed size and a special value to indicate the end of assumption.
We choose the second alternative to avoid being always asking for the size of
the message. The end of assumption value is the only one that is not used in
the encoding: zero.

The message with assumptions containing k literals has size k:

lit1 lit2 lit3 . . . litk

Table 5.1: Message for Equal mode

lit1 . . . litn 0 . . .

Table 5.2: Message for Progressive mode, assuming n < k literals

Result

The result is a message, or a set of messages sent by the worker for the master
after solving part of the problem. It is composed by the result (SAT or UNSAT)
encoded as 1 or 0 respectively, a flag to indicate if there are more messages, the
CPU time spent by the worker to solve the last assumption, an array for the
literals returned by the solver as responsible by the conflict and their amount.

5.2 Implementation details 28

All the fields are integers except the time that is a double.

We say that the result may need to be sent in more than one message because
the conflicts may be more than the size of the array. The array has a fixed size
of 20 and is big enough for the most of the cases, so generally only one message
should be sent.

SAT or UNSAT flag time literals in array array of literals

Table 5.3: Result message

Set of learnt clauses

The sets of learnt clauses are exchanged between the workers and the master.
The workers send the learnt clauses with more activity and the master keeps
and shares them with other workers.

The clauses, whose literals are encoded by the way described above, are
separated by the value zero.

clause1 0 . . . clausen 0

Table 5.4: Set of learnt clauses

A limit is imposed to the size of each clause to avoid very long messages and
to know how many memory must be allocated to save the set.

Model

The model is the assignment that makes the formula satisfiable. It is not manda-
tory to have all the variables assigned, being the model the smallest subset of
variables that makes the formula being true.

So the message with the model contains the assigned variables, that are
encoded as literals as described above to represent the values true and false in
the assignments.

lit1 lit2 lit3 . . . litn

Table 5.5: Model of the formula

5.2.6 Automatic settings

When the search mode or the number of variables to assume are not specified,
they are determined automatically by the program, based on the number of
workers, the assumptions–CPUs ratio (acr) and the search mode. The acr
indicates the intended relation between the amount of assumptions and workers,
i.e., how many assumptions should ideally each worker solve.

5.3 Application’s work flow 29

Given n workers and an acr, we determine the amount V of variables to
assume for Progressive or Equal mode by the following formulas.

Vprogressive = dn× acr/2e (5.1)

Vequal = dlog2 (acr × n)e (5.2)

In Progressive mode the number of assumptions is 2×Vprogressive ≈ acr×n.

In Equal mode the number of assumptions is 2Vequal = 2dlog2 (acr×n)e ≈
acr × n.

When only the number of variables is given the search mode is set as
Random if 2V ≤ acr × n, else is set as Many first.

When none of the parameters are given, the search mode is set to Random
and V = Vequal.

5.3 Application’s work flow

bool test4SAT(){
generate all assumptions;
send one assumption for each worker;
do{
receive a result from a worker;
if(result is SAT) return SAT;

if(sharing learnt clauses)
receive learnt clauses and add them into the database;

if(conflicts enabled)
erase the assumptions containing the conflicts;

if(more assumptions to try){
if(sharing learnt clauses)
retrieve from database a set of learnt clauses and send it;

send another assumption;
}

}while(not tested all assumptions);
return UNSAT;
}

Figure 5.2: Function test4SAT()

5.3 Application’s work flow 30

main(){
Solver S;
parse parameters;
read input file into S;
automatically calculate the missing parameters;

if(local mode) S.solve() and output result;

else{ //parallel mode

if(master){//master code
choose the most popular variables;
result = test4SAT();
output result;
if(should write the model)
receive and write the model;

abort computation;
}//end master

else{//worker code
while(true){
receive assumption;

if(sharing learnt clauses){
receive a set of learnt clauses;
insert the learnt clauses into S;

}

result = S.solve(assumptions);

if(result is SAT){
send result;
if(should write the model) send the model;

}

if(sharing learnt clauses)
get a set of learnt clauses from the solver and send them;

if(removing all learnt clauses)
delete all learnt clauses from S;

if(conflicts enabled)
get the set of conflicts and insert them in the result;

send result;
}//while

}//end else worker
}//end else parallel

}

Figure 5.3: Program’s main()

5.4 Modules of the program 31

The application can be divided in two parts: the master and the worker,
both sharing a common initialization. Their pseudocode is in Figures 5.2 and
5.3.

The master sends assumptions that the workers use to restrict the search
space. After solving, each worker sends learnt clauses or conflicts, if those
options are enabled, the result of the search (SAT or UNSAT) and the model
(if requested and the result is SAT). The master saves the learnt clauses in a
database, removes assumptions that could contain conflicts and sends other set
of learnt clauses and assumption to test. When one worker reports SAT or all
the assumptions are reported as UNSAT, the master aborts the computation.

The solver of the worker, by default, preserve the learnt clauses to reuse in
the next search, but may remove them if the user wishes to.

5.4 Modules of the program

The number of modules has grown significantly:

• Global : for data types and functions. Specifies a vector data type and
lifted booleans (may assume the values true, false or undefined), gener-
ation of random numbers, measurement of used resources (memory and
CPU time) and memory management.

• Variables order : to keep the logic variables ordered. Also implements a
data structure for a heap.

• Sorting : set of functions to sort vectors. Uses Global module.

• Solver : includes the data types (literals and clauses) and methods for
the SAT-solver algorithm (new clause, propagate, search, solve). Uses all
modules above.

• Learnts database: to save and retrieve sets of learnt clauses.

• Assumptions generation: to generate assumptions.

• Counter of variables: to count the occurrences of each variable in the
formula.

• Statistics: to register the options chosen as well as execution and commu-
nication times.

• Arguments parser : to parse the arguments given to the program.

• Input readers: functions to read and parse the input formulas.

• Standalone application: program to test satisfiability. Uses all other mod-
ules.

The module Arguments parser belongs to the application Arg parser writ-
ten by Antonio Diaz Diaz and released under GNU General Public License.

The mapping of the modules into the file system is shown in table 5.6.

5.5 Technology 32

Modules File
Global module Global.h

Heap submodule Heap.h
Variables order module VarOrder.h

Sorting module Sort.h
Solver methods module Solver.h and Solver.C

Solver data types module SolverTypes.h
Learnts database LearntsDB.h and LearntsDB.C

Assumptions generation Assumptions.h and Assumptions.C
Counter of variables OccurVar.h

Statistics Statistics.h and Statistics.C
Arguments parser arg parser.h and arg parser.C

Input readers Main.C
Standalone application Main.C

Table 5.6: Mapping of modules in the file system

5.5 Technology

The implementation of the program was written in C++, to extend the original
MiniSAT v1.14, and uses MPI – MPICH 1.2.6 – functions to establish the par-
allelism and communications between tasks. This program may be executed in
clusters or grids with any dimension being completely scalable to any number
of CPUs by choosing the right amount of variables to assume.

Chapter 6

Experimental results and
performance analysis

You never really know how quick
you are before you reach F1.
Jean Alesi

In this chapter we present and analyze the performance achieved by the
program developed. As benchmarks we used 25 (7 UNSAT and 18 SAT) files
taken from the Internet and SAT competitions. These files were solved by
the program using the different search modes and options to see the different
performances and load balances attained. The files, its solutions, amount of
variables and clauses were are presented in Table 6.1.

6.1 Grid resources

The performance tests were made in the Grid Infrastructure available at INESC–
ID, using the 11 nodes available. These nodes have a homogeneous architecture
with Pentium 4 processors running at 3.2 GHz, 1 GB of RAM, Linux operating
system, MPICH 1.2.6 and the same hard drive shared via NFS.

The advantage of homogeneity is that eliminates delays caused by slower
machines that distort the results attained in heterogeneous architectures.

6.2 Methodology

To test the effectiveness of the parallel algorithm it was decided to compare
the time spent by the sequential version of MiniSAT and the executions of the
parallel program called with different options. To do so, four sets of tests were
devised.

6.2 Methodology 34

File Solution Variables Clauses
fpga10 11 uns rcr.cnf UNSAT 220 1122
fpga10 12 uns rcr.cnf UNSAT 240 1344
fpga10 13 uns rcr.cnf UNSAT 260 1586

hole11.cnf UNSAT 132 738
mod2-3cage-unsat-9-11.cnf UNSAT 87 232
mod2-3cage-unsat-9-4.cnf UNSAT 87 232

unif-r4.cnf UNSAT 400 1700
frb40-19-1.cnf SAT 760 43780
frb40-19-2.cnf SAT 760 43780
frb40-19-3.cnf SAT 760 43780
frb40-19-4.cnf SAT 760 43780
frb40-19-5.cnf SAT 760 43780

mod2-3g14-sat.cnf SAT 192 768
mod2c-rand3bip-sat-150-11.cnf SAT 212 1520
mod2c-rand3bip-sat-150-15.cnf SAT 213 1528

sat2.cnf SAT 283 1358
unif-r5.cnf SAT 251 323

vmpc 21.renamed-as.sat05-1923.cnf SAT 441 45339
vmpc 23.renamed-as.sat05-1927.cnf SAT 529 59685
vmpc 25.renamed-as.sat05-1913.cnf SAT 625 76775
vmpc 25.shuffled-as.sat05-1945.cnf SAT 625 76775
vmpc 26.renamed-as.sat05-1914.cnf SAT 676 86424
vmpc 26.shuffled-as.sat05-1946.cnf SAT 676 86424
vmpc 27.renamed-as.sat05-1915.cnf SAT 729 96849
vmpc 27.shuffled-as.sat05-1947.cnf SAT 729 96849

Table 6.1: Benchmark files

The first two tests, with just one worker task, have the objective of deter-
mining the influence of communication delays.

In the following tests the number of nodes varies between 3 and 11. This
means that the amount of worker tasks varies between 2 and 10, the remaining
node being used as master.

The third test is to determine the influence of having different numbers of
nodes to solve a formula. The number of variables to assume is kept constant.
All the search modes are tested with no other options, sharing learnt clauses or
pruning/removing assumptions with conflicts.

We decided to assume 6 variables because they provide an adequate amount
of assumptions generated by the search modes. Also the performance varies
with that amount and there is no particular value that is more accurate than
others.

6.3 Goals and difficulties 35

The fourth test is to see the influence of solving a formula with different
amounts of variables. Are tested all the search modes with no other options.
The amount of variables is automatically calculated according to the acr that
is equal to the number of worker tasks.

The tests are summarized as follows:

• the master with one worker, both in the same node;

• the master with one worker in a different node;

• for an amount of worker tasks between 2 and 10, for each search mode,
assuming 6 variables and:

1. no other options;

2. removing assumptions with conflicts;

3. sharing learnt clauses.

• for an amount of worker tasks and assumptions–CPUs ratio between 2
and 10 (2 workers, acr = 2; 3 workers, acr = 3; . . .), for each search mode
and no other options.

6.3 Goals and difficulties

The purpose of this analysis is to study the achievements of the parallel algo-
rithm on:

• effectiveness (speedup, efficiency and serial fraction);

• performance of the different search modes;

• influence of sharing learnt clauses;

• consequences of reduce the search space by removing assumptions with
conflicts;

• load distribution between the workers.

Being a search problem and depending on the structure of the boolean for-
mula and on the settings of the SAT–solver (like the amount of variables in
assumptions, the number of workers and the search mode) there is no way to
predict:

• how much time the algorithm will take;

• if the problem to solve is easy or hard;

• the best search space partition;

6.4 Time measurement 36

• the better search mode;

• who solves each assumption;

• the part of the assignments tree where the solution is.

Thus the results of the performance study, are difficult to be generalized.

6.4 Time measurement

The execution time is one of the most difficult things to measure in parallel
programs due to the overlapped computation, communication delays and waits
for work.

To make a coherent analysis and comparison between the original MiniSAT
and the parallel version, the time measurements must follow the same methods
and use the same tools.

MiniSAT measures the CPU time, with the system call getrusage(), for the
whole execution: the time spent reading the input, solve the problem (find the
first solution or UNSAT) and output the result. To be coherent with MiniSAT,
the parallel program also measures the CPU time spent until it finds the first
solution.

This time must be measured in the master and in the workers and just re-
flects the effort to find the solution ignoring delays and idle times (that can only
be measured with the Wall time).

A software module was designed to record the statistics containing a database
for each worker with: its total CPU time, total CPU time spent by the master
to process its responses, number of executions completed, amount of sets of
learnt clauses sent to and received from the master. It also records the initial-
ization and finalization CPU time spent by the master and the overall Wall time.

The total time is the sum of initialization, finalization, CPU time of the most
occupied worker and CPU time spent by the master to process the responses of
that worker.

Figure 6.1 shows the interaction between the master and one worker, indi-
cating with a gray fill the timed operations.

The time spent by the worker to send the result is not measured because,
as was said, the execution time goes in that message. We do not care about
the time spent by the workers on initialization because the master spends even
more and we want the maximum.

6.5 Results 37

Figure 6.1: Timed operations (gray fill)

Communication delays and the load of the system are not measured by the
CPU time. To have an idea of the influence of these two factors, one should
compare the Wall time with the Total time.

6.5 Results

In this section we will present the results of the tests over the formulas displayed
in Table 6.1. All the times of the tables are in seconds.

The following subsections present the results of the measurements described
in the section Methodology.

For the tests with one worker we will discuss the influence of the communi-
cation in the time spent on computing.

The tests to different modes and options and to granularity describe and
compare the best, worst and average time spent on computing.

6.5 Results 38

The average is made to the time spent to solve all files. Are presented average
times for 3, 6 an 9 workers with different search modes, options and granularity.
These amounts were chosen to illustrate the variation in the number of workers.

Finally are described the types of load distribution that we have registered
among the nodes.

6.5.1 Communication delay

Tables B.1 and B.2 show the results of solving the test files in the sequential
MiniSAT and in the parallel version with the master and one worker, running
in the same or in distinct nodes, to see the influence of the communication
(comparing the CPU and Wall time).

Although the Grid is shared among several users, most of the tests were
made in unloaded conditions almost without the interference of other CPU de-
manding programs. This allowed to get a Wall time very similar with the CPU
time.

The options of the parallel version where: 6 variables assumed and Sequen-
tial mode, while all the others had their default values. The maximum number
of requests would be 26 = 64 and the number of messages (2 per request) would
be 128.

The influence of the communication, partially determined by the difference
between the Wall and CPU time, is minimal in the order of tenths or hundredths
of second. This is due to the small number and size of the messages sent.

Due to the random behavior of the solver, the times spent in the local test
and in the remote test were different and did not allowed to determine the
influence of the time spent on communication, but it is irrelevant because the
gains achieved are in orders of sets of ten or hundreds of seconds. There is no
problem spending two or three seconds in communication because the gains,
when they exist, are widely superiors.

6.5.2 Modes and options

This subsection presents the performance achieved with the test files, with the 4
search modes, an amount of workers between 2 and 10, assuming 6 literals and
without options, removing assumptions with conflicts or sharing learnt clauses.

About the best performances (in Tables B.7, B.9 and B.11), most of them
occurred with a significant number of workers. The most frequent search modes
were Random and Few first, while the Many first and the Sequential were only
registered a couple of times.

Super–linear speedups occurred frequently, most of them in SAT files. The
most incredible speedups were achieved when files that took more than 500,

6.5 Results 39

1000 or even 5000 seconds in the sequential MiniSAT were solved in few sec-
onds by the parallel version, meaning that the partition holding the solution
was quickly (and one of the firsts being) explored.

But the parallel solver did not always solved the problems faster. In many
situations it took a longer time than the sequential version and sometimes up
to 10 times more. Most of the worst times were registered with few workers due
to the long computations that occupied them excessively. The worst times are
in Tables B.8, B.10 and B.12.

Table B.3 and Table B.4 show that the average time per file decreased from
more than 800 seconds taken by the sequential MiniSAT to about 500 seconds
taken by the parallel program. The times in Table B.4 indicate that the aver-
age times in the modes Few first and Sequential decreased when the workers
increased. The more significant decrease happened with Few first mode. The av-
erage times of the mode Many first decreased from 3 to 6 workers but increased
from 6 to 9 workers. With the Random mode, the average times increased from
3 to 6 workers and decreased from 6 to 9 workers. There were registered few
gains due the share of learnt clauses or the removal of assumptions with conflicts.

The best speedups achieved with the UNSAT files had values around between
1 and 4, i.e sub-linear, with the exception of the file unif-r4.cnf with 16. In
contrast almost all speedups with SAT files were super-linear, indicating that
better performances might be achieved when the solution exists.

The average times for each SAT file varied between 150 and 650 seconds, very
inferior to the 916 seconds taken by the sequential MiniSAT. The UNSAT files
were solved quickly, with average times varying between 125 and 370 seconds.
The average time to solve them with sequential MiniSAT was about 640 seconds.

It was noticed that sometimes the options to remove assumptions with con-
flicts and share learnt clauses introduced significant speedups, while in the rest
of the times the performance remained equal or got even worse.

There are two kinds of benefits when removing assumptions: small time is
saved with those that lead to immediate contradictions and many time is saved
with those that may take long. But the reduction of tests stops the solvers of
increase their database of learnt clauses.

Although the learnt clauses help to guide the search, when they are shared
and reused in different conditions may detect conflicts where they do not exist
and cause delays.

The amount of assumptions with conflicts removed was significant in the
Random and Sequential modes (more than 30), but as was said, the execution
time suffered few speedups. In the Few first and Many first modes, the amount
of erased assumptions was smaller, due to its inferior granularity (12 assump-
tions to test).

6.5 Results 40

Also the sharing of learnt clauses was not always done in spite of being
enabled, because their size exceeded the maximum size allowed. Another fact
registered was the difference between the number of sets of learnt clauses sent
and received by the workers, due to load imbalances where one or two workers
solved most of the assumptions and the others solved few. But there are some
examples where the sent and received set of learnt clauses are similar, like with
the file mod2-3cage-unsat-9-11.cnf in Table B.24 for instance.

In some files like mod2-3g14-sat.cnf (Table B.26), none assumption was
removed due to lack of conflicts or by the fact that their literals matched with
the entire assumption. The file that did not share learnt clauses nor erased
assumptions is unif-r5.cnf, displayed in Table B.31.

6.5.3 Granularity

This subsection presents the performance of the tests to measure the influence
of granularity: the number of variables assumed and, therefore, the amount of
assumptions produced.

The conditions assumed for the tests were an equal amount of workers and
assumptions–CPUs ratio between 2 and 10 (2 workers, acr = 2; 3 workers,
acr = 3; . . .), for each search mode, calculating automatically the number of
literals to assume and no other options (conflicts or learnts).

The best results for each file are displayed in Table B.13. These performances
registered 21 better times than those with 6 variables and without options (Table
B.7), in some cases with significant difference between both.

As before, most of the best times were registered with many workers (more
than 7), while the search modes that occur more often are now Many first and
Few first with a high number of variables (like 41 and 50).

The amount of super-linear speedups achieved with UNSAT files increased
to 4, but the difference between the speedups achieved with SAT and UNSAT
files remained.

Also more than half of the worst performances (in Table B.14) exceeded
the time spent by the sequential MiniSAT, some of them by a large difference.
There is not any predominant search mode because Many first, Random and
Sequential appeared 9, 7 and 6 times respectively, while Few first just appeared
3 times. The amount of workers was by 18 times less or equal than 4.

The average time per file with different granularity (Table B.4) also decreased
to values between 95 to 550 seconds when compared with the 840 seconds in
Table B.3. The averages of the Few first and Many first decreased when the
workers increased. On the contrary, the average time of Sequential mode be-
came bigger with the increase of the number of workers.

6.5 Results 41

The averages for SAT files, Table B.5, varied between 32 and 700 seconds,
yet inferior to the 916 seconds in Table B.3. The UNSAT files had average times
between 125 and 360 seconds, very inferior to 640 seconds from Table B.3.

These results show that granularity is so important as the search mode and
plays a major role in the effort to find the solution.

6.5.4 Load distribution

In our context we will define the load of a worker as the total amount of CPU
time spent on computing. The load distribution, or the time that each worker
spends on computing, depends on the time to solve the generated assumptions.

Coinciding the fact that each assumption takes a different time to be solved
and there is no mechanism for automatic load balance, was expected potential
load imbalances between the workers. But during our tests we found all types
of load distributions. We will now report several situations that occurred, al-
though they should not be generalized.

With UNSAT files we found that with few workers the time taken by them
was similar although had solved different amounts of assumptions. When the
number of workers increased, the load distribution sometimes diverged with the
Few first and Many first modes (some workers ended quickly and others spent
much time with few assumptions) or remained similar with the Random and
Sequential modes.

With SAT files, we found three situations: the solution was in the hardest
partition and one worker spent much time to find it while the others finished
after some seconds; there was a balance and all the workers took similar times;
or one worker found the solution while all (or some part of) the others were still
solving their first assumption.

The above results show that is hard, or even impossible to predict how
the load will be distributed. The positive point of the imbalances is that the
resources may be released sooner and the worker used for other purposes.

Chapter 7

Conclusion

This parallel version of MiniSAT gave us an indication of how good is the contri-
bution of parallel computing in this field. It was useful because it showed how
a simple idea like domain decomposition can sometimes improve the search.
The differences in the performances obtained indicate that they depend on the
boolean formula, the search mode and the amount of variables used in assump-
tions and it is impossible to predict the program’s behavior.

The parallel search allowed to solve some files in seconds if the right partition
was explored. As a consequence, super-linear speedup is an achievable reality.

There is no best search mode, because the results show that with 6 variables
the predominant modes were Random and Few first, but with different amounts
of variables the modes Few first and Many first emerged as the fastest, indicat-
ing that the Progressive method should be considered as a serious alternative
to Equal.

In the tests of granularity most of the best performances were achieved with
a large number of variables and workers. This seems to be a good combination
to get significant performance improvements.

The average times shown how the time to solve all the files decrease almost
by half, or even more, when the parallel program is used.

Features such as removing assumptions with conflicts or sharing learned
clauses, presented few good results and did not influence the performance as ex-
pected, because we were hoping that they could improve the search and reduce
the time more often.

For future research we might suggest several decisions and features to be
implemented and studied, like different heuristics to select the variables, new
methods to partition the search space or a system of load balancing.

Bibliography

[1] J. L. Balcázar, J. Dı́az and J. Gabarró. Structural Complexity I, Springer-
Verlag, 1995.

[2] W. Chrabakh and R. Wolski, GrADSAT: A Parallel SAT Solver for the
Grid, Proceedings of IEEE SC03, November 2003.

[3] S. Cook. The complexity of theorem proving procedures in Proceedings of
the third annual ACM Symposium of Theory of Computing, 1971.

[4] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving, Communications of the ACM, (5):394-397, 1962.

[5] N. Eén and N. Sörensson. An extensible SAT-solver in SAT 2003 Volume
2919 of LNCS, Springer (2004) 502–518.

[6] S. L. Forman and A. M. Segre, NAGSAT: A Randomized, Complete, Par-
allel Solver for 3-SAT, Fifth International Symposium on the Theory and
Applications of Satisfiability Testing, May 2002.

[7] I. Foster. Designing and Building Parallel Programs, Addison-Wesley,
1995. Online version at http://www-unix.mcs.anl.gov/dbpp/.

[8] I. Foster. What is the Grid? A three point checklist, Argonne National
Laboratory, 2002.

[9] B. Jurkowiak, C. M. Li, and G. Utard, Parallelizing satz using dynamic
workload balancing, Electronic Notes in Discrete Mathematics, vol. 9, El-
sevier Science Publishers, 2001.

[10] A. H. Karp and H. P. Flatt, Measuring parallel processor performance,
Comm. ACM 33 (5) (1990), pp 539-543.

[11] J. P. Marques Silva and K. A. Sakallah. GRASP - A New Search Algorithm
for Satisfiability in ICCAD. IEEE Computer Society Press, 1996.

[12] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff:
Engeneering an Efficient SAT Solver in Proc. of the 38th Design Automa-
tion Conference, 2001.

http://www-unix.mcs.anl.gov/dbpp/

BIBLIOGRAPHY 44

[13] M. Sipser. Introduction to the Theory of Computation, PWS Publishing
Company, 1997.

[14] D.H.M. Spector. Building Linux Clusters, O’Reilly, 2000.

Appendix A

User manual

This manual describes how to use the parallel version of MiniSAT, to provide a
clear description of its usage, functionalities and options.

A.1 How to use this manual

If you intend to install the program start reading from the following section;
otherwise if you want to learn how to use it, start reading from the section
Usage. There is also a quick start guide that explains the basic usage. The
inputs and outputs of the program are explained as well as error messages. For
doubts consult the FAQ section.

A.2 System requirements and installation

The program should be executed in a cluster or grid containing MPI 1.0 or
higher.

To install just extract all the source files to one directory and compile them
with the make command. You may need to edit the Makefile to set the variable
INCLUDE DIR where the directory /mpich/include/ or other similar is located.
The executable – parallel minisat – may need to be installed in every com-
puter if they don’t share a common file system.

A.3 Quick start

The parallel minisat is executed by the mpirun command:
mpirun -np number-of-CPUs parallel minisat [options] input-file [output-file]

The parameter number-of-CPUs is used to set the number of copies of the
program to execute. p CPUs correspond to one master to manage the search
and p− 1 workers to solve the boolean formula.

A.4 Usage 46

The formula to test is given in a file with extension .cnf or .bcnf. This file
must be placed in all computers (same directory) if they don’t share a common
file system.

The most important options of the program are -n and -m to set the number
of variables to assume and the search mode respectively.

For k variables, the search modes Sequential (s) and Random (r) make 2k

tests while the Few first (f) and Many first (m) make only 2× k tests.

Example A.3.1 Setting the number of CPUs to 4 (3 workers and the master),
the search mode to Sequential and the number of variables to assume to 5.
mpirun -np 4 parallel minisat -m s -n 5 file.cnf

Example A.3.2 Setting the number of CPUs to 9 (8 workers and the master),
the search mode to Many first and the number of variables to assume to 12.
mpirun -np 9 parallel minisat -m m -n 12 file.cnf

If you provide a name for the output file, a file will be created with the result
UNSAT or SAT and the model.

To abort the execution of the program press the keys Ctrl-C.

A.4 Usage

The mpirun command is used to run the program:
mpirun [mpirun options...] <progname> [options...]

Its main options are -np to indicate the number of processors where the pro-
gram will run and -machinefile to indicate a file with the name of the servers
where the application will run. p CPUs correspond to one master to manage
the search and p− 1 workers to solve the boolean formula.

The program parallel minisat is executed through mpirun:
mpirun -np number-of-CPUs parallel minisat [options] input-file [output-file]

If the computers of the cluster or grid do not share a common file system,
the input file must be copied to every nodes where the program will run and
placed in the same directory.

Several behaviours and features can be enabled by the options or from a
configuration file described in the next section.

The minimal set of arguments you must give to invoke the program are:

1. amount of CPUs (k workers + 1 master);

2. name of the executable (parallel minisat);

3. input file.

A.5 Options 47

The optional arguments are:

1. file with a list of machines that will run the program;

2. search mode, number of variables and other options;

3. output file.

The program may be executed without the mpirun command and perform
a sequential search in the local machine, like the original MiniSAT. Its usage is
parallel minisat -m l input-file [output-file] where -m l stands for
Local search mode.

The program may be interrupted if you press Ctrl-C.

A.5 Options

To see the full list of options of the program (in Figure A.5) type
parallel minisat -h. It is not necessary to use the mpirun command.

Extra features are set as flags: -c to remove assumptions with conflicts, -l
to share learnt clauses and -r to remove the learnt clauses after each execution
of the solver.

To configure parameters we have: -s to set the method to choose the vari-
ables to assume, -z and -t to set the maximum size and amount of learnt clauses
and -a to set the assumptions–CPUs ratio (acr).

All the previous options when omitted, assume a default value or retrieve it
from a configuration file if available. The purpose of the file is to define new
default values for parameters and flags without setting them in the command
line. But if a configuration file is loaded and some option is given in the com-
mand line, it overrides the value in the file.

To manage configuration files there are the options -g and -f to generate
and import configuration files respectively.

There are some precautions to have when editing the file: each line may have
a maximum number of 60 characters and there can’t be any space between the
name of the option and the equal sign, because of the simplicity of the parser.

Example A.5.1 To create a configuration file.
parallel minisat -g minisat.conf
The configuration file created by the program is displayed in Figure A.2.

Example A.5.2 To load a configuration file and override the size and max
amount of learnt clauses.
mpirun -np 4 parallel minisat -f minisat.conf -z 40 -t 100 file.cnf

A.5 Options 48

USAGE: mpirun -np number-of-CPUs ./parallel_minisat [options] input-file [output-file]
Options:
-h, --help display this help and exit

-v, --verbose enable the verbose mode

-n <value>, --number-of-vars the number of variables to assume

-m <arg>, --mode assumptions generation / search mode:
l - local execution without assumptions just with 1 CPU
Progressive mode has <arg>:
f - start from the assumptions with few literals
m - start from the assumptions with many literals
Equal mode has <arg>:
r - test the assumptions randomly
s - test the assumptions sequentialy

-f <file>, --config-file read a given configuration file.

-g <file>, --generate-config generate a configuration file and exit. The
program is able to work without a configuration file.

The following options may be set in the configuration file
(command line arguments override them):

-c, --conflicts detect and delete assumptions with conflicts

-l, --learnts enable the share of learnt clauses

-z <value>, --learnts-max-size set the max size of the learnt clauses to
share (default is 20)

-t <value>, --learnts-max-amount set the max amount of learnt clauses to
share (default is 50)

-r, --remove-learnts remove all the learnt clauses after each solve call.
If its share is enabled they are sent before removal.
By default the learnt clauses are kept.

-a <value>, --assumps-cpus-ratio set the ratio between the number of
assumptions to solve and the worker CPUs (default is 3)
It is used in the automatic calculation of the number of literals and mode.

-s <arg>, --selection methods to select the variables to assume with <arg>:
o - variables with more occurrences(default)
b - variables in the biggest clauses

input-file: may be either in plain/gzipped DIMACS format or in BCNF.

output-file: the file where the result is written.

Figure A.1: Program’s options

A.5 Options 49

#keep comments in separate lines
#Do not insert spaces !

#max size of learnt clauses
LEARNTS_MAX_SIZE=20

#share learnt clauses ?
SHARE_LEARNTS=false

#remove learnt clauses after each solve?
REMOVE_LEARNTS=false

#share conflics ?
CONFLICTS=false

#max amount of learnt clauses to send
LEARNTS_MAX_AMOUNT=30

#Ratio between the number of assumptions.
#and the amount of CPUs.
#Used in automatic calculations of
#variables to assume and search mode
ASSUMPS_CPU_RATIO=3

#how select the variables to assume:
#can be more_occurrences or bigger_clauses
VARIABLE_SELECTION=more_occurrences

Figure A.2: Configuration file

The options -m and -n can only be set by the user or calculated automatically
and do not appear in the configuration file. This was decided because you may
want to select different modes or assume a distinct amount of literals each time
you run the program.

As was said, the most important options are precisely the previous two.
Their values, when omitted, are set to respect the assumptions–CPUs ratio,
i.e., create an amount of assumptions proportional to the number of workers
without exceeding a threshold. The ratio should be bigger than 1 (default is 3).

The search modes conduct the search by different paths and for k literals,
the Sequential and Random modes will make 2k tests, while the Few first and
Many first will make only 2× k tests.

A.6 Examples 50

A.6 Examples

Here you can find a set of examples with several different ways to invoke the
program.

Example A.6.1 Running the program in 5 CPUs (4 workers and the master)
with search mode Few first and sharing learnt clauses. The number of variables
is automatically calculated.
mpirun -np 5 parallel minisat -m f -l file.cnf

Example A.6.2 Running the program in 6 CPUs (5 workers and the master),
sharing conflicts and selecting the variables in bigger clauses.
mpirun -np 6 parallel minisat -c -s b file.cnf

Example A.6.3 Running the program in 10 CPUs (9 workers and the master),
sharing conflicts, removing learnt clauses after each execution of the solver and
giving an output file.
mpirun -np 10 parallel minisat -c -r file.cnf out.txt

Example A.6.4 Running the program in 8 CPUs (7 workers and the master),
reading a configuration file, sharing learnt clauses and setting them to have a
maximum size of 10 literals (overriding the value given in the config file).
mpirun -np 8 parallel minisat -f minisat.conf -l -z 10 file.cnf

A.7 Inputs and Outputs

The input with boolean formulas are given in a file in DIMACS/CNF format
(.cnf) or BCNF (.bcnf).

The DIMACS/CNF file format is composed by:

1. comments, that is, lines beginning with the character c;

2. a preamble containing informations about the instance: the file format,
the number of variables and clauses: p format nvars nclauses;

3. the clauses, each one encoded as a sequence of non-null numbers ranging
from -nvars to nvars and separated by zero. Positive numbers represent
the corresponding variables and negative numbers denote their negations.

It is not necessary that every variable appear in the formula, as one can see
in the example where the variable 2 is not used.

A.7 Inputs and Outputs 51

Example A.7.1 (DIMACS/CNF file)
c comments here
c next is preamble
p cnf 5 4
1 -3 4 0
-1 3 0
-5 -4 0
5 -3 0

The result of the search (SAT/UNSAT) is printed to the screen and the
model may be saved in a file if a name is given in the arguments.

The other interesting output produced is a file with the extension .time
containing all the statistics of the execution like the number of calls and the
times spent. It shows:

• master’s initialization time to read the input file, parse and setup the
parameters;

• conditions of the execution: number of workers, variables, search mode,
variables’s selection mode, erased assumptions and options of learnt clauses;

• workers’s execution statistics indicating the number of times the solver
ran, sets of learnt clauses sent and received and the CPU time (user plus
system time) spent in computation and by the master to process worker’s
data;

• master finalization time to write outputs and post processing;

• total time as the sum of master’s initialization and finalization times and
worker +master time from the worker that took more time;

• total wall time to see the influence of the system’s load and the delay
caused by communication.

The name of this file is made following a pattern, by joining the name of the in-
put file and the conditions of execution: number of CPUs, search mode, amount
of variables and method to choose them, existence of conflicts and learnt clauses
(and their settings).

Example A.7.2 After solving the file fpga10 11 uns rcr.cnf in 3 CPUs (2
workers and master), Random mode, assuming 3 variables, removing assump-
tions with conflicts and sharing learnt clauses, the program will create a file
named fpga10 11 uns rcr.cnf-3-r-3-o-c-l-z20-t50.time with the statis-
tics:

A.8 Hints for better performance 52

Master initialization time: 0.005998 secs

Workers: 2
Variables to be assumed: 3
Search mode: r
Variable’s selection mode: o
Erased assumptions: 2
Learnt max amount: 50
Learnts max size: 20

Worker 1:
solve() was executed 2 times
Total time spent by worker: 41.090568 secs
Total time spent by master with this worker: 0.001000 secs
Databases received: 1
Databases sent: 2

Worker 2:
solve() was executed 4 times
Total time spent by worker: 41.034564 secs
Total time spent by master with this worker: 0.001000 secs
Databases received: 1
Databases sent: 4

Master finalization time: 0.000000 secs

Total CPU time: 41.097566 secs

Total wall time: 42.758681 secs

A.8 Hints for better performance

There are no better settings to get a good performance. Through experience,
you may see what the options make the program take less time to solve the
formulas. Here are some, that may not always be the best:

• keep the granularity high: select an amount of variables large enough to
generate more assumptions than the amount of workers (4 or 5 assump-
tions for each worker);

• nevertheless, try a search with few variables and workers (2 or 3). Some
problems are easily solved;

• avoid the Sequential mode. The others provide better performance;

• do not use the option -r to remove the learnt clauses because they will
guide the following searches;

A.9 Error messages 53

• use only conflicts when you have many assumptions and in Random and
Sequential modes. The same for learnt clauses;

• after solving take a look at the file with the statistics because it gives a
clear picture where the time was spent.

A.9 Error messages

The error messages that the program can present are:

• ERROR! Could not open file: filename – the file does not exits or
you don’t have permissions to open it.

• ERROR! Not a BCNF file: filename – the file has an incorrect format.

• ERROR! BCNF file in unsupported byte-order: filename – similar
to previous error.

• PARSE ERROR! Unexpected char: – a character different than a digit
appeared in the input file.

• ERROR! configuration file filename not found! Setting default
values... – the file with the given name was not found and the program
will continue assuming the default internal values for the parameters.

• ERROR! Could not open file: filename – could not open the input
file.

• ERROR! Cannot write output to file! – the program could not write
the results for the output file due lack of permissions, disk space or other
reason.

• ERROR! Number of literals to assume is bigger than number of
variables in formula! – if you tried to assume more variables than
those in the formula.

• ERROR! the number of CPUs is 1 but the selected mode is not
LOCAL! – if the program was invoked without mpirun and with a search
mode different than Local. The program will set the search mode to Local
and continue.

• ERROR! the number of CPUs is greater than 1 but the selected
mode is LOCAL! – the inverse situation, with many CPUs and the Local
mode. The search mode is recalculated and the program continues.

A.10 FAQ 54

A.10 FAQ

What is MPI ?

MPI stands for Message Passing Interface and is a specification of an inter-
face to create parallel programs and manage the communication between the
processes. It is considered the de-facto standard for parallel computing. There
are several vendors that provide MPI as a library to be called by the parallel
programs. These programs are executed in clusters of servers or workstations.

Can I use MPI just in Unix/Linux, or is available for Windows also ?

There are several MPI implementations from different vendors for both op-
erating systems. We used MPICH from Argonne National Laboratory that
provides versions for Windows and Unix/Linux.

Can I run MPI in a heterogeneous (Linux and Windows) clusters ?

You should get that information from your MPI vendor. There are imple-
mentations that just work on homogeneous clusters (same operating system and
version, architecture, libraries) while others may be used in heterogeneous clus-
ters, most of the times with some restrictions (e.g. the size of datatypes).

What are the contents of the file with the list of machines: IPs or hostnames ?

The file given after the option -machinefile contains the hostnames of the
machines where the processes will be created.

What is the average speedup of the program ? When should I use parallel vs
sequential ?

The performance varies with the problem to solve. We noticed that the pro-
gram is faster, but in certain problems or with certain options it takes the same
time or even more. You should use the parallel program with problems that
take much time to solve by the sequential program, for instance more than 300
seconds. The objective is to decrease the execution time in sets of ten or even
hundreds of seconds.

But is there a general idea based in the size of the problem and the amount
of processors ?

No. There are small problems that take a lot of time to solve and big prob-
lems that are solved really fast.

What is super–linear speedup ? Does it happens in the program ? Why ?

A.10 FAQ 55

Speedup is time of the sequential algorithm divided by the time in taken in p
processors. Super–linear speedup happens when the speedup achieved is bigger
than the number of processors used to solve the problem.

A super–linear speedup occur specially with SAT problems. Their cause is
related to how quickly each partition of the subspace is solved and the solution
is found. The solving process is made by a search algorithm that is guided by
the constraints of the problem. This means that each partition takes a different
time to be explored, even when they have the same dimensions. Sometimes the
partition with the solution is quickly explored leading to a super–linear speedup.

Appendix B

Performance tables

This appendix contains the tables with the performance of the parallel SAT-
solver. All times (except the Wall) refer to CPU time and are in seconds.

The tests to the influence of communication made with one worker are pre-
sented in Table B.1 and Table B.2.

The average times spent on solving all files, just the SAT and just the UNSAT
with sequential MiniSAT are displayed in Table B.3.

The average of the time spent solving all files, just the SAT and just the
UNSAT in 3, 6 and 9 workers are presented in Table B.4, Table B.5 and Table
B.6 respectively.

The tests for modes and options are displayed in several tables: the best and
worst times from Table B.7 to Table B.12 and the entire set of times for each
file are from Table B.15 to Table B.39.

The best and worst times of the tests about granularity are presented in the
Tables B.13 and B.14, while the times of all the tests are from Table B.40 to
Table B.64.

The tables about the influence of the communication display:

• CPU time spent by the sequential MiniSAT;

• CPU and Wall time spent by the parallel version;

• difference between the previous Wall and CPU time;

• amount of messages exchanged between the master and the worker.

The table with the average times display:

• number of workers (#W);

57

• search mode (Mode);

• average time without options (Avg-no-opts);

• average time removing assumptions with conflicts (Avg-confs);

• average time sharing learnt clauses (Avg-learnts);

• average time with different granularities (Avg-gran).

The tables of best and worst times display:

• file name (File);

• time spent by the sequential MiniSAT (T-seq);

• time of the parallel version (T-par);

• search mode (Mode);

• number of workers (#W);

• speedup (Spd.);

• efficiency (Eff.);

• serial fraction (S. F.);

• number of variables assumed (#V) in the tests of granularity.

All the tables of the tests to modes and options display:

• number of workers (#W);

• search mode (Mode);

• time of the execution without options (T-no-opts);

• time with conflicts removal (T-confs);

• time with share of learnt clauses (T-learnts);

• erased assumptions with conflicts (E.A.);

• total amount of databases with learnt clauses sent (Sent) by the workers;

• total amount of databases with learnt clauses received (Recv.) by the
workers.

All the tables of the granularity tests display:

• number of workers (#W);

• search mode (Mode);

58

• number of variables assumed (#V);

• CPU time spent (CPU Time);

• speedup (Spd.);

• efficiency (Eff.);

• serial fraction (S. F.).

Sequential Master and worker in the same node
File CPU time CPU time Wall time Wall-CPU #Messages

fpga10 11 44.999 157.462 157.473 0.011 128
fpga10 12 158.474 162.822 162.838 0.016 128
fpga10 13 161.586 1188.302 1188.758 0.455 128

hole11 723.157 641.080 641.188 0.108 128
mod2-9-11.cnf 78.573 258.808 258.841 0.032 128
mod2-9-4.cnf 80.753 219.774 219.965 0.192 128

unif-r4 3246.920 1617.109 1617.784 0.675 128
frb40-19-1 287.402 41.199 41.437 0.238 2
frb40-19-2 540.394 109.979 110.013 0.034 2
frb40-19-3 6340.410 2563.020 2563.051 0.031 2
frb40-19-4 901.448 2218.831 2218.865 0.035 2
frb40-19-5 4528.720 3016.685 3016.733 0.049 2
mod2-3g14 877.347 1783.715 1784.028 0.313 64

mod2c-150-11 75.333 70.052 70.741 0.688 10
mod2c-150-15 26.554 110.363 110.848 0.486 20

sat2 66.552 95.726 95.898 0.172 30
unif-r5 360.687 2.320 2.508 0.188 2

vmpc 21.ren 51.191 11.089 11.121 0.033 2
vmpc 23.ren 151.893 115.995 116.050 0.055 2
vmpc 25.ren 472.618 790.445 790.627 0.181 10
vmpc 25.shuf 25.826 68.284 68.384 0.100 2
vmpc 26.ren 142.121 697.160 697.362 0.202 2
vmpc 26.shuf 301.119 139.593 139.693 0.100 2
vmpc 27.ren 896.080 897.956 898.531 0.575 2
vmpc 27.shuf 453.440 964.700 964.926 0.226 2

Table B.1: Sequential vs Parallel with master and local worker

59

Sequential Master and remote worker
File CPU time CPU time Wall time Wall-CPU #Messages

fpga10 11 44.999 157.934 157.942 0.008 128
fpga10 12 158.474 162.694 162.874 0.180 128
fpga10 13 161.586 1185.690 1185.920 0.230 128

hole11 723.157 643.952 644.046 0.094 128
mod2-9-11 78.573 262.680 262.736 0.055 128
mod2-9-4 80.753 224.994 225.112 0.118 128
unif-r4 3246.920 1614.413 1615.845 1.432 128

frb40-19-1 287.402 41.275 42.250 0.975 2
frb40-19-2 540.394 104.055 104.078 0.024 2
frb40-19-3 6340.410 2406.247 2407.205 0.958 2
frb40-19-4 901.448 2085.334 2085.642 0.308 2
frb40-19-5 4528.720 2830.865 2831.394 0.529 2
mod2-3g14 877.347 1791.196 1791.262 0.066 64

mod2c-150-11 75.333 70.384 71.878 1.493 10
mod2c-150-15 26.554 112.139 113.191 1.052 20

sat2 66.552 95.178 95.309 0.131 30
unif-r5 360.687 2.324 2.936 0.611 2

vmpc 21.ren 51.191 10.701 10.707 0.006 2
vmpc 23.ren 151.893 109.815 109.822 0.007 2
vmpc 25.ren 472.618 741.634 741.764 0.130 10
vmpc 25.shuf 25.826 65.060 65.079 0.019 2
vmpc 26.ren 142.121 651.913 651.998 0.086 2
vmpc 26.shuf 301.119 133.256 133.271 0.015 2
vmpc 27.ren 896.080 956.000 957.027 1.028 2
vmpc 27.shuf 453.440 912.557 912.688 0.131 2

Table B.2: Sequential vs Parallel with master and remote worker

Files Average time per file
All files 839.723

Just SAT files 916.618
Just UNSAT files 641.994

Table B.3: Average time of each file taken by the sequential MiniSAT

60

#W Modes Avg-no-opts Avg-confs Avg-learnts Avg-gran
3 Few first 583.171 583.062 354.246 360.804
3 Many first 515.157 515.325 507.609 514.925
3 Random 233.955 325.698 402.908 479.217
3 Sequential 491.947 481.000 487.951 383.589
6 Few first 263.225 248.453 297.568 219.419
6 Many first 487.311 487.295 490.225 192.874
6 Random 442.357 435.161 462.267 448.592
6 Sequential 455.172 456.049 452.549 452.214
9 Few first 204.162 203.460 202.118 95.589
9 Many first 494.989 494.613 503.160 116.089
9 Random 437.607 404.607 395.692 472.791
9 Sequential 440.508 442.092 442.603 537.086

Table B.4: Average of each file in 3, 6 and 9 workers

#W Modes Avg-no-opts Avg-confs Avg-learnts Avg-gran
3 Few first 667.143 667.597 344.804 396.191
3 Many first 570.140 569.682 567.213 576.319
3 Random 232.513 378.467 470.377 572.181
3 Sequential 593.173 589.025 587.246 429.391
6 Few first 234.601 218.502 280.733 216.414
6 Many first 558.833 558.679 559.042 151.095
6 Random 549.986 535.787 580.246 560.982
6 Sequential 570.729 569.105 564.815 568.754
9 Few first 148.731 148.865 149.395 42.726
9 Many first 556.352 555.212 556.074 32.758
9 Random 541.893 505.616 497.348 598.701
9 Sequential 562.493 561.593 565.651 696.683

Table B.5: Average of each SAT file in 3, 6 and 9 workers

61

#W Modes Avg-no-opts Avg-confs Avg-learnts Avg-gran
3 Few first 367.242 365.687 378.527 269.810
3 Many first 373.769 375.551 354.343 357.054
3 Random 237.662 190.008 229.415 240.165
3 Sequential 231.650 203.219 232.620 265.811
6 Few first 336.829 325.469 340.857 227.144
6 Many first 303.398 303.737 313.267 300.308
6 Random 165.595 176.409 158.891 159.590
6 Sequential 158.026 165.335 163.864 152.541
9 Few first 346.699 343.846 337.689 231.520
9 Many first 337.199 338.787 367.097 330.369
9 Random 169.442 144.868 134.292 149.021
9 Sequential 126.830 134.803 126.195 126.693

Table B.6: Average of each UNSAT file in 3, 6 and 9 workers

File T-seq T-par Mode #W Spd. Eff. S. F.
fpga10 11 44.999 31.563 Few first 8 1.426 0.178 0.659
fpga10 12 158.474 71.475 Many first 9 2.217 0.246 0.382
fpga10 13 161.586 165.130 Random 5 0.979 0.196 1.027

hole11 723.157 218.260 Few first 10 3.313 0.331 0.224
mod2-9-11 78.573 29.017 Many first 9 2.708 0.301 0.290
mod2-9-4 80.753 28.197 Random 9 2.864 0.318 0.268
unif-r4 3246.920 198.606 Random 10 16.349 1.635 -0.043

frb40-19-1 287.402 15.303 Random 6 18.781 3.130 -0.136
frb40-19-2 540.394 0.233 Random 9 2319.228 257.692 -0.125
frb40-19-3 6340.410 8.459 Few first 8 749.589 93.699 -0.141
frb40-19-4 901.448 236.657 Random 3 3.809 1.270 -0.106
frb40-19-5 4528.720 43.460 Random 5 104.205 20.841 -0.238
mod2-3g14 877.347 37.102 Many first 6 23.647 3.941 -0.149

mod2c-150-11 75.333 4.713 Few first 3 15.983 5.328 -0.406
mod2c-150-15 26.554 0.996 Random 7 26.659 3.808 -0.123

sat2 66.552 6.372 Random 10 10.444 1.044 -0.005
unif-r5 360.687 1.423 Random 10 253.454 25.345 -0.107

vmpc 21.ren 51.191 0.375 Random 10 136.505 13.651 -0.103
vmpc 23.ren 151.893 5.560 Few first 8 27.317 3.415 -0.101
vmpc 25.ren 472.618 0.732 Random 10 645.627 64.563 -0.109
vmpc 25.shuf 25.826 5.107 Random 6 5.057 0.843 0.037
vmpc 26.ren 142.121 116.604 Few first 5 1.219 0.244 0.776
vmpc 26.shuf 301.119 11.303 Few first 10 26.641 2.664 -0.069
vmpc 27.ren 896.080 57.139 Random 3 15.683 5.228 -0.404
vmpc 27.shuf 453.440 0.465 Few first 5 975.123 195.025 -0.249

Table B.7: Best performances without options

62

File T-seq T-par Mode #W Spd. Eff. S. F.
fpga10 11 44.999 95.217 Sequential 2 0.473 0.236 3.232
fpga10 12 158.474 221.705 Random 3 0.715 0.238 1.598
fpga10 13 161.586 415.011 Sequential 3 0.389 0.130 3.353

hole11 723.157 432.901 Few first 8 1.670 0.209 0.541
mod2-9-11 78.573 123.353 Sequential 2 0.637 0.318 2.140
mod2-9-4 80.753 113.850 Sequential 2 0.709 0.355 1.820
unif-r4 3246.920 2091.194 Many first 4 1.553 0.388 0.525

frb40-19-1 287.402 271.148 Few first 3 1.060 0.353 0.915
frb40-19-2 540.394 571.121 Few first 7 0.946 0.135 1.066
frb40-19-3 6340.410 7540.098 Few first 7 0.841 0.120 1.221
frb40-19-4 901.448 3548.995 Few first 2 0.254 0.127 6.874
frb40-19-5 4528.720 6313.364 Few first 2 0.717 0.359 1.788
mod2-3g14 877.347 1970.777 Few first 2 0.445 0.223 3.493

mod2c-150-11 75.333 237.513 Random 2 0.317 0.159 5.306
mod2c-150-15 26.554 113.870 Many first 2 0.233 0.117 7.577

sat2 66.552 149.822 Many first 2 0.444 0.222 3.502
unif-r5 360.687 130.581 Few first 2 2.762 1.381 -0.276

vmpc 21.ren 51.191 32.319 Few first 5 1.584 0.317 0.539
vmpc 23.ren 151.893 197.157 Few first 5 0.770 0.154 1.373
vmpc 25.ren 472.618 46.515 Many first 2 10.161 5.080 -0.803
vmpc 25.shuf 25.826 384.740 Few first 10 0.067 0.007 16.442
vmpc 26.ren 142.121 1480.721 Few first 2 0.096 0.048 19.837
vmpc 26.shuf 301.119 551.501 Few first 8 0.546 0.068 1.950
vmpc 27.ren 896.080 2904.091 Random 6 0.309 0.051 3.689
vmpc 27.shuf 453.440 35.820 Random 2 12.659 6.329 -0.842

Table B.8: Worst performances without options

63

File T-seq T-par Mode #W Spd. Eff. S. F.
fpga10 11 44.999 24.844 Random 2 1.811 0.906 0.104
fpga10 12 158.474 70.419 Random 5 2.250 0.450 0.305
fpga10 13 161.586 172.996 Few first 6 0.934 0.156 1.085

hole11 723.157 218.559 Few first 10 3.309 0.331 0.225
mod2-9-11 78.573 28.136 Random 10 2.793 0.279 0.287
mod2-9-4 80.753 29.092 Sequential 9 2.776 0.308 0.280
unif-r4 3246.920 207.468 Random 10 15.650 1.565 -0.040

frb40-19-1 287.402 14.928 Random 2 19.253 9.626 -0.896
frb40-19-2 540.394 33.812 Few first 4 15.982 3.996 -0.250
frb40-19-3 6340.410 8.553 Few first 9 741.350 82.372 -0.123
frb40-19-4 901.448 37.572 Random 6 23.992 3.999 -0.150
frb40-19-5 4528.720 43.486 Random 10 104.143 10.414 -0.100
mod2-3g14 877.347 36.575 Random 9 23.987 2.665 -0.078

mod2c-150-11 75.333 4.721 Few first 6 15.956 2.659 -0.125
mod2c-150-15 26.554 0.993 Random 5 26.739 5.348 -0.203

sat2 66.552 7.146 Random 9 9.313 1.035 -0.004
unif-r5 360.687 1.430 Random 10 252.214 25.221 -0.107

vmpc 21.ren 51.191 0.365 Random 6 140.245 23.374 -0.191
vmpc 23.ren 151.893 2.953 Random 3 51.434 17.145 -0.471
vmpc 25.ren 472.618 1.952 Random 3 242.107 80.702 -0.494
vmpc 25.shuf 25.826 36.989 Few first 2 0.698 0.349 1.865
vmpc 26.ren 142.121 116.567 Few first 5 1.219 0.244 0.775
vmpc 26.shuf 301.119 11.386 Few first 10 26.447 2.645 -0.069
vmpc 27.ren 896.080 33.394 Random 8 26.834 3.354 -0.100
vmpc 27.shuf 453.440 0.479 Few first 5 946.621 189.324 -0.249

Table B.9: Best performances with conflicts

64

File T-seq T-par Mode #W Spd. Eff. S. F.
fpga10 11 44.999 81.459 Many first 5 0.552 0.110 2.013
fpga10 12 158.474 165.578 Sequential 4 0.957 0.239 1.060
fpga10 13 161.586 335.903 Many first 4 0.481 0.120 2.438

hole11 723.157 462.108 Random 6 1.565 0.261 0.567
mod2-9-11 78.573 121.923 Sequential 2 0.644 0.322 2.103
mod2-9-4 80.753 117.784 Random 2 0.686 0.343 1.917
unif-r4 3246.920 2099.032 Many first 4 1.547 0.387 0.529

frb40-19-1 287.402 270.852 Few first 3 1.061 0.354 0.914
frb40-19-2 540.394 571.028 Few first 7 0.946 0.135 1.066
frb40-19-3 6340.410 7532.027 Few first 7 0.842 0.120 1.219
frb40-19-4 901.448 2778.452 Few first 3 0.324 0.108 4.123
frb40-19-5 4528.720 6305.363 Few first 2 0.718 0.359 1.785
mod2-3g14 877.347 1983.184 Few first 2 0.442 0.221 3.521

mod2c-150-11 75.333 132.246 Many first 2 0.570 0.285 2.511
mod2c-150-15 26.554 115.582 Many first 2 0.230 0.115 7.706

sat2 66.552 149.707 Many first 2 0.445 0.222 3.499
unif-r5 360.687 131.772 Few first 2 2.737 1.369 -0.269

vmpc 21.ren 51.191 32.292 Few first 5 1.585 0.317 0.539
vmpc 23.ren 151.893 197.077 Few first 5 0.771 0.154 1.372
vmpc 25.ren 472.618 42.167 Many first 2 11.208 5.604 -0.822
vmpc 25.shuf 25.826 385.268 Few first 9 0.067 0.007 16.658
vmpc 26.ren 142.121 1480.946 Few first 2 0.096 0.048 19.841
vmpc 26.shuf 301.119 661.961 Random 5 0.455 0.091 2.498
vmpc 27.ren 896.080 2288.459 Few first 5 0.392 0.078 2.942
vmpc 27.shuf 453.440 38.587 Sequential 2 11.751 5.875 -0.830

Table B.10: Worst performances with conflicts

65

File T-seq T-par Mode #W Spd. Eff. S. F.
fpga10 11 44.999 31.374 Few first 6 1.434 0.239 0.637
fpga10 12 158.474 62.417 Few first 9 2.539 0.282 0.318
fpga10 13 161.586 130.311 Random 6 1.240 0.207 0.768

hole11 723.157 218.196 Few first 10 3.314 0.331 0.224
mod2-9-11 78.573 26.599 Random 10 2.954 0.295 0.265
mod2-9-4 80.753 27.259 Sequential 10 2.962 0.296 0.264
unif-r4 3246.920 195.317 Sequential 10 16.624 1.662 -0.044

frb40-19-1 287.402 21.192 Few first 5 13.562 2.712 -0.158
frb40-19-2 540.394 35.316 Few first 4 15.302 3.825 -0.246
frb40-19-3 6340.410 8.499 Few first 8 746.060 93.258 -0.141
frb40-19-4 901.448 339.171 Random 2 2.658 1.329 -0.247
frb40-19-5 4528.720 43.358 Few first 8 104.450 13.056 -0.132
mod2-3g14 877.347 37.069 Random 6 23.668 3.945 -0.149

mod2c-150-11 75.333 4.719 Many first 8 15.963 1.995 -0.071
mod2c-150-15 26.554 0.998 Random 4 26.605 6.651 -0.283

sat2 66.552 7.209 Random 7 9.231 1.319 -0.040
unif-r5 360.687 1.430 Random 5 252.213 50.443 -0.245

vmpc 21.ren 51.191 0.080 Random 8 639.938 79.992 -0.141
vmpc 23.ren 151.893 1.677 Few first 4 90.569 22.642 -0.319
vmpc 25.ren 472.618 0.304 Random 10 1554.649 155.465 -0.110
vmpc 25.shuf 25.826 4.964 Random 8 5.202 0.650 0.077
vmpc 26.ren 142.121 2.111 Random 9 67.320 7.480 -0.108
vmpc 26.shuf 301.119 11.678 Few first 10 25.786 2.579 -0.068
vmpc 27.ren 896.080 57.257 Few first 6 15.650 2.608 -0.123
vmpc 27.shuf 453.440 0.675 Few first 5 671.742 134.348 -0.248

Table B.11: Best performances sharing learnt clauses

66

File T-seq T-par Mode #W Spd. Eff. S. F.
fpga10 11 44.999 95.287 Sequential 2 0.472 0.236 3.235
fpga10 12 158.474 244.117 Sequential 2 0.649 0.325 2.081
fpga10 13 161.586 499.687 Random 2 0.323 0.162 5.185

hole11 723.157 496.216 Random 5 1.457 0.291 0.608
mod2-9-11 78.573 130.889 Sequential 2 0.600 0.300 2.332
mod2-9-4 80.753 121.656 Sequential 2 0.664 0.332 2.013
unif-r4 3246.920 1850.591 Many first 9 1.755 0.195 0.516

frb40-19-1 287.402 299.430 Random 6 0.960 0.160 1.050
frb40-19-2 540.394 571.234 Few first 7 0.946 0.135 1.067
frb40-19-3 6340.410 7545.371 Few first 7 0.840 0.120 1.222
frb40-19-4 901.448 2605.094 Random 4 0.346 0.087 3.520
frb40-19-5 4528.720 4690.640 Random 3 0.965 0.322 1.054
mod2-3g14 877.347 2017.331 Few first 2 0.435 0.217 3.599

mod2c-150-11 75.333 107.473 Many first 2 0.701 0.350 1.853
mod2c-150-15 26.554 146.487 Many first 2 0.181 0.091 10.033

sat2 66.552 207.412 Many first 2 0.321 0.160 5.233
unif-r5 360.687 132.147 Few first 2 2.729 1.365 -0.267

vmpc 21.ren 51.191 32.419 Few first 5 1.579 0.316 0.542
vmpc 23.ren 151.893 118.318 Random 2 1.284 0.642 0.558
vmpc 25.ren 472.618 46.568 Many first 2 10.149 5.075 -0.803
vmpc 25.shuf 25.826 430.579 Random 2 0.060 0.030 32.345
vmpc 26.ren 142.121 1385.304 Few first 2 0.103 0.051 18.495
vmpc 26.shuf 301.119 652.060 Random 7 0.462 0.066 2.360
vmpc 27.ren 896.080 2913.734 Random 10 0.308 0.031 3.502
vmpc 27.shuf 453.440 34.313 Many first 2 13.215 6.607 -0.849

Table B.12: Worst performances sharing learnt clauses

67

File T-seq T-par Mode #V #W Spd. Eff. S. F.
fpga10 11 44.999 13.331 Random 2 2 3.376 1.688 -0.408
fpga10 12 158.474 52.116 Few first 5 3 3.041 1.014 -0.007
fpga10 13 161.586 181.370 Few first 5 3 0.891 0.297 1.184

hole11 723.157 64.229 Few first 41 9 11.259 1.251 -0.025
mod2-9-11 78.573 26.452 Few first 50 10 2.970 0.297 0.263
mod2-9-4 80.753 24.190 Sequential 7 10 3.338 0.334 0.222
unif-r4 3246.920 180.548 Random 7 9 17.984 1.998 -0.062

frb40-19-1 287.402 1.919 Many first 50 10 149.758 14.976 -0.104
frb40-19-2 540.394 5.743 Many first 50 10 94.090 9.409 -0.099
frb40-19-3 6340.410 9.868 Many first 50 10 642.548 64.255 -0.109
frb40-19-4 901.448 25.892 Few first 41 9 34.816 3.868 -0.093
frb40-19-5 4528.720 1.804 Few first 41 9 2510.234 278.915 -0.125
mod2-3g14 877.347 2.433 Few first 25 7 360.581 51.512 -0.163

mod2c-150-11 75.333 4.444 Few first 25 7 16.951 2.422 -0.098
mod2c-150-15 26.554 0.847 Random 5 5 31.348 6.270 -0.210

sat2 66.552 0.508 Few first 18 6 131.001 21.833 -0.191
unif-r5 360.687 0.810 Many first 41 9 445.267 49.474 -0.122

vmpc 21.ren 51.191 0.102 Many first 18 6 501.899 83.650 -0.198
vmpc 23.ren 151.893 0.133 Few first 41 9 1142.113 126.901 -0.124
vmpc 25.ren 472.618 0.529 Random 6 7 893.391 127.627 -0.165
vmpc 25.shuf 25.826 3.833 Few first 41 9 6.737 0.749 0.042
vmpc 26.ren 142.121 2.334 Few first 13 5 60.888 12.178 -0.229
vmpc 26.shuf 301.119 4.476 Many first 41 9 67.270 7.474 -0.108
vmpc 27.ren 896.080 9.311 Few first 41 9 96.243 10.694 -0.113
vmpc 27.shuf 453.440 0.787 Sequential 6 6 576.142 96.024 -0.198

Table B.13: Best performances with different granularity

68

File T-seq T-par Mode #V #W Spd. Eff. S. F.
fpga10 11 44.999 138.720 Many first 41 9 0.324 0.036 3.343
fpga10 12 158.474 263.936 Many first 13 5 0.600 0.120 1.832
fpga10 13 161.586 515.525 Many first 8 4 0.313 0.078 3.921

hole11 723.157 970.758 Few first 2 2 0.745 0.372 1.685
mod2-9-11 78.573 75.082 Random 2 2 1.046 0.523 0.911
mod2-9-4 80.753 78.703 Random 2 2 1.026 0.513 0.949
unif-r4 3246.920 2818.094 Few first 32 8 1.152 0.144 0.849

frb40-19-1 287.402 315.537 Sequential 2 2 0.911 0.455 1.196
frb40-19-2 540.394 445.817 Many first 5 3 1.212 0.404 0.737
frb40-19-3 6340.410 5347.412 Many first 5 3 1.186 0.395 0.765
frb40-19-4 901.448 2218.451 Sequential 6 6 0.406 0.068 2.753
frb40-19-5 4528.720 4980.721 Random 6 8 0.909 0.114 1.114
mod2-3g14 877.347 1757.525 Sequential 2 2 0.499 0.250 3.006

mod2c-150-11 75.333 119.166 Many first 2 2 0.632 0.316 2.164
mod2c-150-15 26.554 60.001 Many first 8 4 0.443 0.111 2.679

sat2 66.552 139.505 Sequential 2 2 0.477 0.239 3.192
unif-r5 360.687 250.100 Many first 2 2 1.442 0.721 0.387

vmpc 21.ren 51.191 55.452 Random 2 2 0.923 0.462 1.166
vmpc 23.ren 151.893 116.994 Sequential 6 6 1.298 0.216 0.724
vmpc 25.ren 472.618 444.469 Random 2 2 1.063 0.532 0.881
vmpc 25.shuf 25.826 469.870 Sequential 4 3 0.055 0.018 26.791
vmpc 26.ren 142.121 1957.178 Random 4 4 0.073 0.018 18.028
vmpc 26.shuf 301.119 730.186 Random 4 3 0.412 0.137 3.137
vmpc 27.ren 896.080 2770.463 Few first 2 2 0.323 0.162 5.184
vmpc 27.shuf 453.440 42.710 Many first 50 10 10.617 1.062 -0.006

Table B.14: Worst performances with different granularity

69

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 42.256 37.744 48.027 7 12 4
2 Many first 63.162 60.780 69.960 1 12 2
2 Random 72.268 24.844 87.504 51 64 9
2 Sequential 95.217 30.642 95.287 53 64 5
3 Few first 36.124 33.934 49.128 4 12 2
3 Many first 39.072 39.295 53.567 1 12 4
3 Random 50.817 35.736 44.018 48 64 19
3 Sequential 68.363 58.750 51.695 52 64 21
4 Few first 49.285 49.544 49.401 4 12 5
4 Many first 53.835 54.044 38.331 1 12 5
4 Random 46.502 36.764 68.599 45 61 33
4 Sequential 34.694 30.334 59.879 49 64 21
5 Few first 31.715 36.444 40.837 3 12 5
5 Many first 81.508 81.459 38.715 0 12 5
5 Random 49.074 51.335 34.636 47 60 34
5 Sequential 36.715 60.645 43.542 49 64 17
6 Few first 37.024 31.419 31.374 3 12 4
6 Many first 51.970 51.932 43.853 0 12 5
6 Random 37.426 31.039 55.487 44 63 45
6 Sequential 37.442 36.893 36.837 47 64 26
7 Few first 31.574 31.725 31.460 2 12 3
7 Many first 59.977 60.082 38.486 0 12 4
7 Random 44.828 55.052 41.669 42 64 47
7 Sequential 38.758 38.933 39.520 44 64 27
8 Few first 31.563 31.586 31.667 1 12 2
8 Many first 33.181 33.480 33.129 0 12 3
8 Random 38.104 56.985 33.036 43 60 48
8 Sequential 36.793 36.983 36.639 42 64 34
9 Few first 31.603 31.813 32.521 0 12 2
9 Many first 31.609 31.452 31.540 0 12 2
9 Random 42.103 32.602 42.546 39 64 50
9 Sequential 59.207 37.089 38.625 39 64 37
10 Few first 33.249 33.104 33.389 0 12 1
10 Many first 31.649 31.582 31.481 0 12 1
10 Random 61.640 32.325 40.345 37 63 45
10 Sequential 45.512 45.616 36.538 39 64 37

Table B.15: Tests with 6 variables to fpga10 11 uns rcr.cnf

70

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 121.903 121.476 121.124 3 12 8
2 Many first 79.129 78.891 82.234 5 12 3
2 Random 217.069 80.914 173.700 50 64 8
2 Sequential 196.841 85.049 244.117 47 64 22
3 Few first 117.611 116.951 94.383 1 12 8
3 Many first 102.795 101.359 100.990 2 12 4
3 Random 221.705 93.879 184.577 48 63 17
3 Sequential 124.875 103.232 124.782 50 64 5
4 Few first 144.716 145.603 160.016 0 12 7
4 Many first 115.533 114.216 76.760 3 12 6
4 Random 84.194 104.909 194.973 46 63 22
4 Sequential 74.254 165.578 124.118 40 64 20
5 Few first 92.186 92.745 102.177 0 12 6
5 Many first 125.209 115.973 220.822 3 12 3
5 Random 159.276 70.419 140.648 45 63 24
5 Sequential 127.519 91.171 89.500 44 64 14
6 Few first 113.604 113.360 93.316 0 12 5
6 Many first 81.612 81.203 81.586 0 12 5
6 Random 114.103 97.637 207.832 43 62 39
6 Sequential 88.397 119.480 107.504 42 63 25
7 Few first 77.864 78.113 113.377 0 12 4
7 Many first 72.310 71.700 70.716 1 12 4
7 Random 171.703 121.640 108.406 44 63 46
7 Sequential 114.020 115.020 109.644 42 64 27
8 Few first 97.335 97.574 121.719 0 12 3
8 Many first 98.858 98.397 99.777 0 12 3
8 Random 125.686 83.010 123.474 38 64 46
8 Sequential 123.698 124.795 77.329 37 63 37
9 Few first 91.555 91.301 62.417 0 12 2
9 Many first 71.475 71.140 70.786 0 12 2
9 Random 121.060 144.549 83.631 37 62 49
9 Sequential 82.502 115.430 78.397 39 63 38
10 Few first 112.564 112.372 113.326 0 12 1
10 Many first 116.023 117.161 116.290 0 12 1
10 Random 118.655 135.563 102.186 39 54 44
10 Sequential 81.544 104.657 140.960 37 64 45

Table B.16: Tests with 6 variables to fpga10 12 uns rcr.cnf

71

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 289.975 286.564 286.456 5 12 1
2 Many first 237.307 234.616 234.291 2 12 1
2 Random 276.760 219.883 499.687 48 64 9
2 Sequential 333.348 205.526 452.186 58 64 8
3 Few first 296.886 293.914 292.357 4 12 4
3 Many first 268.894 298.212 263.706 2 12 2
3 Random 272.569 178.478 183.891 48 64 27
3 Sequential 415.011 207.806 421.837 48 64 6
4 Few first 299.455 293.652 294.086 3 12 6
4 Many first 333.341 335.903 339.345 1 11 4
4 Random 301.949 320.847 297.697 45 64 17
4 Sequential 200.463 212.324 204.419 47 64 8
5 Few first 239.987 239.264 214.370 3 12 6
5 Many first 269.932 266.215 267.641 1 12 3
5 Random 165.130 175.568 177.255 45 64 30
5 Sequential 204.479 323.355 294.671 46 63 10
6 Few first 175.608 172.996 255.921 2 12 5
6 Many first 269.083 269.708 264.947 1 12 4
6 Random 280.497 212.930 130.311 41 64 50
6 Sequential 268.798 318.760 294.963 41 64 27
7 Few first 272.669 270.003 270.179 1 12 3
7 Many first 269.268 266.714 492.979 0 12 4
7 Random 198.614 277.909 329.006 42 64 44
7 Sequential 309.106 299.727 299.568 45 64 29
8 Few first 196.998 199.537 199.334 0 12 2
8 Many first 314.934 312.176 263.434 0 12 3
8 Random 302.322 223.220 267.325 36 64 43
8 Sequential 341.354 300.421 302.024 43 64 39
9 Few first 268.428 265.383 267.014 0 12 2
9 Many first 269.326 264.779 266.876 0 12 2
9 Random 280.535 246.403 259.181 36 64 49
9 Sequential 188.021 229.872 186.223 42 64 37
10 Few first 266.529 269.462 268.015 0 12 1
10 Many first 267.944 267.638 265.496 0 12 1
10 Random 247.518 213.944 291.822 32 63 50
10 Sequential 322.775 185.636 186.444 39 64 49

Table B.17: Tests with 6 variables to fpga10 13 uns rcr.cnf

72

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 82.260 82.117 119.129 2 10 2
2 Many first 41.336 41.382 41.348 3 11 0
2 Random 141.495 14.928 61.003 40 62 5
2 Sequential 41.329 41.279 41.286 48 63 0
3 Few first 271.148 270.852 75.174 0 9 4
3 Many first 41.343 41.305 41.286 1 11 3
3 Random 160.502 227.641 53.718 43 55 4
3 Sequential 41.331 41.300 41.268 47 63 4
4 Few first 87.792 87.849 150.353 0 8 3
4 Many first 41.318 41.292 41.257 1 11 4
4 Random 150.158 26.373 42.051 40 58 12
4 Sequential 41.404 41.243 41.185 44 62 5
5 Few first 131.990 125.223 21.192 0 7 2
5 Many first 41.314 41.331 41.302 1 11 2
5 Random 176.527 31.323 47.477 39 57 7
5 Sequential 41.349 41.270 41.263 43 59 13
6 Few first 22.551 22.524 22.521 0 7 1
6 Many first 41.303 41.285 41.287 1 10 1
6 Random 15.303 232.510 299.430 37 41 9
6 Sequential 41.291 41.286 41.275 41 58 3
7 Few first 166.465 176.929 176.952 0 7 0
7 Many first 41.318 41.273 41.281 0 9 1
7 Random 41.119 181.215 175.132 40 50 21
7 Sequential 41.397 41.292 41.290 40 53 7
8 Few first 166.885 166.510 166.827 0 7 0
8 Many first 41.360 41.376 41.252 0 8 0
8 Random 166.523 39.177 60.059 36 42 19
8 Sequential 41.379 41.302 41.290 39 52 1
9 Few first 176.471 176.388 176.687 0 7 0
9 Many first 41.324 41.206 41.159 0 7 0
9 Random 207.271 154.297 142.280 36 38 12
9 Sequential 41.333 41.251 41.347 39 39 13
10 Few first 166.432 176.884 176.905 0 7 0
10 Many first 41.339 41.333 41.303 0 7 0
10 Random 227.167 176.651 59.138 35 33 11
10 Sequential 41.369 41.329 41.255 38 39 15

Table B.18: Tests with 6 variables to frb40-19-1.cnf

73

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 55.978 58.966 241.667 0 11 5
2 Many first 110.157 110.103 109.937 3 11 0
2 Random 118.865 184.106 50.498 41 58 9
2 Sequential 110.116 110.176 110.003 49 63 0
3 Few first 276.451 276.137 326.596 1 11 2
3 Many first 110.098 109.942 109.836 2 11 2
3 Random 60.601 129.346 82.469 42 55 3
3 Sequential 110.156 110.064 109.877 49 63 2
4 Few first 32.066 33.812 35.316 0 10 3
4 Many first 110.194 110.012 109.882 1 10 2
4 Random 362.841 155.515 326.907 40 46 13
4 Sequential 110.181 109.949 109.911 46 63 18
5 Few first 38.190 38.238 232.151 0 10 4
5 Many first 110.127 109.939 109.797 0 9 2
5 Random 146.735 379.071 155.176 38 53 18
5 Sequential 110.122 110.021 109.921 45 63 1
6 Few first 405.328 431.248 226.887 0 10 2
6 Many first 110.164 110.023 109.925 0 9 2
6 Random 136.378 175.242 344.178 38 51 12
6 Sequential 110.122 110.022 110.004 42 60 2
7 Few first 571.121 571.028 571.234 0 9 1
7 Many first 110.048 110.044 109.918 0 9 1
7 Random 102.464 443.778 182.024 36 34 10
7 Sequential 110.194 110.065 109.912 40 60 4
8 Few first 146.575 146.385 146.636 0 8 0
8 Many first 110.077 110.074 109.904 0 8 0
8 Random 119.011 155.014 103.868 38 35 13
8 Sequential 110.129 110.164 110.021 39 60 7
9 Few first 146.439 146.404 146.314 0 8 0
9 Many first 110.089 110.330 110.003 0 8 0
9 Random 0.233 236.174 260.976 33 42 22
9 Sequential 110.051 110.120 110.006 39 59 8
10 Few first 155.106 155.088 155.242 0 8 0
10 Many first 109.924 110.172 109.942 0 8 0
10 Random 39.833 181.800 110.012 36 44 22
10 Sequential 110.020 110.147 110.025 39 56 23

Table B.19: Tests with 6 variables to frb40-19-2.cnf

74

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 3558.481 3785.749 3107.774 1 10 3
2 Many first 2565.576 2563.677 2562.631 3 11 0
2 Random 197.348 212.058 368.977 44 60 3
2 Sequential 2566.281 2565.355 2562.136 49 63 0
3 Few first 5950.518 5975.464 545.551 0 10 4
3 Many first 2566.986 2565.770 2565.773 3 11 3
3 Random 1057.981 777.812 180.138 40 52 6
3 Sequential 2567.241 2563.255 2564.224 49 63 3
4 Few first 3329.402 3131.980 536.935 1 10 2
4 Many first 2567.709 2562.112 2570.789 1 10 4
4 Random 1078.103 6785.172 477.731 43 51 5
4 Sequential 2568.228 2566.799 2565.600 48 62 4
5 Few first 5641.796 5621.240 2716.937 0 10 3
5 Many first 2568.323 2567.703 2564.910 0 9 1
5 Random 185.528 7259.543 2606.838 41 44 6
5 Sequential 2570.610 2574.174 2563.430 47 62 3
6 Few first 941.811 941.892 2782.178 0 10 2
6 Many first 2565.717 2566.447 2568.494 0 9 2
6 Random 2726.789 3434.602 2267.415 37 45 6
6 Sequential 2565.765 2567.541 2561.386 45 62 3
7 Few first 7540.098 7532.027 7545.371 0 9 1
7 Many first 2569.563 2569.766 2565.263 0 9 1
7 Random 2738.961 2561.862 8.738 40 22 3
7 Sequential 2569.216 2565.815 2567.072 43 61 3
8 Few first 8.459 8.557 8.499 0 3 0
8 Many first 2565.841 2563.615 2562.658 0 9 1
8 Random 1836.494 8.576 1052.645 38 33 12
8 Sequential 2563.445 2561.511 2568.168 41 61 3
9 Few first 8.636 8.553 8.566 0 3 0
9 Many first 2570.324 2563.441 2564.404 0 9 0
9 Random 5739.101 2413.973 3857.758 39 25 5
9 Sequential 2569.275 2565.543 2568.176 41 61 15
10 Few first 8.505 8.828 8.825 0 3 0
10 Many first 2564.430 2567.503 2564.726 0 8 0
10 Random 2575.058 2082.067 224.108 36 19 7
10 Sequential 2565.439 2566.850 2562.230 41 56 5

Table B.20: Tests with 6 variables to frb40-19-3.cnf

75

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 3548.995 2078.083 2074.343 0 10 3
2 Many first 2221.088 2217.923 2216.024 2 11 0
2 Random 508.604 499.020 339.171 43 61 1
2 Sequential 2220.341 2217.377 2215.679 53 63 0
3 Few first 2780.769 2778.452 2374.939 1 10 4
3 Many first 2221.259 2216.195 2214.099 1 11 4
3 Random 236.657 2647.885 683.568 45 39 5
3 Sequential 2219.970 2214.123 2213.211 51 63 3
4 Few first 1055.302 990.827 781.539 0 10 4
4 Many first 2233.069 2216.225 2215.692 0 10 4
4 Random 417.884 1674.743 2605.094 40 49 6
4 Sequential 2219.924 2216.031 2215.591 49 62 5
5 Few first 664.325 664.878 665.698 0 9 2
5 Many first 2218.510 2214.621 2215.778 0 10 3
5 Random 1409.254 219.142 1265.161 44 37 6
5 Sequential 2224.505 2218.348 2214.042 47 62 3
6 Few first 839.287 839.479 492.311 0 9 2
6 Many first 2217.489 2217.751 2217.120 0 10 3
6 Random 960.928 37.572 2080.836 40 38 8
6 Sequential 2217.409 2215.856 2215.280 45 60 3
7 Few first 1288.581 1372.834 1373.873 0 9 1
7 Many first 2216.861 2214.907 2216.688 0 9 1
7 Random 790.355 1232.207 2486.707 38 34 5
7 Sequential 2223.038 2214.655 2216.737 43 59 3
8 Few first 1396.644 1394.011 1393.624 0 8 0
8 Many first 2217.885 2215.820 2213.506 0 9 1
8 Random 1273.268 140.169 1116.823 37 37 3
8 Sequential 2223.934 2213.900 2213.553 41 54 2
9 Few first 1394.537 1395.689 1394.508 0 8 0
9 Many first 2219.532 2215.850 2215.914 0 9 0
9 Random 891.417 1393.659 2219.596 36 24 2
9 Sequential 2222.455 2215.904 2214.855 41 54 3
10 Few first 1393.844 1483.809 1485.947 0 8 0
10 Many first 2221.254 2215.708 2219.835 0 8 0
10 Random 1372.594 1677.424 496.931 36 12 1
10 Sequential 2216.677 2213.174 2214.863 40 40 0

Table B.21: Tests with 6 variables to frb40-19-4.cnf

76

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 6313.364 6305.363 2909.593 1 10 3
2 Many first 3012.264 3010.201 3007.372 5 11 0
2 Random 109.749 766.344 4064.790 49 40 0
2 Sequential 3013.703 3012.495 3008.973 57 63 0
3 Few first 197.180 186.928 187.075 0 8 4
3 Many first 3015.763 3013.195 3011.897 5 11 4
3 Random 45.828 292.294 4690.640 44 36 6
3 Sequential 3018.281 3009.550 3010.253 57 63 4
4 Few first 3624.460 3629.614 1381.887 1 8 2
4 Many first 3017.545 3005.904 3015.307 3 10 3
4 Random 4956.477 5715.788 1029.105 43 38 6
4 Sequential 3020.366 3007.901 3012.502 52 62 5
5 Few first 3508.971 3737.632 3733.373 0 7 1
5 Many first 3015.476 3012.397 3011.739 0 9 2
5 Random 43.460 45.802 116.220 39 32 3
5 Sequential 3017.933 3013.633 3006.355 48 59 12
6 Few first 45.646 45.808 45.827 0 0 0
6 Many first 3013.879 3010.830 3011.843 0 8 1
6 Random 2031.227 5045.128 3014.929 38 26 1
6 Sequential 3018.080 3009.425 3012.205 45 52 1
7 Few first 43.638 45.776 45.760 0 0 0
7 Many first 3021.036 3007.519 3009.145 1 7 0
7 Random 4322.385 3012.146 2215.828 40 9 0
7 Sequential 3011.326 3014.809 3008.268 43 37 0
8 Few first 43.527 43.546 43.358 0 0 0
8 Many first 3018.957 3010.209 3015.237 0 6 0
8 Random 4742.856 2828.435 77.909 41 4 0
8 Sequential 3011.464 3007.857 3007.436 41 6 0
9 Few first 45.706 45.828 45.781 0 0 0
9 Many first 3014.278 3009.108 3012.496 0 6 0
9 Random 758.259 3681.561 130.037 38 6 0
9 Sequential 3013.143 3007.072 3007.817 41 6 0
10 Few first 43.492 45.876 45.852 0 0 0
10 Many first 3017.375 3007.574 3010.244 0 6 0
10 Random 2827.252 43.486 2588.937 37 6 0
10 Sequential 3016.002 3012.293 3009.746 41 6 0

Table B.22: Tests with 6 variables to frb40-19-5.cnf

77

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 426.898 425.993 430.448 0 11 5
2 Many first 283.642 285.346 285.652 5 12 0
2 Random 373.513 345.657 356.065 41 56 4
2 Sequential 340.030 328.905 370.031 57 64 2
3 Few first 367.041 364.926 472.674 0 10 6
3 Many first 285.556 285.199 287.361 5 12 4
3 Random 329.199 303.309 409.247 43 62 18
3 Sequential 283.731 286.760 287.196 57 57 3
4 Few first 245.601 245.407 238.172 0 12 4
4 Many first 285.917 287.234 284.428 4 12 5
4 Random 225.809 287.299 427.714 43 60 30
4 Sequential 284.556 285.997 286.148 53 55 6
5 Few first 342.045 343.066 336.755 0 12 5
5 Many first 286.811 289.376 286.187 3 12 2
5 Random 284.928 418.480 496.216 40 62 40
5 Sequential 286.600 285.580 284.977 48 60 13
6 Few first 324.251 253.707 306.749 0 12 4
6 Many first 285.398 284.139 284.984 1 12 2
6 Random 313.108 462.108 285.514 34 62 33
6 Sequential 287.526 287.617 284.405 45 51 13
7 Few first 278.901 277.802 278.537 0 12 4
7 Many first 286.157 287.138 287.144 0 12 3
7 Random 306.769 279.849 283.864 35 63 36
7 Sequential 285.272 288.596 287.950 44 60 15
8 Few first 432.901 435.235 437.341 0 12 3
8 Many first 286.976 285.921 286.665 0 12 3
8 Random 311.016 233.729 262.300 31 60 39
8 Sequential 286.106 285.853 285.043 42 47 13
9 Few first 316.920 292.120 290.469 0 11 2
9 Many first 284.940 287.715 285.335 0 12 2
9 Random 416.157 271.087 284.361 21 60 46
9 Sequential 285.632 287.520 285.007 41 59 23
10 Few first 218.260 218.559 218.196 0 12 1
10 Many first 286.407 285.126 299.237 0 12 1
10 Random 219.422 258.179 285.187 29 63 48
10 Sequential 288.590 286.303 285.280 39 59 37

Table B.23: Tests with 6 variables to hole11.cnf

78

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 85.226 85.154 85.216 1 12 7
2 Many first 75.553 75.151 77.612 1 12 6
2 Random 119.578 121.058 127.770 25 59 28
2 Sequential 123.353 121.923 130.889 28 64 25
3 Few first 54.673 55.055 56.250 1 12 5
3 Many first 68.458 67.833 67.438 1 10 6
3 Random 83.618 81.282 76.696 24 64 40
3 Sequential 88.409 85.077 87.097 28 64 33
4 Few first 42.934 42.803 43.054 1 12 5
4 Many first 43.091 67.299 48.585 0 10 5
4 Random 62.334 61.099 66.210 23 62 51
4 Sequential 65.888 63.124 59.938 28 64 34
5 Few first 38.384 38.198 38.368 1 12 6
5 Many first 55.480 55.027 60.089 0 10 4
5 Random 52.744 52.596 48.993 23 58 49
5 Sequential 50.234 51.574 49.709 28 64 38
6 Few first 38.389 38.394 38.407 1 12 4
6 Many first 40.926 40.781 44.796 0 10 3
6 Random 44.014 45.184 42.911 25 60 48
6 Sequential 43.859 44.040 43.398 28 56 43
7 Few first 38.358 38.777 38.383 1 12 2
7 Many first 44.165 44.577 41.381 0 10 2
7 Random 36.596 36.475 36.107 23 59 50
7 Sequential 38.650 38.381 37.095 26 56 39
8 Few first 38.430 38.348 38.758 1 12 1
8 Many first 40.476 41.090 37.454 0 10 1
8 Random 33.551 33.847 33.210 24 54 44
8 Sequential 33.551 32.370 34.390 24 56 38
9 Few first 38.567 38.395 38.163 1 10 0
9 Many first 29.017 29.264 28.839 0 10 0
9 Random 29.261 31.796 30.366 23 53 39
9 Sequential 30.654 30.940 30.838 23 56 41
10 Few first 38.785 38.773 38.519 0 10 0
10 Many first 38.238 38.310 38.214 0 10 0
10 Random 30.146 28.136 26.599 23 54 41
10 Sequential 32.286 28.328 29.667 21 52 38

Table B.24: Tests with 6 variables to mod2-3cage-unsat-9-11.cnf

79

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 88.865 87.962 82.678 1 12 5
2 Many first 75.970 75.088 78.055 1 12 7
2 Random 111.910 117.784 119.525 29 62 27
2 Sequential 113.850 115.233 121.656 30 60 25
3 Few first 63.024 61.455 61.114 1 12 6
3 Many first 74.510 73.935 58.613 1 10 6
3 Random 79.533 73.353 77.021 28 64 40
3 Sequential 81.540 79.105 77.084 29 60 32
4 Few first 45.926 45.465 45.614 1 12 3
4 Many first 62.801 62.476 54.557 0 10 5
4 Random 62.769 60.966 54.930 27 60 50
4 Sequential 60.137 62.254 63.270 28 60 35
5 Few first 45.678 45.486 45.696 1 12 4
5 Many first 48.747 48.575 45.741 0 10 4
5 Random 47.508 46.019 48.245 28 58 45
5 Sequential 46.931 47.281 49.577 27 60 41
6 Few first 46.206 46.572 45.772 1 12 3
6 Many first 45.315 44.885 42.677 0 10 3
6 Random 39.919 39.515 44.982 28 62 52
6 Sequential 40.502 40.762 39.246 27 60 43
7 Few first 45.762 45.633 46.091 1 12 2
7 Many first 41.898 41.685 38.713 0 10 2
7 Random 37.365 35.479 34.122 28 56 48
7 Sequential 34.388 36.746 37.583 27 60 39
8 Few first 45.901 45.466 45.808 1 12 1
8 Many first 42.950 42.339 45.818 0 10 1
8 Random 31.606 33.876 31.528 25 56 44
8 Sequential 30.057 30.271 29.846 27 60 41
9 Few first 45.749 45.469 45.663 1 10 0
9 Many first 35.033 35.206 35.711 0 10 0
9 Random 28.197 30.642 29.256 26 59 47
9 Sequential 29.032 29.092 27.729 27 60 40
10 Few first 45.608 46.076 46.183 0 10 0
10 Many first 35.328 35.319 35.680 0 10 0
10 Random 29.344 30.311 27.482 24 55 44
10 Sequential 28.680 30.305 27.259 26 52 41

Table B.25: Tests with 6 variables to mod2-3cage-unsat-9-4.cnf

80

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 1970.777 1983.184 2017.331 0 8 4
2 Many first 72.712 69.942 79.636 0 2 1
2 Random 1959.462 350.073 1178.658 0 39 28
2 Sequential 1016.979 829.480 858.845 0 30 19
3 Few first 1311.096 1306.513 1282.021 0 7 3
3 Many first 41.745 41.716 43.605 0 2 1
3 Random 1187.223 910.177 897.168 0 43 40
3 Sequential 626.724 625.952 649.861 0 31 29
4 Few first 700.455 701.713 662.182 0 6 4
4 Many first 37.162 37.158 37.325 0 1 0
4 Random 37.176 611.312 458.580 0 33 32
4 Sequential 486.736 497.884 432.305 0 30 29
5 Few first 448.255 446.922 460.816 0 6 5
5 Many first 37.329 37.142 37.084 0 1 0
5 Random 700.841 37.168 141.947 0 9 8
5 Sequential 436.856 435.852 371.547 0 31 30
6 Few first 415.771 414.670 393.241 0 5 2
6 Many first 37.102 37.262 37.175 0 1 0
6 Random 514.166 85.656 37.069 0 1 0
6 Sequential 337.966 317.816 277.295 0 27 26
7 Few first 257.972 258.196 265.222 0 4 2
7 Many first 37.147 37.091 37.239 0 1 0
7 Random 409.330 319.653 479.619 0 56 55
7 Sequential 231.397 232.152 244.663 0 27 26
8 Few first 169.474 169.933 174.919 0 2 1
8 Many first 37.377 37.621 37.219 0 1 0
8 Random 155.336 314.942 303.913 0 37 36
8 Sequential 276.467 187.987 196.623 0 26 25
9 Few first 68.032 67.879 67.756 0 1 0
9 Many first 37.194 37.292 38.028 0 1 0
9 Random 108.336 36.575 374.921 0 46 45
9 Sequential 185.410 185.224 216.728 0 25 24
10 Few first 37.399 37.406 37.404 0 0 0
10 Many first 37.368 37.284 37.507 0 0 0
10 Random 135.219 369.256 341.372 0 48 47
10 Sequential 180.587 187.370 179.547 0 26 25

Table B.26: Tests with 6 variables to mod2-3g14-sat.cnf

81

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 99.384 99.988 105.496 0 2 1
2 Many first 131.798 132.246 107.473 0 4 3
2 Random 237.513 35.099 88.340 4 7 4
2 Sequential 21.008 21.081 21.030 1 2 0
3 Few first 4.713 4.724 4.764 0 0 0
3 Many first 80.658 80.945 76.697 0 3 2
3 Random 159.311 26.743 99.015 0 9 7
3 Sequential 10.708 10.732 10.713 1 1 0
4 Few first 4.733 4.739 4.762 0 0 0
4 Many first 53.506 53.506 70.288 0 4 3
4 Random 23.664 64.800 23.938 5 2 0
4 Sequential 26.557 26.709 26.829 0 1 0
5 Few first 4.756 4.731 4.733 0 0 0
5 Many first 61.607 62.110 47.743 0 2 1
5 Random 26.815 47.224 23.734 6 4 2
5 Sequential 26.892 26.637 26.963 0 3 2
6 Few first 4.742 4.721 4.750 0 0 0
6 Many first 42.595 42.293 42.383 0 1 0
6 Random 96.979 26.675 64.939 2 16 13
6 Sequential 10.683 10.763 26.851 0 5 3
7 Few first 4.734 4.722 4.730 0 0 0
7 Many first 6.885 6.903 6.973 0 0 0
7 Random 56.215 56.471 34.772 9 10 5
7 Sequential 12.505 12.536 23.781 0 4 3
8 Few first 4.751 4.744 4.726 0 0 0
8 Many first 4.748 4.769 4.719 0 0 0
8 Random 26.771 48.522 26.655 6 7 6
8 Sequential 26.271 26.334 26.634 0 5 4
9 Few first 4.759 4.753 4.725 0 0 0
9 Many first 4.748 4.749 4.750 0 0 0
9 Random 26.685 34.610 26.709 7 8 5
9 Sequential 21.199 21.112 26.717 0 3 2
10 Few first 4.744 4.745 4.734 0 0 0
10 Many first 4.741 4.772 4.753 0 0 0
10 Random 26.717 26.707 34.552 5 6 5
10 Sequential 23.837 23.793 26.730 0 5 4

Table B.27: Tests with 6 variables to mod2c-rand3bip-sat-150-11.cnf

82

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 24.642 24.678 24.724 0 0 0
2 Many first 113.870 115.582 146.487 0 11 8
2 Random 0.998 21.392 9.654 0 2 1
2 Sequential 31.417 31.345 47.142 0 9 7
3 Few first 24.599 24.772 24.630 0 1 0
3 Many first 106.181 105.901 103.062 0 10 8
3 Random 44.238 44.374 10.842 0 2 1
3 Sequential 24.183 24.386 22.488 0 7 6
4 Few first 24.639 24.676 24.583 0 2 1
4 Many first 41.855 41.791 44.125 0 9 7
4 Random 30.509 16.410 0.998 0 0 0
4 Sequential 17.576 17.493 26.947 0 10 9
5 Few first 24.700 24.853 24.783 0 3 2
5 Many first 33.382 34.090 32.421 0 8 6
5 Random 7.881 0.993 11.844 0 4 3
5 Sequential 11.801 11.826 15.860 0 6 5
6 Few first 24.609 24.615 24.600 0 4 3
6 Many first 54.980 54.702 40.918 0 9 5
6 Random 8.108 1.000 1.005 0 0 0
6 Sequential 10.378 10.407 13.041 0 5 4
7 Few first 24.544 24.604 24.608 0 5 4
7 Many first 26.428 26.470 24.787 0 8 4
7 Random 0.996 0.998 1.002 0 0 0
7 Sequential 10.291 10.314 15.172 0 8 7
8 Few first 24.569 24.700 24.693 0 6 3
8 Many first 13.692 13.794 46.992 0 10 3
8 Random 0.998 7.910 1.000 0 0 0
8 Sequential 9.597 10.735 11.421 0 7 6
9 Few first 24.605 24.635 25.003 0 9 0
9 Many first 50.395 50.446 26.465 0 9 2
9 Random 11.170 1.001 18.620 0 12 11
9 Sequential 6.773 6.826 6.753 0 1 0
10 Few first 24.718 24.619 24.895 0 9 1
10 Many first 50.180 50.471 26.505 0 10 1
10 Random 1.008 1.006 0.999 0 0 0
10 Sequential 1.007 1.003 1.005 0 0 0

Table B.28: Tests with 6 variables to mod2c-rand3bip-sat-150-15.cnf

83

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 100.490 101.772 100.093 0 0 0
2 Many first 149.822 149.707 207.412 0 10 9
2 Random 27.661 38.429 104.578 0 32 29
2 Sequential 54.213 55.599 50.295 0 13 12
3 Few first 100.480 100.781 100.703 0 1 0
3 Many first 105.383 106.101 128.315 0 10 8
3 Random 13.842 82.959 17.035 0 5 4
3 Sequential 32.564 35.033 35.304 0 13 12
4 Few first 100.445 101.192 100.439 0 1 0
4 Many first 52.203 52.052 75.156 0 8 7
4 Random 50.314 16.210 10.492 0 4 3
4 Sequential 22.297 22.175 30.493 0 13 12
5 Few first 99.692 101.278 100.594 0 3 2
5 Many first 52.444 52.609 61.660 0 9 6
5 Random 43.000 21.164 28.064 0 15 14
5 Sequential 19.731 19.802 24.061 0 14 13
6 Few first 101.280 101.089 101.245 0 9 4
6 Many first 27.175 26.953 99.706 0 10 5
6 Random 9.624 32.089 8.478 0 5 4
6 Sequential 15.552 15.504 12.281 0 9 8
7 Few first 101.842 100.277 101.018 0 9 4
7 Many first 77.167 76.769 79.719 0 9 4
7 Random 15.208 10.713 7.209 0 3 2
7 Sequential 13.949 13.908 10.381 0 9 8
8 Few first 100.647 100.654 100.100 0 9 1
8 Many first 79.904 79.897 50.079 0 8 3
8 Random 48.061 40.180 7.573 0 4 3
8 Sequential 8.489 8.495 16.691 0 11 10
9 Few first 100.587 101.164 101.927 0 9 2
9 Many first 12.678 12.630 12.050 0 4 2
9 Random 7.157 7.146 19.435 0 16 15
9 Sequential 8.431 8.438 13.657 0 11 10
10 Few first 100.229 100.759 100.808 0 9 1
10 Many first 78.031 77.930 100.298 0 10 1
10 Random 6.372 18.877 32.603 0 39 38
10 Sequential 12.600 12.674 14.124 0 12 11

Table B.29: Tests with 6 variables to sat2.cnf

84

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 1628.368 1663.211 1628.724 0 12 0
2 Many first 1806.623 1856.338 1458.557 0 12 5
2 Random 827.134 840.816 895.556 0 64 31
2 Sequential 862.634 856.078 792.221 0 64 28
3 Few first 1635.336 1633.573 1623.783 0 12 6
3 Many first 1777.101 1763.021 1648.722 0 12 7
3 Random 626.190 564.021 630.454 0 64 47
3 Sequential 559.621 601.805 578.648 0 64 49
4 Few first 1626.277 1633.814 1618.524 0 12 0
4 Many first 2091.194 2099.032 1500.822 0 12 6
4 Random 433.829 474.495 409.168 0 64 55
4 Sequential 424.977 439.628 457.413 0 64 56
5 Few first 1638.634 1634.167 1617.254 0 12 3
5 Many first 1599.609 1611.376 1721.390 0 12 6
5 Random 393.104 377.238 367.388 0 64 56
5 Sequential 343.634 342.404 374.888 0 64 58
6 Few first 1622.719 1621.832 1614.463 0 12 4
6 Many first 1349.479 1353.514 1430.028 0 12 5
6 Random 330.102 346.447 345.199 0 64 56
6 Sequential 339.657 309.793 340.693 0 64 57
7 Few first 1651.205 1626.947 1627.250 0 12 4
7 Many first 1429.253 1429.236 1332.958 0 12 4
7 Random 302.019 290.670 319.855 0 64 55
7 Sequential 286.223 289.701 339.129 0 64 55
8 Few first 1630.633 1629.498 1629.701 0 12 3
8 Many first 1667.533 1674.641 1681.235 0 12 3
8 Random 221.216 255.354 235.667 0 64 55
8 Sequential 278.456 292.451 255.374 0 64 54
9 Few first 1634.073 1642.445 1627.575 0 12 1
9 Many first 1638.990 1651.951 1850.591 0 12 2
9 Random 268.785 256.997 210.706 0 64 53
9 Sequential 212.765 213.678 236.545 0 64 54
10 Few first 1646.367 1619.387 1626.930 0 12 1
10 Many first 1190.945 1195.397 1179.863 0 12 1
10 Random 198.606 207.468 211.476 0 64 53
10 Sequential 233.451 223.740 195.317 0 64 53

Table B.30: Tests with 6 variables to unif-r4.cnf

85

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 130.581 131.772 132.147 0 0 0
2 Many first 2.311 2.321 2.328 0 0 0
2 Random 19.804 6.757 12.178 0 0 0
2 Sequential 2.323 2.318 2.318 0 0 0
3 Few first 2.942 2.933 2.935 0 0 0
3 Many first 2.324 2.316 2.313 0 0 0
3 Random 2.323 42.222 31.088 0 0 0
3 Sequential 2.316 2.324 2.333 0 0 0
4 Few first 2.952 2.932 2.920 0 0 0
4 Many first 2.348 2.316 2.314 0 0 0
4 Random 33.699 12.116 18.023 0 0 0
4 Sequential 2.342 2.333 2.318 0 0 0
5 Few first 2.940 2.930 2.911 0 0 0
5 Many first 2.318 2.331 2.318 0 0 0
5 Random 15.270 7.677 1.430 0 0 0
5 Sequential 2.333 2.334 2.316 0 0 0
6 Few first 2.941 2.919 2.927 0 0 0
6 Many first 2.321 2.358 2.322 0 0 0
6 Random 8.388 1.431 1.977 0 0 0
6 Sequential 2.320 2.332 2.325 0 0 0
7 Few first 2.938 2.914 2.928 0 0 0
7 Many first 2.327 2.314 2.325 0 0 0
7 Random 2.330 42.492 7.677 0 0 0
7 Sequential 2.313 2.311 2.313 0 0 0
8 Few first 2.929 2.934 2.925 0 0 0
8 Many first 2.323 2.318 2.310 0 0 0
8 Random 5.040 19.802 6.782 0 0 0
8 Sequential 2.351 2.341 2.321 0 0 0
9 Few first 2.942 2.940 2.953 0 0 0
9 Many first 2.335 2.333 2.320 0 0 0
9 Random 1.431 7.705 6.750 0 0 0
9 Sequential 2.339 2.337 2.309 0 0 0
10 Few first 2.935 2.923 2.963 0 0 0
10 Many first 2.355 2.927 2.938 0 0 0
10 Random 1.423 1.430 2.068 0 0 0
10 Sequential 2.336 2.334 2.344 0 0 0

Table B.31: Tests with 6 variables to unif-r5.cnf

86

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 21.717 21.686 21.255 0 10 3
2 Many first 11.151 11.141 11.139 5 11 0
2 Random 7.613 9.851 3.959 49 61 5
2 Sequential 11.125 11.098 11.104 57 63 0
3 Few first 13.050 13.083 12.284 0 9 3
3 Many first 11.139 11.106 11.115 5 11 3
3 Random 11.156 21.032 1.967 42 40 7
3 Sequential 11.170 11.090 11.140 56 63 7
4 Few first 7.349 7.360 5.379 0 8 2
4 Many first 11.168 11.115 11.141 3 10 4
4 Random 5.198 15.755 7.664 41 44 6
4 Sequential 11.173 11.096 11.091 52 62 9
5 Few first 32.319 32.292 32.419 0 7 1
5 Many first 11.154 11.090 11.122 1 9 3
5 Random 21.982 11.245 11.111 42 43 3
5 Sequential 11.163 11.075 11.079 47 59 17
6 Few first 11.261 11.273 11.282 0 6 0
6 Many first 11.176 11.103 11.132 0 8 0
6 Random 11.820 0.365 1.156 39 31 1
6 Sequential 11.135 11.114 11.122 43 52 14
7 Few first 10.791 11.293 11.382 0 6 0
7 Many first 11.191 11.138 11.133 0 7 0
7 Random 10.741 5.212 5.177 37 21 0
7 Sequential 11.198 11.172 11.130 43 37 0
8 Few first 10.800 10.826 11.365 0 6 0
8 Many first 11.178 11.106 11.121 0 6 0
8 Random 22.262 13.355 0.080 35 0 0
8 Sequential 11.179 11.092 11.115 41 6 0
9 Few first 11.285 10.819 11.359 0 6 0
9 Many first 11.162 11.147 11.112 0 6 0
9 Random 5.360 22.326 5.072 32 6 0
9 Sequential 11.150 11.128 11.133 41 6 0
10 Few first 11.282 11.299 11.279 0 6 0
10 Many first 11.201 11.166 11.090 0 6 0
10 Random 0.375 11.283 11.147 34 6 0
10 Sequential 11.164 11.115 11.105 41 6 0

Table B.32: Tests with 6 variables to vmpc 21.renamed-as.sat05-1923.cnf

87

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 6.026 5.941 52.634 0 10 3
2 Many first 116.382 117.279 116.713 5 11 0
2 Random 60.770 26.607 118.318 43 50 1
2 Sequential 116.372 116.433 116.536 57 63 0
3 Few first 174.335 174.613 18.910 0 9 4
3 Many first 116.450 116.366 116.401 4 11 3
3 Random 109.881 2.953 6.879 47 43 5
3 Sequential 116.416 116.414 116.318 57 63 2
4 Few first 70.099 69.977 1.677 0 5 2
4 Many first 116.583 116.360 116.175 3 10 3
4 Random 39.536 13.890 52.466 43 16 1
4 Sequential 116.519 116.700 116.399 51 62 5
5 Few first 197.157 197.077 75.606 0 7 1
5 Many first 116.451 116.350 116.396 2 9 2
5 Random 57.515 5.697 86.859 45 16 10
5 Sequential 116.302 116.347 116.365 48 59 3
6 Few first 5.711 5.736 5.786 0 6 0
6 Many first 116.424 116.488 116.707 0 8 1
6 Random 5.724 5.732 116.380 41 17 1
6 Sequential 116.436 116.259 116.229 45 52 1
7 Few first 5.720 5.724 5.742 0 6 0
7 Many first 116.637 116.402 116.523 0 7 0
7 Random 5.571 57.749 5.704 38 6 0
7 Sequential 116.528 116.476 116.547 43 37 0
8 Few first 5.560 5.552 5.746 0 6 0
8 Many first 116.389 116.413 116.371 0 6 0
8 Random 79.131 60.896 54.358 38 6 0
8 Sequential 116.303 116.397 116.265 41 6 0
9 Few first 5.756 5.715 5.676 0 6 0
9 Many first 116.795 116.403 116.300 0 6 0
9 Random 74.825 67.604 5.741 37 6 0
9 Sequential 116.317 116.444 116.306 41 6 0
10 Few first 5.746 5.743 5.735 0 6 0
10 Many first 116.500 116.436 116.298 0 6 0
10 Random 87.113 12.174 12.075 37 6 0
10 Sequential 116.406 116.447 116.411 41 6 0

Table B.33: Tests with 6 variables to vmpc 23.renamed-as.sat05-1927.cnf

88

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 5.698 5.689 5.707 0 0 0
2 Many first 46.515 42.167 46.568 5 7 0
2 Random 5.888 16.939 14.971 48 11 0
2 Sequential 24.993 23.063 24.966 46 3 0
3 Few first 9.384 9.327 9.368 0 4 1
3 Many first 18.454 18.929 11.918 3 6 1
3 Random 6.847 1.952 1.182 38 0 0
3 Sequential 14.676 14.627 14.726 45 6 1
4 Few first 9.330 9.374 9.331 0 5 2
4 Many first 5.412 5.382 8.450 0 4 1
4 Random 4.080 8.888 4.693 43 4 1
4 Sequential 5.697 5.687 5.683 15 0 0
5 Few first 9.330 9.363 9.351 0 5 1
5 Many first 9.179 9.141 9.168 0 4 1
5 Random 1.167 9.677 3.907 44 22 0
5 Sequential 9.685 9.694 9.696 47 24 1
6 Few first 9.371 9.387 9.324 0 4 0
6 Many first 5.526 5.505 5.725 0 4 1
6 Random 1.175 5.680 1.208 42 0 0
6 Sequential 9.718 9.669 9.634 44 50 1
7 Few first 9.366 9.341 9.352 0 3 0
7 Many first 5.711 5.544 5.677 0 4 0
7 Random 11.131 5.551 5.693 40 10 0
7 Sequential 9.683 9.761 9.754 42 35 0
8 Few first 9.372 9.352 9.369 0 3 0
8 Many first 5.787 5.723 5.684 0 3 0
8 Random 2.092 8.927 9.684 39 5 0
8 Sequential 9.706 9.763 9.650 41 4 0
9 Few first 9.360 9.369 9.357 0 3 0
9 Many first 9.729 9.749 9.330 0 3 0
9 Random 8.982 9.689 8.930 36 5 0
9 Sequential 9.688 9.720 9.657 41 4 0
10 Few first 9.343 9.352 9.342 0 3 0
10 Many first 9.719 9.758 9.355 0 3 0
10 Random 0.732 9.336 0.304 37 0 0
10 Sequential 9.670 9.761 9.712 41 4 0

Table B.34: Tests with 6 variables to vmpc 25.renamed-as.sat05-1913.cnf

89

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 273.056 36.989 62.258 0 10 3
2 Many first 68.471 68.199 68.263 0 11 0
2 Random 47.532 49.825 430.579 36 63 7
2 Sequential 68.233 68.399 68.403 37 63 0
3 Few first 71.647 71.528 214.816 0 9 2
3 Many first 68.370 68.281 68.339 0 11 4
3 Random 383.779 169.311 161.643 34 59 9
3 Sequential 68.411 68.208 68.187 37 61 3
4 Few first 133.974 134.147 158.035 0 9 2
4 Many first 68.307 68.271 68.282 0 11 6
4 Random 13.005 267.627 174.864 36 60 8
4 Sequential 68.330 68.247 68.252 36 52 5
5 Few first 172.179 173.325 172.547 0 9 1
5 Many first 68.287 68.405 68.195 0 11 4
5 Random 172.747 152.186 24.436 36 57 7
5 Sequential 68.510 68.151 68.302 36 51 3
6 Few first 130.101 130.065 92.965 0 9 2
6 Many first 68.343 68.230 68.277 0 11 4
6 Random 5.107 358.525 422.742 34 49 20
6 Sequential 68.370 68.422 68.174 35 51 9
7 Few first 299.048 299.003 6.691 0 8 2
7 Many first 68.177 68.242 68.218 0 11 2
7 Random 221.623 68.299 178.551 36 49 29
7 Sequential 68.327 68.228 68.177 34 49 10
8 Few first 139.628 139.774 139.626 0 9 1
8 Many first 68.192 68.145 68.209 0 11 2
8 Random 68.342 185.713 4.964 32 46 32
8 Sequential 68.202 68.169 68.294 33 48 16
9 Few first 383.895 385.268 383.908 0 9 0
9 Many first 68.369 68.160 68.373 0 11 1
9 Random 171.798 212.433 118.610 34 45 21
9 Sequential 68.314 68.361 68.297 31 47 22
10 Few first 384.740 384.460 384.320 0 9 0
10 Many first 68.460 68.064 68.356 0 10 1
10 Random 32.111 68.464 65.061 34 43 23
10 Sequential 68.377 68.095 68.204 31 47 21

Table B.35: Tests with 6 variables to vmpc 25.shuffled-as.sat05-1945.cnf

90

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 1480.721 1480.946 1385.304 0 10 4
2 Many first 699.213 698.813 654.370 0 11 0
2 Random 161.318 1040.357 396.801 40 62 3
2 Sequential 697.276 698.300 653.603 49 63 0
3 Few first 314.214 314.660 143.639 0 9 4
3 Many first 697.477 698.032 654.960 0 11 2
3 Random 587.400 1246.321 299.787 42 62 4
3 Sequential 697.504 699.174 652.654 47 63 3
4 Few first 466.465 467.827 828.877 0 8 2
4 Many first 698.759 699.483 652.449 0 11 6
4 Random 897.184 695.736 317.831 43 43 9
4 Sequential 697.822 697.883 653.416 45 62 5
5 Few first 116.604 116.567 116.102 0 8 1
5 Many first 698.703 696.948 654.565 0 11 3
5 Random 160.441 315.261 378.062 42 43 13
5 Sequential 696.787 700.306 652.971 43 59 3
6 Few first 750.540 751.248 704.030 0 8 1
6 Many first 697.461 700.174 652.082 0 11 4
6 Random 321.777 123.495 1271.070 44 34 13
6 Sequential 697.821 698.538 653.677 43 52 5
7 Few first 767.832 767.419 767.945 0 8 1
7 Many first 697.609 698.995 652.500 0 11 2
7 Random 697.809 161.324 539.472 37 38 15
7 Sequential 697.815 698.230 653.143 42 52 1
8 Few first 151.955 160.724 160.631 0 8 0
8 Many first 697.346 698.514 846.481 0 10 1
8 Random 508.856 1335.868 160.174 39 40 12
8 Sequential 697.539 698.378 696.305 41 52 3
9 Few first 160.719 160.560 151.318 0 8 0
9 Many first 699.847 699.749 699.131 0 9 0
9 Random 455.750 159.453 2.111 36 40 15
9 Sequential 698.512 697.763 729.439 41 51 8
10 Few first 161.046 161.338 151.150 0 8 0
10 Many first 697.351 697.904 701.142 0 8 0
10 Random 1163.422 160.631 160.826 34 27 6
10 Sequential 697.451 697.099 700.230 40 48 8

Table B.36: Tests with 6 variables to vmpc 26.renamed-as.sat05-1914.cnf

91

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 281.450 281.318 498.085 0 11 5
2 Many first 140.249 140.637 133.185 0 11 0
2 Random 455.853 324.441 163.221 20 63 7
2 Sequential 140.449 140.293 133.400 21 61 0
3 Few first 69.600 69.618 447.135 0 11 6
3 Many first 140.354 140.411 133.144 0 11 4
3 Random 59.649 125.113 63.839 20 62 14
3 Sequential 140.835 140.408 133.410 20 61 11
4 Few first 222.331 222.472 40.581 0 11 6
4 Many first 140.772 140.211 133.681 0 11 6
4 Random 90.720 312.264 144.392 20 60 24
4 Sequential 140.422 140.163 133.369 20 61 17
5 Few first 18.724 18.706 389.511 0 11 3
5 Many first 140.552 140.327 133.076 0 11 4
5 Random 95.011 661.961 100.092 20 60 26
5 Sequential 140.641 140.530 133.387 20 61 31
6 Few first 448.699 133.185 73.120 0 11 4
6 Many first 140.294 140.412 133.451 0 11 4
6 Random 136.951 19.827 53.587 19 61 41
6 Sequential 140.590 140.271 133.415 20 61 38
7 Few first 193.197 193.357 34.817 0 11 2
7 Many first 140.293 140.559 133.607 0 11 3
7 Random 326.327 67.543 652.060 20 62 34
7 Sequential 140.564 140.624 133.663 20 61 34
8 Few first 551.501 551.363 16.614 0 11 2
8 Many first 140.048 140.388 141.029 0 11 2
8 Random 12.380 557.533 159.531 18 60 30
8 Sequential 140.598 140.454 140.509 20 59 46
9 Few first 67.913 68.232 90.829 0 11 2
9 Many first 140.450 140.346 171.349 0 11 2
9 Random 213.427 79.581 213.187 18 56 37
9 Sequential 140.586 140.260 140.751 20 59 45
10 Few first 11.303 11.386 11.678 0 11 1
10 Many first 140.105 140.128 140.461 0 11 1
10 Random 133.073 369.771 97.200 16 59 49
10 Sequential 140.437 140.570 171.377 19 59 46

Table B.37: Tests with 6 variables to vmpc 26.shuffled-as.sat05-1946.cnf

92

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 965.678 903.634 906.187 0 10 3
2 Many first 957.029 896.254 897.852 5 11 0
2 Random 904.209 682.452 954.997 46 61 0
2 Sequential 958.239 895.926 900.563 57 63 0
3 Few first 421.557 421.470 421.156 0 9 4
3 Many first 899.192 898.380 897.050 5 11 0
3 Random 57.139 60.037 1183.062 42 41 5
3 Sequential 955.922 898.795 898.093 56 63 4
4 Few first 152.387 151.824 1396.148 0 8 2
4 Many first 896.482 897.370 900.964 4 10 1
4 Random 164.382 897.457 60.243 43 32 4
4 Sequential 896.898 899.021 897.893 52 62 3
5 Few first 2305.539 2288.459 2299.492 0 7 1
5 Many first 903.058 897.974 896.193 3 9 2
5 Random 1782.006 482.038 1580.021 42 43 1
5 Sequential 897.532 900.640 897.538 48 59 3
6 Few first 60.218 60.207 57.257 0 5 0
6 Many first 901.741 899.083 898.969 2 8 0
6 Random 2904.091 57.337 451.522 43 26 1
6 Sequential 898.720 897.896 900.111 45 52 1
7 Few first 57.201 60.229 60.087 0 5 0
7 Many first 897.918 898.603 902.485 1 7 0
7 Random 609.017 60.153 1876.761 38 17 0
7 Sequential 895.390 896.696 897.932 43 37 0
8 Few first 57.235 60.472 60.120 0 5 0
8 Many first 897.481 896.197 897.626 0 6 0
8 Random 814.810 33.394 541.318 39 6 0
8 Sequential 914.572 897.868 897.839 41 6 0
9 Few first 60.219 60.055 57.296 0 5 0
9 Many first 899.748 895.576 900.857 0 6 0
9 Random 1066.883 577.063 1535.769 37 6 0
9 Sequential 897.232 898.510 897.014 41 6 0
10 Few first 60.396 60.358 57.298 0 5 0
10 Many first 897.045 897.749 896.950 0 6 0
10 Random 183.402 2005.047 2913.734 35 6 0
10 Sequential 898.433 896.648 898.652 41 6 0

Table B.38: Tests with 6 variables to vmpc 27.renamed-as.sat05-1915.cnf

93

#W Mode T-no-opts T-confs T-learnts E.A. Sent Recv.
2 Few first 21.015 20.937 20.200 0 5 1
2 Many first 34.431 34.290 34.313 0 3 0
2 Random 35.820 34.830 10.580 22 13 1
2 Sequential 33.340 38.587 33.334 18 15 0
3 Few first 14.896 14.888 14.771 0 4 0
3 Many first 19.351 19.378 20.022 0 4 1
3 Random 0.879 4.226 2.753 18 13 2
3 Sequential 18.711 17.022 16.370 22 22 2
4 Few first 6.656 6.697 3.998 0 3 1
4 Many first 2.671 2.685 2.606 0 1 0
4 Random 3.152 3.546 3.525 21 15 2
4 Sequential 3.028 4.842 5.938 18 13 1
5 Few first 0.465 0.479 0.675 0 3 2
5 Many first 5.310 5.323 5.270 0 2 0
5 Random 0.888 10.927 6.202 19 27 11
5 Sequential 2.388 2.387 0.971 22 12 4
6 Few first 2.955 2.974 2.945 0 5 3
6 Many first 5.295 5.327 5.242 0 3 1
6 Random 5.211 1.301 6.510 19 39 37
6 Sequential 0.766 0.769 2.365 18 29 12
7 Few first 5.315 5.294 5.330 0 5 4
7 Many first 5.289 5.307 5.276 0 4 2
7 Random 5.159 3.258 3.655 20 50 18
7 Sequential 3.772 3.260 5.245 22 57 20
8 Few first 5.271 5.313 5.152 0 5 3
8 Many first 5.309 5.299 5.288 0 5 3
8 Random 2.644 4.835 3.785 20 46 28
8 Sequential 3.403 3.397 3.297 22 57 31
9 Few first 5.304 5.324 5.156 0 5 2
9 Many first 5.342 5.309 5.292 0 5 1
9 Random 5.988 6.241 5.751 20 53 37
9 Sequential 2.673 2.659 0.755 22 23 13
10 Few first 5.281 5.340 5.153 0 5 1
10 Many first 5.318 5.318 5.283 0 5 1
10 Random 2.696 5.609 7.903 19 53 41
10 Sequential 3.807 0.497 0.996 21 42 30

Table B.39: Tests with 6 variables to vmpc 27.shuffled-as.sat05-1947.cnf

94

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 35.976 1.251 0.625 0.599
2 Many first 2 36.089 1.247 0.623 0.604
2 Random 2 13.331 3.376 1.688 -0.408
2 Sequential 2 35.936 1.252 0.626 0.597
3 Few first 5 54.322 0.828 0.276 1.311
3 Many first 5 75.245 0.598 0.199 2.008
3 Random 4 42.987 1.047 0.349 0.933
3 Sequential 4 29.825 1.509 0.503 0.494
4 Few first 8 40.766 1.104 0.276 0.875
4 Many first 8 92.965 0.484 0.121 2.421
4 Random 4 54.057 0.832 0.208 1.268
4 Sequential 4 57.028 0.789 0.197 1.356
5 Few first 13 69.816 0.645 0.129 1.689
5 Many first 13 105.817 0.425 0.085 2.689
5 Random 5 40.304 1.116 0.223 0.870
5 Sequential 5 48.283 0.932 0.186 1.091
6 Few first 18 57.183 0.787 0.131 1.325
6 Many first 18 123.143 0.365 0.061 3.084
6 Random 6 27.786 1.619 0.270 0.541
6 Sequential 6 37.293 1.207 0.201 0.795
7 Few first 25 57.161 0.787 0.112 1.315
7 Many first 25 100.698 0.447 0.064 2.444
7 Random 6 47.307 0.951 0.136 1.060
7 Sequential 6 38.712 1.162 0.166 0.837
8 Few first 32 73.270 0.614 0.077 1.718
8 Many first 32 131.557 0.342 0.043 3.198
8 Random 6 62.754 0.717 0.090 1.451
8 Sequential 6 36.556 1.231 0.154 0.786
9 Few first 41 84.145 0.535 0.059 1.979
9 Many first 41 138.720 0.324 0.036 3.343
9 Random 7 46.999 0.957 0.106 1.050
9 Sequential 7 56.981 0.790 0.088 1.300
10 Few first 50 72.420 0.621 0.062 1.677
10 Many first 50 99.775 0.451 0.045 2.353
10 Random 7 41.851 1.075 0.108 0.922
10 Sequential 7 40.192 1.120 0.112 0.881

Table B.40: Tests of granularity to fpga10 11 uns rcr.cnf

95

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 153.403 1.033 0.517 0.936
2 Many first 2 107.087 1.480 0.740 0.351
2 Random 2 107.825 1.470 0.735 0.361
2 Sequential 2 107.455 1.475 0.737 0.356
3 Few first 5 52.116 3.041 1.014 -0.007
3 Many first 5 171.346 0.925 0.308 1.122
3 Random 4 173.532 0.913 0.304 1.143
3 Sequential 4 159.960 0.991 0.330 1.014
4 Few first 8 148.773 1.065 0.266 0.918
4 Many first 8 218.099 0.727 0.182 1.502
4 Random 4 170.116 0.932 0.233 1.098
4 Sequential 4 161.092 0.984 0.246 1.022
5 Few first 13 114.755 1.381 0.276 0.655
5 Many first 13 263.936 0.600 0.120 1.832
5 Random 5 111.992 1.415 0.283 0.633
5 Sequential 5 102.197 1.551 0.310 0.556
6 Few first 18 88.749 1.786 0.298 0.472
6 Many first 18 96.789 1.637 0.273 0.533
6 Random 6 119.384 1.327 0.221 0.704
6 Sequential 6 158.970 0.997 0.166 1.004
7 Few first 25 156.979 1.010 0.144 0.989
7 Many first 25 233.559 0.679 0.097 1.553
7 Random 6 95.102 1.666 0.238 0.533
7 Sequential 6 113.920 1.391 0.199 0.672
8 Few first 32 103.854 1.526 0.191 0.606
8 Many first 32 217.038 0.730 0.091 1.422
8 Random 6 164.187 0.965 0.121 1.041
8 Sequential 6 122.622 1.292 0.162 0.741
9 Few first 41 100.800 1.572 0.175 0.591
9 Many first 41 246.925 0.642 0.071 1.628
9 Random 7 130.311 1.216 0.135 0.800
9 Sequential 7 166.430 0.952 0.106 1.056
10 Few first 50 151.223 1.048 0.105 0.949
10 Many first 50 201.664 0.786 0.079 1.303
10 Random 7 139.184 1.139 0.114 0.865
10 Sequential 7 122.568 1.293 0.129 0.748

Table B.41: Tests of granularity to fpga10 12 uns rcr.cnf

96

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 261.553 0.618 0.309 2.237
2 Many first 2 277.787 0.582 0.291 2.438
2 Random 2 273.079 0.592 0.296 2.380
2 Sequential 2 278.164 0.581 0.290 2.443
3 Few first 5 181.370 0.891 0.297 1.184
3 Many first 5 368.151 0.439 0.146 2.918
3 Random 4 263.722 0.613 0.204 1.948
3 Sequential 4 267.578 0.604 0.201 1.984
4 Few first 8 204.875 0.789 0.197 1.357
4 Many first 8 515.525 0.313 0.078 3.921
4 Random 4 266.992 0.605 0.151 1.870
4 Sequential 4 266.619 0.606 0.152 1.867
5 Few first 13 230.736 0.700 0.140 1.535
5 Many first 13 228.985 0.706 0.141 1.521
5 Random 5 230.449 0.701 0.140 1.533
5 Sequential 5 230.450 0.701 0.140 1.533
6 Few first 18 285.096 0.567 0.094 1.917
6 Many first 18 498.068 0.324 0.054 3.499
6 Random 6 255.283 0.633 0.105 1.696
6 Sequential 6 201.401 0.802 0.134 1.296
7 Few first 25 287.232 0.563 0.080 1.907
7 Many first 25 192.263 0.840 0.120 1.221
7 Random 6 256.195 0.631 0.090 1.683
7 Sequential 6 298.359 0.542 0.077 1.988
8 Few first 32 294.774 0.548 0.069 1.942
8 Many first 32 301.983 0.535 0.067 1.993
8 Random 6 272.463 0.593 0.074 1.784
8 Sequential 6 339.090 0.477 0.060 2.255
9 Few first 41 222.944 0.725 0.081 1.427
9 Many first 41 277.885 0.581 0.065 1.810
9 Random 7 303.006 0.533 0.059 1.985
9 Sequential 7 278.124 0.581 0.065 1.811
10 Few first 50 199.995 0.808 0.081 1.264
10 Many first 50 404.268 0.400 0.040 2.669
10 Random 7 312.704 0.517 0.052 2.039
10 Sequential 7 213.588 0.757 0.076 1.358

Table B.42: Tests of granularity to fpga10 13 uns rcr.cnf

97

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 14.735 19.505 9.752 -0.897
2 Many first 2 314.960 0.913 0.456 1.192
2 Random 2 15.386 18.680 9.340 -0.893
2 Sequential 2 315.537 0.911 0.455 1.196
3 Few first 5 43.234 6.648 2.216 -0.274
3 Many first 5 44.732 6.425 2.142 -0.267
3 Random 4 173.262 1.659 0.553 0.404
3 Sequential 4 181.933 1.580 0.527 0.450
4 Few first 8 91.772 3.132 0.783 0.092
4 Many first 8 130.070 2.210 0.552 0.270
4 Random 4 52.051 5.522 1.380 -0.092
4 Sequential 4 182.232 1.577 0.394 0.512
5 Few first 13 16.514 17.404 3.481 -0.178
5 Many first 13 49.222 5.839 1.168 -0.036
5 Random 5 57.777 4.974 0.995 0.001
5 Sequential 5 44.842 6.409 1.282 -0.055
6 Few first 18 45.262 6.350 1.058 -0.011
6 Many first 18 57.568 4.992 0.832 0.040
6 Random 6 45.219 6.356 1.059 -0.011
6 Sequential 6 41.206 6.975 1.162 -0.028
7 Few first 25 2.740 104.885 14.984 -0.156
7 Many first 25 10.348 27.775 3.968 -0.125
7 Random 6 183.637 1.565 0.224 0.579
7 Sequential 6 41.369 6.947 0.992 0.001
8 Few first 32 4.602 62.448 7.806 -0.125
8 Many first 32 13.857 20.741 2.593 -0.088
8 Random 6 64.098 4.484 0.560 0.112
8 Sequential 6 41.297 6.959 0.870 0.021
9 Few first 41 6.699 42.900 4.767 -0.099
9 Many first 41 10.829 26.541 2.949 -0.083
9 Random 7 10.571 27.189 3.021 -0.084
9 Sequential 7 251.187 1.144 0.127 0.858
10 Few first 50 8.625 33.324 3.332 -0.078
10 Many first 50 1.919 149.758 14.976 -0.104
10 Random 7 243.348 1.181 0.118 0.830
10 Sequential 7 250.908 1.145 0.115 0.859

Table B.43: Tests of granularity to frb40-19-1.cnf

98

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 396.999 1.361 0.681 0.469
2 Many first 2 172.703 3.129 1.565 -0.361
2 Random 2 296.884 1.820 0.910 0.099
2 Sequential 2 172.879 3.126 1.563 -0.360
3 Few first 5 348.856 1.549 0.516 0.468
3 Many first 5 445.817 1.212 0.404 0.737
3 Random 4 210.774 2.564 0.855 0.085
3 Sequential 4 243.907 2.216 0.739 0.177
4 Few first 8 135.132 3.999 1.000 0.000
4 Many first 8 22.821 23.679 5.920 -0.277
4 Random 4 249.196 2.169 0.542 0.282
4 Sequential 4 243.999 2.215 0.554 0.269
5 Few first 13 61.748 8.752 1.750 -0.107
5 Many first 13 217.848 2.481 0.496 0.254
5 Random 5 183.573 2.944 0.589 0.175
5 Sequential 5 445.334 1.213 0.243 0.780
6 Few first 18 235.482 2.295 0.382 0.323
6 Many first 18 21.047 25.675 4.279 -0.153
6 Random 6 135.243 3.996 0.666 0.100
6 Sequential 6 109.987 4.913 0.819 0.044
7 Few first 25 62.155 8.694 1.242 -0.032
7 Many first 25 42.660 12.668 1.810 -0.075
7 Random 6 171.614 3.149 0.450 0.204
7 Sequential 6 109.962 4.914 0.702 0.071
8 Few first 32 62.253 8.681 1.085 -0.011
8 Many first 32 38.555 14.016 1.752 -0.061
8 Random 6 203.707 2.653 0.332 0.288
8 Sequential 6 110.542 4.889 0.611 0.091
9 Few first 41 48.727 11.090 1.232 -0.024
9 Many first 41 48.461 11.151 1.239 -0.024
9 Random 7 357.864 1.510 0.168 0.620
9 Sequential 7 18.656 28.966 3.218 -0.086
10 Few first 50 33.121 16.316 1.632 -0.043
10 Many first 50 5.743 94.090 9.409 -0.099
10 Random 7 24.416 22.133 2.213 -0.061
10 Sequential 7 18.726 28.858 2.886 -0.073

Table B.44: Tests of granularity to frb40-19-2.cnf

99

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 283.521 22.363 11.182 -0.911
2 Many first 2 1116.105 5.681 2.840 -0.648
2 Random 2 1050.828 6.034 3.017 -0.669
2 Sequential 2 1116.282 5.680 2.840 -0.648
3 Few first 5 1939.433 3.269 1.090 -0.041
3 Many first 5 5347.412 1.186 0.395 0.765
3 Random 4 1452.988 4.364 1.455 -0.156
3 Sequential 4 3535.978 1.793 0.598 0.337
4 Few first 8 4427.766 1.432 0.358 0.598
4 Many first 8 812.754 7.801 1.950 -0.162
4 Random 4 2930.817 2.163 0.541 0.283
4 Sequential 4 3540.866 1.791 0.448 0.411
5 Few first 13 483.353 13.118 2.624 -0.155
5 Many first 13 868.544 7.300 1.460 -0.079
5 Random 5 3919.569 1.618 0.324 0.523
5 Sequential 5 5340.404 1.187 0.237 0.803
6 Few first 18 122.590 51.721 8.620 -0.177
6 Many first 18 323.517 19.598 3.266 -0.139
6 Random 6 4039.151 1.570 0.262 0.564
6 Sequential 6 2569.352 2.468 0.411 0.286
7 Few first 25 194.927 32.527 4.647 -0.131
7 Many first 25 170.655 37.153 5.308 -0.135
7 Random 6 869.401 7.293 1.042 -0.007
7 Sequential 6 2570.362 2.467 0.352 0.306
8 Few first 32 248.815 25.482 3.185 -0.098
8 Many first 32 76.301 83.098 10.387 -0.129
8 Random 6 2952.430 2.148 0.268 0.389
8 Sequential 6 2566.808 2.470 0.309 0.320
9 Few first 41 246.594 25.712 2.857 -0.081
9 Many first 41 130.180 48.705 5.412 -0.102
9 Random 7 4489.855 1.412 0.157 0.672
9 Sequential 7 4266.898 1.486 0.165 0.632
10 Few first 50 261.795 24.219 2.422 -0.065
10 Many first 50 9.868 642.548 64.255 -0.109
10 Random 7 2208.127 2.871 0.287 0.276
10 Sequential 7 4268.087 1.486 0.149 0.637

Table B.45: Tests of granularity to frb40-19-3.cnf

100

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 1893.267 0.476 0.238 3.201
2 Many first 2 753.569 1.196 0.598 0.672
2 Random 2 707.978 1.273 0.637 0.571
2 Sequential 2 752.964 1.197 0.599 0.671
3 Few first 5 1404.943 0.642 0.214 1.838
3 Many first 5 641.289 1.406 0.469 0.567
3 Random 4 1299.805 0.694 0.231 1.663
3 Sequential 4 512.734 1.758 0.586 0.353
4 Few first 8 185.048 4.871 1.218 -0.060
4 Many first 8 957.261 0.942 0.235 1.083
4 Random 4 727.854 1.239 0.310 0.743
4 Sequential 4 512.435 1.759 0.440 0.425
5 Few first 13 1763.783 0.511 0.102 2.196
5 Many first 13 1031.589 0.874 0.175 1.180
5 Random 5 2129.295 0.423 0.085 2.703
5 Sequential 5 640.635 1.407 0.281 0.638
6 Few first 18 189.955 4.746 0.791 0.053
6 Many first 18 158.857 5.675 0.946 0.011
6 Random 6 186.475 4.834 0.806 0.048
6 Sequential 6 2218.451 0.406 0.068 2.753
7 Few first 25 804.692 1.120 0.160 0.875
7 Many first 25 653.003 1.380 0.197 0.678
7 Random 6 267.317 3.372 0.482 0.179
7 Sequential 6 2218.024 0.406 0.058 2.704
8 Few first 32 59.774 15.081 1.885 -0.067
8 Many first 32 158.862 5.674 0.709 0.059
8 Random 6 705.357 1.278 0.160 0.751
8 Sequential 6 2218.262 0.406 0.051 2.669
9 Few first 41 25.892 34.816 3.868 -0.093
9 Many first 41 85.838 10.502 1.167 -0.018
9 Random 7 1520.749 0.593 0.066 1.773
9 Sequential 7 1621.905 0.556 0.062 1.899
10 Few first 50 61.610 14.632 1.463 -0.035
10 Many first 50 42.099 21.413 2.141 -0.059
10 Random 7 984.884 0.915 0.092 1.103
10 Sequential 7 1622.259 0.556 0.056 1.888

Table B.46: Tests of granularity to frb40-19-4.cnf

101

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 3125.763 1.449 0.724 0.380
2 Many first 2 2506.659 1.807 0.903 0.107
2 Random 2 2815.566 1.608 0.804 0.243
2 Sequential 2 2504.600 1.808 0.904 0.106
3 Few first 5 728.539 6.216 2.072 -0.259
3 Many first 5 1830.210 2.474 0.825 0.106
3 Random 4 3776.043 1.199 0.400 0.751
3 Sequential 4 863.271 5.246 1.749 -0.214
4 Few first 8 2106.309 2.150 0.538 0.287
4 Many first 8 1446.983 3.130 0.782 0.093
4 Random 4 860.391 5.264 1.316 -0.080
4 Sequential 4 862.507 5.251 1.313 -0.079
5 Few first 13 1722.834 2.629 0.526 0.226
5 Many first 13 2400.639 1.886 0.377 0.413
5 Random 5 1720.040 2.633 0.527 0.225
5 Sequential 5 1832.168 2.472 0.494 0.256
6 Few first 18 3106.062 1.458 0.243 0.623
6 Many first 18 661.626 6.845 1.141 -0.025
6 Random 6 3678.953 1.231 0.205 0.775
6 Sequential 6 3020.710 1.499 0.250 0.600
7 Few first 25 981.194 4.616 0.659 0.086
7 Many first 25 991.282 4.569 0.653 0.089
7 Random 6 3143.725 1.441 0.206 0.643
7 Sequential 6 3016.172 1.501 0.214 0.610
8 Few first 32 628.764 7.203 0.900 0.016
8 Many first 32 90.015 50.311 6.289 -0.120
8 Random 6 4980.721 0.909 0.114 1.114
8 Sequential 6 3016.091 1.502 0.188 0.618
9 Few first 41 1.804 2510.234 278.915 -0.125
9 Many first 41 143.133 31.640 3.516 -0.089
9 Random 7 2263.274 2.001 0.222 0.437
9 Sequential 7 4303.542 1.052 0.117 0.944
10 Few first 50 97.558 46.421 4.642 -0.087
10 Many first 50 121.311 37.332 3.733 -0.081
10 Random 7 3849.541 1.176 0.118 0.833
10 Sequential 7 4313.740 1.050 0.105 0.947

Table B.47: Tests of granularity to frb40-19-5.cnf

102

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 970.758 0.745 0.372 1.685
2 Many first 2 947.924 0.763 0.381 1.622
2 Random 2 944.699 0.765 0.383 1.613
2 Sequential 2 952.244 0.759 0.380 1.634
3 Few first 5 531.032 1.362 0.454 0.601
3 Many first 5 288.570 2.506 0.835 0.099
3 Random 4 283.535 2.551 0.850 0.088
3 Sequential 4 359.205 2.013 0.671 0.245
4 Few first 8 356.403 2.029 0.507 0.324
4 Many first 8 301.006 2.402 0.601 0.222
4 Random 4 844.631 0.856 0.214 1.224
4 Sequential 4 357.140 2.025 0.506 0.325
5 Few first 13 241.104 2.999 0.600 0.167
5 Many first 13 155.709 4.644 0.929 0.019
5 Random 5 458.609 1.577 0.315 0.543
5 Sequential 5 289.405 2.499 0.500 0.250
6 Few first 18 138.499 5.221 0.870 0.030
6 Many first 18 104.224 6.939 1.156 -0.027
6 Random 6 275.617 2.624 0.437 0.257
6 Sequential 6 284.553 2.541 0.424 0.272
7 Few first 25 84.578 8.550 1.221 -0.030
7 Many first 25 141.397 5.114 0.731 0.061
7 Random 6 216.460 3.341 0.477 0.183
7 Sequential 6 286.506 2.524 0.361 0.296
8 Few first 32 82.781 8.736 1.092 -0.012
8 Many first 32 100.666 7.184 0.898 0.016
8 Random 6 273.108 2.648 0.331 0.289
8 Sequential 6 284.446 2.542 0.318 0.307
9 Few first 41 64.229 11.259 1.251 -0.025
9 Many first 41 68.378 10.576 1.175 -0.019
9 Random 7 319.205 2.265 0.252 0.372
9 Sequential 7 125.387 5.767 0.641 0.070
10 Few first 50 95.637 7.561 0.756 0.036
10 Many first 50 114.168 6.334 0.633 0.064
10 Random 7 318.462 2.271 0.227 0.378
10 Sequential 7 124.076 5.828 0.583 0.080

Table B.48: Tests of granularity to hole11.cnf

103

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 72.164 1.089 0.544 0.837
2 Many first 2 70.843 1.109 0.555 0.803
2 Random 2 75.082 1.046 0.523 0.911
2 Sequential 2 72.977 1.077 0.538 0.858
3 Few first 5 47.290 1.662 0.554 0.403
3 Many first 5 53.876 1.458 0.486 0.529
3 Random 4 58.352 1.347 0.449 0.614
3 Sequential 4 60.513 1.298 0.433 0.655
4 Few first 8 43.509 1.806 0.451 0.405
4 Many first 8 60.217 1.305 0.326 0.689
4 Random 4 47.954 1.639 0.410 0.480
4 Sequential 4 47.153 1.666 0.417 0.467
5 Few first 13 34.215 2.296 0.459 0.294
5 Many first 13 42.974 1.828 0.366 0.434
5 Random 5 32.480 2.419 0.484 0.267
5 Sequential 5 39.129 2.008 0.402 0.373
6 Few first 18 36.903 2.129 0.355 0.364
6 Many first 18 50.740 1.549 0.258 0.575
6 Random 6 44.290 1.774 0.296 0.476
6 Sequential 6 44.011 1.785 0.298 0.472
7 Few first 25 33.598 2.339 0.334 0.332
7 Many first 25 37.211 2.112 0.302 0.386
7 Random 6 35.892 2.189 0.313 0.366
7 Sequential 6 36.729 2.139 0.306 0.379
8 Few first 32 35.587 2.208 0.276 0.375
8 Many first 32 36.549 2.150 0.269 0.389
8 Random 6 34.920 2.250 0.281 0.365
8 Sequential 6 33.376 2.354 0.294 0.343
9 Few first 41 27.309 2.877 0.320 0.266
9 Many first 41 27.355 2.872 0.319 0.267
9 Random 7 32.571 2.412 0.268 0.341
9 Sequential 7 30.454 2.580 0.287 0.311
10 Few first 50 26.452 2.970 0.297 0.263
10 Many first 50 38.675 2.032 0.203 0.436
10 Random 7 29.721 2.644 0.264 0.309
10 Sequential 7 30.542 2.573 0.257 0.321

Table B.49: Tests of granularity to mod2-3cage-unsat-9-11.cnf

104

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 74.752 1.080 0.540 0.851
2 Many first 2 77.552 1.041 0.521 0.921
2 Random 2 78.703 1.026 0.513 0.949
2 Sequential 2 71.913 1.123 0.561 0.781
3 Few first 5 55.567 1.453 0.484 0.532
3 Many first 5 55.941 1.444 0.481 0.539
3 Random 4 57.118 1.414 0.471 0.561
3 Sequential 4 59.014 1.368 0.456 0.596
4 Few first 8 40.223 2.008 0.502 0.331
4 Many first 8 56.059 1.441 0.360 0.592
4 Random 4 42.977 1.879 0.470 0.376
4 Sequential 4 45.614 1.770 0.443 0.420
5 Few first 13 31.158 2.592 0.518 0.232
5 Many first 13 44.243 1.825 0.365 0.435
5 Random 5 41.656 1.939 0.388 0.395
5 Sequential 5 45.598 1.771 0.354 0.456
6 Few first 18 35.975 2.245 0.374 0.335
6 Many first 18 50.246 1.607 0.268 0.547
6 Random 6 40.965 1.971 0.329 0.409
6 Sequential 6 42.048 1.921 0.320 0.425
7 Few first 25 30.584 2.640 0.377 0.275
7 Many first 25 39.566 2.041 0.292 0.405
7 Random 6 38.237 2.112 0.302 0.386
7 Sequential 6 35.771 2.257 0.322 0.350
8 Few first 32 29.656 2.723 0.340 0.277
8 Many first 32 34.240 2.358 0.295 0.342
8 Random 6 32.673 2.472 0.309 0.320
8 Sequential 6 30.060 2.686 0.336 0.283
9 Few first 41 38.351 2.106 0.234 0.409
9 Many first 41 38.094 2.120 0.236 0.406
9 Random 7 30.509 2.647 0.294 0.300
9 Sequential 7 27.457 2.941 0.327 0.258
10 Few first 50 34.820 2.319 0.232 0.368
10 Many first 50 35.701 2.262 0.226 0.380
10 Random 7 28.250 2.859 0.286 0.278
10 Sequential 7 24.190 3.338 0.334 0.222

Table B.50: Tests of granularity to mod2-3cage-unsat-9-4.cnf

105

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 424.646 2.066 1.033 -0.032
2 Many first 2 1654.469 0.530 0.265 2.772
2 Random 2 1666.981 0.526 0.263 2.800
2 Sequential 2 1757.525 0.499 0.250 3.006
3 Few first 5 917.457 0.956 0.319 1.069
3 Many first 5 92.399 9.495 3.165 -0.342
3 Random 4 512.433 1.712 0.571 0.376
3 Sequential 4 657.699 1.334 0.445 0.624
4 Few first 8 365.342 2.401 0.600 0.222
4 Many first 8 583.584 1.503 0.376 0.554
4 Random 4 6.535 134.245 33.561 -0.323
4 Sequential 4 567.343 1.546 0.387 0.529
5 Few first 13 507.026 1.730 0.346 0.472
5 Many first 13 40.786 21.511 4.302 -0.192
5 Random 5 177.272 4.949 0.990 0.003
5 Sequential 5 334.038 2.626 0.525 0.226
6 Few first 18 100.374 8.741 1.457 -0.063
6 Many first 18 758.165 1.157 0.193 0.837
6 Random 6 189.008 4.642 0.774 0.059
6 Sequential 6 292.802 2.996 0.499 0.200
7 Few first 25 2.433 360.581 51.512 -0.163
7 Many first 25 303.416 2.892 0.413 0.237
7 Random 6 268.626 3.266 0.467 0.191
7 Sequential 6 232.881 3.767 0.538 0.143
8 Few first 32 28.735 30.533 3.817 -0.105
8 Many first 32 730.889 1.200 0.150 0.809
8 Random 6 84.620 10.368 1.296 -0.033
8 Sequential 6 188.644 4.651 0.581 0.103
9 Few first 41 189.468 4.631 0.515 0.118
9 Many first 41 29.453 29.788 3.310 -0.087
9 Random 7 155.697 5.635 0.626 0.075
9 Sequential 7 193.558 4.533 0.504 0.123
10 Few first 50 272.895 3.215 0.321 0.234
10 Many first 50 278.811 3.147 0.315 0.242
10 Random 7 134.539 6.521 0.652 0.059
10 Sequential 7 174.040 5.041 0.504 0.109

Table B.51: Tests of granularity to mod2-3g14-sat.cnf

106

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 95.578 0.788 0.394 1.537
2 Many first 2 119.166 0.632 0.316 2.164
2 Random 2 118.417 0.636 0.318 2.144
2 Sequential 2 118.638 0.635 0.317 2.150
3 Few first 5 18.500 4.072 1.357 -0.132
3 Many first 5 69.213 1.088 0.363 0.878
3 Random 4 115.930 0.650 0.217 1.808
3 Sequential 4 52.498 1.435 0.478 0.545
4 Few first 8 82.197 0.916 0.229 1.121
4 Many first 8 17.370 4.337 1.084 -0.026
4 Random 4 52.947 1.423 0.356 0.604
4 Sequential 4 52.741 1.428 0.357 0.600
5 Few first 13 9.135 8.247 1.649 -0.098
5 Many first 13 33.347 2.259 0.452 0.303
5 Random 5 11.567 6.513 1.303 -0.058
5 Sequential 5 11.519 6.540 1.308 -0.059
6 Few first 18 5.520 13.646 2.274 -0.112
6 Many first 18 35.413 2.127 0.355 0.364
6 Random 6 34.729 2.169 0.362 0.353
6 Sequential 6 10.811 6.968 1.161 -0.028
7 Few first 25 4.444 16.951 2.422 -0.098
7 Many first 25 77.350 0.974 0.139 1.031
7 Random 6 26.824 2.808 0.401 0.249
7 Sequential 6 12.528 6.013 0.859 0.027
8 Few first 32 6.720 11.210 1.401 -0.041
8 Many first 32 32.317 2.331 0.291 0.347
8 Random 6 26.802 2.811 0.351 0.264
8 Sequential 6 26.286 2.866 0.358 0.256
9 Few first 41 19.684 3.827 0.425 0.169
9 Many first 41 7.187 10.481 1.165 -0.018
9 Random 7 40.607 1.855 0.206 0.481
9 Sequential 7 5.688 13.243 1.471 -0.040
10 Few first 50 9.942 7.578 0.758 0.036
10 Many first 50 7.411 10.164 1.016 -0.002
10 Random 7 24.006 3.138 0.314 0.243
10 Sequential 7 12.935 5.824 0.582 0.080

Table B.52: Tests of granularity to mod2c-rand3bip-sat-150-11.cnf

107

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 11.515 2.306 1.153 -0.133
2 Many first 2 15.492 1.714 0.857 0.167
2 Random 2 15.580 1.704 0.852 0.173
2 Sequential 2 15.462 1.717 0.859 0.165
3 Few first 5 39.804 0.667 0.222 1.749
3 Many first 5 22.933 1.158 0.386 0.795
3 Random 4 6.996 3.795 1.265 -0.105
3 Sequential 4 18.392 1.444 0.481 0.539
4 Few first 8 18.807 1.412 0.353 0.611
4 Many first 8 60.001 0.443 0.111 2.679
4 Random 4 6.962 3.814 0.953 0.016
4 Sequential 4 6.966 3.812 0.953 0.016
5 Few first 13 37.325 0.711 0.142 1.507
5 Many first 13 39.359 0.675 0.135 1.603
5 Random 5 0.847 31.348 6.270 -0.210
5 Sequential 5 11.361 2.337 0.467 0.285
6 Few first 18 2.573 10.319 1.720 -0.084
6 Many first 18 6.029 4.404 0.734 0.072
6 Random 6 1.000 26.552 4.425 -0.155
6 Sequential 6 10.430 2.546 0.424 0.271
7 Few first 25 3.006 8.833 1.262 -0.035
7 Many first 25 20.943 1.268 0.181 0.754
7 Random 6 1.002 26.499 3.786 -0.123
7 Sequential 6 10.326 2.572 0.367 0.287
8 Few first 32 1.218 21.800 2.725 -0.090
8 Many first 32 1.860 14.275 1.784 -0.063
8 Random 6 0.994 26.712 3.339 -0.100
8 Sequential 6 9.621 2.760 0.345 0.271
9 Few first 41 6.692 3.968 0.441 0.159
9 Many first 41 6.474 4.101 0.456 0.149
9 Random 7 1.992 13.329 1.481 -0.041
9 Sequential 7 15.721 1.689 0.188 0.541
10 Few first 50 4.918 5.399 0.540 0.095
10 Many first 50 21.969 1.209 0.121 0.808
10 Random 7 1.990 13.343 1.334 -0.028
10 Sequential 7 15.747 1.686 0.169 0.548

Table B.53: Tests of granularity to mod2c-rand3bip-sat-150-15.cnf

108

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 139.151 0.478 0.239 3.182
2 Many first 2 76.619 0.869 0.434 1.303
2 Random 2 76.735 0.867 0.434 1.306
2 Sequential 2 139.505 0.477 0.239 3.192
3 Few first 5 12.558 5.300 1.767 -0.217
3 Many first 5 18.635 3.571 1.190 -0.080
3 Random 4 36.453 1.826 0.609 0.322
3 Sequential 4 55.739 1.194 0.398 0.756
4 Few first 8 122.634 0.543 0.136 2.124
4 Many first 8 31.185 2.134 0.534 0.291
4 Random 4 59.823 1.112 0.278 0.865
4 Sequential 4 42.953 1.549 0.387 0.527
5 Few first 13 15.551 4.280 0.856 0.042
5 Many first 13 21.413 3.108 0.622 0.152
5 Random 5 69.184 0.962 0.192 1.049
5 Sequential 5 24.478 2.719 0.544 0.210
6 Few first 18 0.508 131.001 21.833 -0.191
6 Many first 18 1.270 52.400 8.733 -0.177
6 Random 6 12.546 5.305 0.884 0.026
6 Sequential 6 15.497 4.295 0.716 0.079
7 Few first 25 11.051 6.022 0.860 0.027
7 Many first 25 10.175 6.541 0.934 0.012
7 Random 6 6.326 10.520 1.503 -0.056
7 Sequential 6 14.986 4.441 0.634 0.096
8 Few first 32 2.310 28.809 3.601 -0.103
8 Many first 32 41.222 1.614 0.202 0.565
8 Random 6 9.694 6.866 0.858 0.024
8 Sequential 6 9.225 7.215 0.902 0.016
9 Few first 41 1.825 36.465 4.052 -0.094
9 Many first 41 24.551 2.711 0.301 0.290
9 Random 7 34.118 1.951 0.217 0.452
9 Sequential 7 15.007 4.435 0.493 0.129
10 Few first 50 24.818 2.682 0.268 0.303
10 Many first 50 0.691 96.308 9.631 -0.100
10 Random 7 8.877 7.498 0.750 0.037
10 Sequential 7 15.100 4.407 0.441 0.141

Table B.54: Tests of granularity to sat2.cnf

109

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 1579.641 2.055 1.028 -0.027
2 Many first 2 1262.911 2.571 1.285 -0.222
2 Random 2 1252.302 2.593 1.296 -0.229
2 Sequential 2 1270.520 2.556 1.278 -0.217
3 Few first 5 966.974 3.358 1.119 -0.053
3 Many first 5 1486.251 2.185 0.728 0.187
3 Random 4 801.909 4.049 1.350 -0.130
3 Sequential 4 924.586 3.512 1.171 -0.073
4 Few first 8 991.063 3.276 0.819 0.074
4 Many first 8 1075.701 3.018 0.755 0.108
4 Random 4 542.112 5.989 1.497 -0.111
4 Sequential 4 621.887 5.221 1.305 -0.078
5 Few first 13 910.292 3.567 0.713 0.100
5 Many first 13 1192.058 2.724 0.545 0.209
5 Random 5 470.510 6.901 1.380 -0.069
5 Sequential 5 470.235 6.905 1.381 -0.069
6 Few first 18 947.606 3.426 0.571 0.150
6 Many first 18 1178.945 2.754 0.459 0.236
6 Random 6 353.808 9.177 1.530 -0.069
6 Sequential 6 299.513 10.841 1.807 -0.089
7 Few first 25 1468.172 2.212 0.316 0.361
7 Many first 25 1263.749 2.569 0.367 0.287
7 Random 6 267.363 12.144 1.735 -0.071
7 Sequential 6 309.131 10.503 1.500 -0.056
8 Few first 32 2818.094 1.152 0.144 0.849
8 Many first 32 2009.376 1.616 0.202 0.564
8 Random 6 253.627 12.802 1.600 -0.054
8 Sequential 6 267.920 12.119 1.515 -0.049
9 Few first 41 1082.865 2.998 0.333 0.250
9 Many first 41 1515.228 2.143 0.238 0.400
9 Random 7 180.548 17.984 1.998 -0.062
9 Sequential 7 202.020 16.072 1.786 -0.055
10 Few first 50 876.269 3.705 0.371 0.189
10 Many first 50 1062.537 3.056 0.306 0.252
10 Random 7 231.795 14.008 1.401 -0.032
10 Sequential 7 196.434 16.529 1.653 -0.044

Table B.55: Tests of granularity to unif-r4.cnf

110

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 64.529 5.590 2.795 -0.642
2 Many first 2 250.100 1.442 0.721 0.387
2 Random 2 64.495 5.592 2.796 -0.642
2 Sequential 2 248.469 1.452 0.726 0.378
3 Few first 5 49.305 7.315 2.438 -0.295
3 Many first 5 34.822 10.358 3.453 -0.355
3 Random 4 47.918 7.527 2.509 -0.301
3 Sequential 4 13.962 25.834 8.611 -0.442
4 Few first 8 38.290 9.420 2.355 -0.192
4 Many first 8 14.724 24.497 6.124 -0.279
4 Random 4 13.938 25.878 6.470 -0.282
4 Sequential 4 13.845 26.052 6.513 -0.282
5 Few first 13 2.479 145.488 29.098 -0.241
5 Many first 13 7.158 50.386 10.077 -0.225
5 Random 5 10.550 34.189 6.838 -0.213
5 Sequential 5 35.334 10.208 2.042 -0.128
6 Few first 18 10.939 32.974 5.496 -0.164
6 Many first 18 45.722 7.889 1.315 -0.048
6 Random 6 6.736 53.543 8.924 -0.178
6 Sequential 6 2.327 154.991 25.832 -0.192
7 Few first 25 73.095 4.935 0.705 0.070
7 Many first 25 17.056 21.147 3.021 -0.111
7 Random 6 11.900 30.310 4.330 -0.128
7 Sequential 6 2.314 155.862 22.266 -0.159
8 Few first 32 3.482 103.580 12.947 -0.132
8 Many first 32 9.560 37.730 4.716 -0.113
8 Random 6 2.331 154.725 19.341 -0.135
8 Sequential 6 2.329 154.858 19.357 -0.135
9 Few first 41 2.479 145.488 16.165 -0.117
9 Many first 41 0.810 445.267 49.474 -0.122
9 Random 7 15.680 23.003 2.556 -0.076
9 Sequential 7 7.167 50.323 5.591 -0.103
10 Few first 50 14.933 24.154 2.415 -0.065
10 Many first 50 0.957 376.871 37.687 -0.108
10 Random 7 1.384 260.596 26.060 -0.107
10 Sequential 7 7.166 50.330 5.033 -0.089

Table B.56: Tests of granularity to unif-r5.cnf

111

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 16.658 3.073 1.537 -0.349
2 Many first 2 9.666 5.296 2.648 -0.622
2 Random 2 55.452 0.923 0.462 1.166
2 Sequential 2 9.669 5.295 2.647 -0.622
3 Few first 5 1.797 28.485 9.495 -0.447
3 Many first 5 36.909 1.387 0.462 0.582
3 Random 4 11.646 4.396 1.465 -0.159
3 Sequential 4 6.881 7.439 2.480 -0.298
4 Few first 8 14.685 3.486 0.871 0.049
4 Many first 8 4.008 12.771 3.193 -0.229
4 Random 4 6.834 7.490 1.873 -0.155
4 Sequential 4 6.926 7.391 1.848 -0.153
5 Few first 13 1.226 41.752 8.350 -0.220
5 Many first 13 0.890 57.515 11.503 -0.228
5 Random 5 15.322 3.341 0.668 0.124
5 Sequential 5 36.871 1.388 0.278 0.650
6 Few first 18 1.028 49.794 8.299 -0.176
6 Many first 18 0.102 501.899 83.650 -0.198
6 Random 6 10.348 4.947 0.825 0.043
6 Sequential 6 11.166 4.585 0.764 0.062
7 Few first 25 0.203 252.171 36.024 -0.162
7 Many first 25 0.437 117.138 16.734 -0.157
7 Random 6 18.792 2.724 0.389 0.262
7 Sequential 6 11.174 4.581 0.654 0.088
8 Few first 32 0.314 163.025 20.378 -0.136
8 Many first 32 0.672 76.174 9.522 -0.128
8 Random 6 10.849 4.719 0.590 0.099
8 Sequential 6 11.133 4.598 0.575 0.106
9 Few first 41 0.398 128.617 14.291 -0.116
9 Many first 41 0.250 204.761 22.751 -0.120
9 Random 7 2.922 17.518 1.946 -0.061
9 Sequential 7 5.553 9.218 1.024 -0.003
10 Few first 50 0.805 63.589 6.359 -0.094
10 Many first 50 0.878 58.301 5.830 -0.092
10 Random 7 10.862 4.713 0.471 0.125
10 Sequential 7 5.575 9.182 0.918 0.010

Table B.57: Tests of granularity to vmpc 21.renamed-as.sat05-1923.cnf

112

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 36.562 4.154 2.077 -0.519
2 Many first 2 9.324 16.291 8.146 -0.877
2 Random 2 45.246 3.357 1.679 -0.404
2 Sequential 2 9.326 16.288 8.144 -0.877
3 Few first 5 8.835 17.193 5.731 -0.413
3 Many first 5 31.176 4.872 1.624 -0.192
3 Random 4 28.901 5.256 1.752 -0.215
3 Sequential 4 28.860 5.263 1.754 -0.215
4 Few first 8 2.273 66.821 16.705 -0.313
4 Many first 8 1.038 146.325 36.581 -0.324
4 Random 4 27.419 5.540 1.385 -0.093
4 Sequential 4 28.825 5.270 1.317 -0.080
5 Few first 13 1.285 118.199 23.640 -0.239
5 Many first 13 3.536 42.954 8.591 -0.221
5 Random 5 92.672 1.639 0.328 0.513
5 Sequential 5 31.217 4.866 0.973 0.007
6 Few first 18 0.391 388.462 64.744 -0.197
6 Many first 18 2.216 68.540 11.423 -0.182
6 Random 6 10.708 14.185 2.364 -0.115
6 Sequential 6 116.994 1.298 0.216 0.724
7 Few first 25 1.160 130.936 18.705 -0.158
7 Many first 25 1.072 141.684 20.241 -0.158
7 Random 6 110.269 1.377 0.197 0.680
7 Sequential 6 116.789 1.301 0.186 0.730
8 Few first 32 1.867 81.352 10.169 -0.129
8 Many first 32 0.362 419.582 52.448 -0.140
8 Random 6 5.560 27.317 3.415 -0.101
8 Sequential 6 116.701 1.302 0.163 0.735
9 Few first 41 0.133 1142.113 126.901 -0.124
9 Many first 41 4.183 36.310 4.034 -0.094
9 Random 7 0.134 1133.581 125.953 -0.124
9 Sequential 7 83.673 1.815 0.202 0.495
10 Few first 50 0.221 687.296 68.730 -0.109
10 Many first 50 1.637 92.782 9.278 -0.099
10 Random 7 75.024 2.025 0.202 0.438
10 Sequential 7 83.661 1.816 0.182 0.501

Table B.58: Tests of granularity to vmpc 23.renamed-as.sat05-1927.cnf

113

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 271.611 1.740 0.870 0.149
2 Many first 2 229.119 2.063 1.031 -0.030
2 Random 2 444.469 1.063 0.532 0.881
2 Sequential 2 229.245 2.062 1.031 -0.030
3 Few first 5 0.931 507.622 169.207 -0.497
3 Many first 5 8.212 57.549 19.183 -0.474
3 Random 4 0.721 655.476 218.492 -0.498
3 Sequential 4 4.472 105.678 35.226 -0.486
4 Few first 8 0.624 757.372 189.343 -0.332
4 Many first 8 9.732 48.565 12.141 -0.306
4 Random 4 0.709 666.571 166.643 -0.331
4 Sequential 4 4.459 105.986 26.496 -0.321
5 Few first 13 12.624 37.439 7.488 -0.217
5 Many first 13 8.236 57.388 11.478 -0.228
5 Random 5 1.129 418.596 83.719 -0.247
5 Sequential 5 0.945 500.102 100.020 -0.248
6 Few first 18 9.360 50.496 8.416 -0.176
6 Many first 18 1.259 375.373 62.562 -0.197
6 Random 6 1.177 401.525 66.921 -0.197
6 Sequential 6 9.750 48.476 8.079 -0.175
7 Few first 25 7.045 67.082 9.583 -0.149
7 Many first 25 13.583 34.795 4.971 -0.133
7 Random 6 0.529 893.391 127.627 -0.165
7 Sequential 6 9.752 48.466 6.924 -0.143
8 Few first 32 10.858 43.529 5.441 -0.117
8 Many first 32 6.060 77.985 9.748 -0.128
8 Random 6 9.336 50.626 6.328 -0.120
8 Sequential 6 9.726 48.595 6.074 -0.119
9 Few first 41 21.425 22.059 2.451 -0.074
9 Many first 41 9.069 52.116 5.791 -0.103
9 Random 7 3.716 127.177 14.131 -0.116
9 Sequential 7 2.634 179.420 19.936 -0.119
10 Few first 50 13.163 35.906 3.591 -0.080
10 Many first 50 1.867 253.129 25.313 -0.107
10 Random 7 1.087 434.771 43.477 -0.109
10 Sequential 7 2.615 180.723 18.072 -0.105

Table B.59: Tests of granularity to vmpc 25.renamed-as.sat05-1913.cnf

114

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 101.581 0.254 0.127 6.867
2 Many first 2 20.832 1.240 0.620 0.613
2 Random 2 19.886 1.299 0.649 0.540
2 Sequential 2 20.800 1.242 0.621 0.611
3 Few first 5 27.275 0.947 0.316 1.084
3 Many first 5 346.991 0.074 0.025 19.654
3 Random 4 162.001 0.159 0.053 8.909
3 Sequential 4 469.870 0.055 0.018 26.791
4 Few first 8 203.695 0.127 0.032 10.183
4 Many first 8 15.839 1.631 0.408 0.484
4 Random 4 77.290 0.334 0.084 3.657
4 Sequential 4 469.352 0.055 0.014 23.899
5 Few first 13 147.330 0.175 0.035 6.881
5 Many first 13 155.741 0.166 0.033 7.288
5 Random 5 33.998 0.760 0.152 1.396
5 Sequential 5 346.559 0.075 0.015 16.524
6 Few first 18 9.630 2.682 0.447 0.247
6 Many first 18 21.945 1.177 0.196 0.820
6 Random 6 44.218 0.584 0.097 1.855
6 Sequential 6 68.415 0.377 0.063 2.979
7 Few first 25 208.061 0.124 0.018 9.232
7 Many first 25 14.059 1.837 0.262 0.468
7 Random 6 65.213 0.396 0.057 2.779
7 Sequential 6 68.325 0.378 0.054 2.920
8 Few first 32 4.442 5.814 0.727 0.054
8 Many first 32 17.451 1.480 0.185 0.629
8 Random 6 181.972 0.142 0.018 7.910
8 Sequential 6 68.315 0.378 0.047 2.880
9 Few first 41 3.833 6.737 0.749 0.042
9 Many first 41 13.473 1.917 0.213 0.462
9 Random 7 60.543 0.427 0.047 2.512
9 Sequential 7 150.358 0.172 0.019 6.425
10 Few first 50 9.828 2.628 0.263 0.312
10 Many first 50 5.749 4.492 0.449 0.136
10 Random 7 256.934 0.101 0.010 10.943
10 Sequential 7 150.835 0.171 0.017 6.378

Table B.60: Tests of granularity to vmpc 25.shuffled-as.sat05-1945.cnf

115

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 192.026 0.740 0.370 1.702
2 Many first 2 992.176 0.143 0.072 12.962
2 Random 2 1217.578 0.117 0.058 16.134
2 Sequential 2 994.138 0.143 0.071 12.990
3 Few first 5 1170.039 0.121 0.040 11.849
3 Many first 5 322.834 0.440 0.147 2.907
3 Random 4 695.821 0.204 0.068 6.844
3 Sequential 4 42.488 3.345 1.115 -0.052
4 Few first 8 591.416 0.240 0.060 5.215
4 Many first 8 956.179 0.149 0.037 8.637
4 Random 4 1957.178 0.073 0.018 18.028
4 Sequential 4 42.429 3.350 0.837 0.065
5 Few first 13 2.334 60.888 12.178 -0.229
5 Many first 13 41.650 3.412 0.682 0.116
5 Random 5 173.724 0.818 0.164 1.278
5 Sequential 5 322.802 0.440 0.088 2.589
6 Few first 18 13.355 10.642 1.774 -0.087
6 Many first 18 30.657 4.636 0.773 0.059
6 Random 6 1048.403 0.136 0.023 8.652
6 Sequential 6 701.427 0.203 0.034 5.723
7 Few first 25 17.728 8.017 1.145 -0.021
7 Many first 25 24.417 5.821 0.832 0.034
7 Random 6 129.477 1.098 0.157 0.896
7 Sequential 6 697.553 0.204 0.029 5.560
8 Few first 32 6.095 23.316 2.915 -0.094
8 Many first 32 35.643 3.987 0.498 0.144
8 Random 6 30.080 4.725 0.591 0.099
8 Sequential 6 698.204 0.204 0.025 5.472
9 Few first 41 24.766 5.739 0.638 0.071
9 Many first 41 20.113 7.066 0.785 0.034
9 Random 7 662.989 0.214 0.024 5.123
9 Sequential 7 580.875 0.245 0.027 4.473
10 Few first 50 33.097 4.294 0.429 0.148
10 Many first 50 15.753 9.022 0.902 0.012
10 Random 7 540.534 0.263 0.026 4.115
10 Sequential 7 579.592 0.245 0.025 4.420

Table B.61: Tests of granularity to vmpc 26.renamed-as.sat05-1914.cnf

116

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 293.254 1.027 0.513 0.948
2 Many first 2 189.681 1.588 0.794 0.260
2 Random 2 596.066 0.505 0.253 2.959
2 Sequential 2 189.413 1.590 0.795 0.258
3 Few first 5 315.062 0.956 0.319 1.069
3 Many first 5 229.229 1.314 0.438 0.642
3 Random 4 730.186 0.412 0.137 3.137
3 Sequential 4 62.168 4.844 1.615 -0.190
4 Few first 8 42.624 7.065 1.766 -0.145
4 Many first 8 106.090 2.838 0.710 0.136
4 Random 4 62.141 4.846 1.211 -0.058
4 Sequential 4 62.153 4.845 1.211 -0.058
5 Few first 13 15.546 19.370 3.874 -0.185
5 Many first 13 26.959 11.170 2.234 -0.138
5 Random 5 269.876 1.116 0.223 0.870
5 Sequential 5 228.888 1.316 0.263 0.700
6 Few first 18 23.979 12.557 2.093 -0.104
6 Many first 18 340.459 0.884 0.147 1.157
6 Random 6 491.294 0.613 0.102 1.758
6 Sequential 6 140.425 2.144 0.357 0.360
7 Few first 25 363.340 0.829 0.118 1.241
7 Many first 25 86.304 3.489 0.498 0.168
7 Random 6 5.687 52.946 7.564 -0.145
7 Sequential 6 140.616 2.141 0.306 0.378
8 Few first 32 252.193 1.194 0.149 0.814
8 Many first 32 286.870 1.050 0.131 0.946
8 Random 6 640.664 0.470 0.059 2.289
8 Sequential 6 140.393 2.145 0.268 0.390
9 Few first 41 124.191 2.425 0.269 0.339
9 Many first 41 4.476 67.270 7.474 -0.108
9 Random 7 356.239 0.845 0.094 1.206
9 Sequential 7 110.925 2.715 0.302 0.289
10 Few first 50 157.608 1.911 0.191 0.470
10 Many first 50 57.883 5.202 0.520 0.102
10 Random 7 192.221 1.567 0.157 0.598
10 Sequential 7 110.966 2.714 0.271 0.298

Table B.62: Tests of granularity to vmpc 26.shuffled-as.sat05-1946.cnf

117

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 2770.463 0.323 0.162 5.184
2 Many first 2 439.001 2.041 1.021 -0.020
2 Random 2 439.579 2.038 1.019 -0.019
2 Sequential 2 439.102 2.041 1.020 -0.020
3 Few first 5 103.887 8.625 2.875 -0.326
3 Many first 5 833.479 1.075 0.358 0.895
3 Random 4 1032.479 0.868 0.289 1.228
3 Sequential 4 975.831 0.918 0.306 1.133
4 Few first 8 1111.319 0.806 0.202 1.320
4 Many first 8 1699.159 0.527 0.132 2.195
4 Random 4 532.932 1.681 0.420 0.460
4 Sequential 4 975.911 0.918 0.230 1.119
5 Few first 13 1047.094 0.856 0.171 1.211
5 Many first 13 330.491 2.711 0.542 0.211
5 Random 5 1886.283 0.475 0.095 2.381
5 Sequential 5 834.746 1.073 0.215 0.914
6 Few first 18 17.390 51.528 8.588 -0.177
6 Many first 18 225.856 3.967 0.661 0.102
6 Random 6 145.173 6.172 1.029 -0.006
6 Sequential 6 897.032 0.999 0.166 1.001
7 Few first 25 19.674 45.546 6.507 -0.141
7 Many first 25 72.453 12.368 1.767 -0.072
7 Random 6 865.812 1.035 0.148 0.961
7 Sequential 6 897.720 0.998 0.143 1.002
8 Few first 32 45.594 19.654 2.457 -0.085
8 Many first 32 53.547 16.734 2.092 -0.075
8 Random 6 540.611 1.658 0.207 0.547
8 Sequential 6 897.016 0.999 0.125 1.001
9 Few first 41 9.311 96.243 10.694 -0.113
9 Many first 41 44.889 19.962 2.218 -0.069
9 Random 7 798.544 1.122 0.125 0.878
9 Sequential 7 905.395 0.990 0.110 1.012
10 Few first 50 16.387 54.682 5.468 -0.091
10 Many first 50 18.227 49.162 4.916 -0.089
10 Random 7 1106.976 0.809 0.081 1.262
10 Sequential 7 904.271 0.991 0.099 1.010

Table B.63: Tests of granularity to vmpc 27.renamed-as.sat05-1915.cnf

118

#W Mode #V CPU Time Spd. Eff. S. F.
2 Few first 2 9.042 50.151 25.075 -0.960
2 Many first 2 1.198 378.480 189.240 -0.995
2 Random 2 1.196 379.113 189.557 -0.995
2 Sequential 2 1.202 377.221 188.610 -0.995
3 Few first 5 0.980 462.674 154.225 -0.497
3 Many first 5 17.442 25.997 8.666 -0.442
3 Random 4 4.906 92.420 30.807 -0.484
3 Sequential 4 2.358 192.288 64.096 -0.492
4 Few first 8 14.558 31.147 7.787 -0.291
4 Many first 8 7.534 60.182 15.046 -0.311
4 Random 4 5.253 86.315 21.579 -0.318
4 Sequential 4 3.866 117.282 29.321 -0.322
5 Few first 13 25.387 17.861 3.572 -0.180
5 Many first 13 5.822 77.879 15.576 -0.234
5 Random 5 13.808 32.839 6.568 -0.212
5 Sequential 5 5.246 86.430 17.286 -0.236
6 Few first 18 1.061 427.352 71.225 -0.197
6 Many first 18 27.995 16.197 2.700 -0.126
6 Random 6 17.299 26.212 4.369 -0.154
6 Sequential 6 0.787 576.142 96.024 -0.198
7 Few first 25 15.357 29.527 4.218 -0.127
7 Many first 25 23.914 18.961 2.709 -0.105
7 Random 6 1.569 288.985 41.284 -0.163
7 Sequential 6 3.716 122.017 17.431 -0.157
8 Few first 32 21.478 21.112 2.639 -0.089
8 Many first 32 5.496 82.499 10.312 -0.129
8 Random 6 4.771 95.035 11.879 -0.131
8 Sequential 6 3.718 121.951 15.244 -0.133
9 Few first 41 35.152 12.899 1.433 -0.038
9 Many first 41 6.266 72.361 8.040 -0.109
9 Random 7 1.131 400.902 44.545 -0.122
9 Sequential 7 1.553 291.963 32.440 -0.121
10 Few first 50 3.671 123.512 12.351 -0.102
10 Many first 50 42.710 10.617 1.062 -0.006
10 Random 7 1.732 261.788 26.179 -0.107
10 Sequential 7 4.572 99.172 9.917 -0.100

Table B.64: Tests of granularity to vmpc 27.shuffled-as.sat05-1947.cnf

	Introduction
	Logic and complexity
	Boolean Logic
	Computational complexity

	Parallel computing
	Technology
	Hardware
	Software

	Programming
	Methodology
	Concerns

	Performance measures
	Metrics
	Times

	The SAT-Solver
	General algorithms
	MiniSAT

	Parallel implementation
	PCAM design
	Partitioning
	Communication
	Agglomeration
	Mapping

	Implementation details
	Variables selection
	Assumptions generation
	Assumptions pruning
	Sharing learnt clauses
	Messages
	Automatic settings

	Application's work flow
	Modules of the program
	Technology

	Experimental results and performance analysis
	Grid resources
	Methodology
	Goals and difficulties
	Time measurement
	Results
	Communication delay
	Modes and options
	Granularity
	Load distribution

	Conclusion
	User manual
	How to use this manual
	System requirements and installation
	Quick start
	Usage
	Options
	Examples
	Inputs and Outputs
	Hints for better performance
	Error messages
	FAQ

	Performance tables

