
pmcSAT
Ricardo Marques, Luis Guerra e Silva, Paulo Flores and L. Miguel Silveira

INESC-ID / IST-TU Lisbon
Rua Alves Redol, 9, 1000-029 Lisbon, Portugal

{rsm,lgs,pff,lms}@algos.inesc-id.pt

Abstract—This document describes the SAT solver PMCSAT,
a conflict-driven clause learning (CDCL) portfolio solver that
launches multiple instances of the same basic solver using differ-
ent heuristic strategies, for search-space exploiting and problem
analysis, which share information and cooperate towards the
solution of a given problem.

I. INTRODUCTION

PMCSAT is a portfolio-based multi-threaded, multi-core
SAT solver, built on top of MINISAT [1]. The general strategy
pursued in this solver is to launch multiple instances of the
same solver, with different parameter configurations, which
cooperate to a certain degree by sharing relevant information
when searching for a solution. This approach has the advan-
tage of minimizing the dependence of current SAT solvers
on specific parameter configurations chosen to regulate their
heuristic behavior, namely the decision process on the choice
of variables, on when and how to restart, on how to backtrack,
etc.

II. MAIN TECHNIQUES

The solver uses multiple threads (eight currently), which
explore the search space independently, following different
paths, due to the way each thread is configured.

In order to ensure that each thread follows divergent search
paths, we defined distinct priority assignment schemes, one for
each thread of PMCSAT. Note that the priority of a variable
will determine its relative assignment order.

Below are described the different priority schemes that were
used.

• Thread #0/#1 - All the variables have the same priority,
therefore this thread mimics the original VSIDS heuristic.

• Thread #2 - The first half of the variables read from the
file have higher priority than the second half.

• Thread #3 - The first half of the variables read from the
file have lower priority than the second half.

• Thread #4 - The priority is sequentially decreased as the
variables are read from the file.

• Thread #5 - The priority is increased according to its
number of occurences in the file.

• Thread #6 - The priority is decreased according to its
number of occurences in the file.

• Thread #7 - The priority is decreased according to
the number of variables that have the same number of
common variables.

Threads #0 and #1 use the same priority-scheme, however
they have different learnt clause deletion methods.

In [2] the authors show that using a more agressive clause
deletion strategy could lead to good results in a CDCL SAT
solver, as a result of the overhead reduced in propagation on
learnt clauses. Threfore, thread #1 uses a more agressive dele-
tion strategy, while all the other threads follow the MINISAT
deletion scheme.

Although each PMCSAT thread exploits independently the
search space, this is not just a purely competitive solver. All
the threads cooperate by sharing the learnt clauses resulting
from conflict analysis, leading to a larger pruning of the search
space.

To reduce the communication overhead introduced by clause
sharing, and its overall impact in performance, we designed
data structures that eliminate the need for read and write locks.
These structures are stored in shared memory, which is shared
among all threads.

Each thread owns a queue, where the clauses to be shared
are inserted. Associated to this queue is a pointer, which
marks the last inserted clause, manipulated by the source
thread, while every other targed thread owns a pointer that
indicates the last read clause from the queue. Therefore, this
data structure eliminates the need for a locking mechanism.

A more detailed explanation of the techniques used in this
solver can be found in [3].

III. MAIN PARAMETERS

The internal parameters of PMCSAT are the same as in
MINISAT, with the addition of the following:

1) The learnt clauses size condition to be exported. For the
SAT competition the clause size limit was set to 8, i. e.,
only learnt clauses with less than 8 literals are exported
and shared with other threads.

2) The threshold for the thread’s learnt clause database to
be reduced. The initial condition defined for thread #1
is 4000 learnt clauses, with an increment value of 300,
as in GLUCOSE 2.1.

IV. IMPLEMENTATION DETAILS

1) The programming language used is C++, using pthread
for parallel computing.

2) The solver was implemented on top of MINISAT V2.2.0.

V. SAT COMPETITION 2013 SPECIFICS

1) The solver was submitted to all Parallel Tracks: Appli-
cation SAT+UNSAT, Hard-Combinatorial SAT+UNSAT,
Random SAT and Open Track.



2) The compiler used is g++.
3) The optimization flag used is ”-O3”
4) 64-bit binary.
5) The only command-line parameter is the input file

VI. AVAILABILITY

More information about the PMCSAT solver, including its
source code, can be found on the ALGOS research group
publicily available website:

http://algos.inesc-id.pt/algos/software.php

ACKNOWLEDGMENT

The authors would like to thank the authors of MINISAT
2.2.0 for making available the source code of their solvers.

This work was partially supported by national funds
through FCT, Fundação para a Ciência e Tecnologia, under
project ”ParSat: Parallel Satisfiability Algorithms and its Ap-
plications” (PDTC/EIA-EIA/103532/2008) and project PEst-
OE/EEI/LA0021/2011.

REFERENCES

[1] N. Een and N. Sorensson, “An extensible sat-solver,” in SAT, ser. Lecture
Notes in Computer Science, E. Giunchiglia and A. Tacchella, Eds., vol.
2919. Springer, 2003, pp. 502–518.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solver,” in Twenty-first International Joint Conference on Artificial
Intelligence(IJCAI’09), jul 2009, pp. 399–404.

[3] R. S. Marques, L. G. e Silva, P. Flores, and L. M. Silveira, “Improving sat
solver efficiency using a cooperative multicore approach,” International
FLAIRS Conference, May 22 - 24, 2013.


